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Cognitive radio systems provide an intelligent solution to spectrum scarcity
by dynamically accessing underutilized frequency bands licensed to primary
users. Among various sensing techniques, energy detection (ED) is
extensively adopted due to its inherent simplicity and minimal
computational requirements, but suffers from poor performance at low
signal-to-noise ratio (SNR) environments under channel impairments such as
additive white gaussian noise (AWGN) and multipath fading. This paper
proposes an enhanced spectrum sensing approach by integrating ED with
entropy-based techniques, specifically Kapur and Renyi entropy measures.
The proposed methods are evaluated under AWGN and various fading
environments with binary phase shift keying (BPSK) and quadrature phase
shift keying (QPSK) modulations. Simulation results demonstrate substantial
improvements in detection performance. The results show that entropy-
based enhancements significantly improve the reliability of spectrum sensing
in cognitive radio (CR) systems operating under challenging channel

conditions. Among the fading models, the Nakagami channel causes the
greatest degradation in detection probability, followed by the Rayleigh
fading channel. ED with Renyi entropy improves Pq by 15-fold and 8-fold,
compared to ED under Nakagami and Rayleigh channels respectively.
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1. INTRODUCTION

The unprecedented growth of wireless technologies has directed to an increased demand for radio
spectrum, making spectrum scarcity a critical challenge for service providers in meeting the rising demands
of modern communication services. According to the federal communications commission (FCC), even with
optimal allocation, 80 to 90% of the licensed spectrum remains underutilized at any given time and location
[1]. One creative way to make use of the unused spectrum is cognitive radio (CR) [2]. Wireless systems
operate across both licensed and unlicensed frequency bands. For instance, CR utilizes the unlicensed
industrial, scientific, and medical (ISM) bands, such as 902-928 MHz, 2.4-2.5 GHz, and 5.725-5.875 GHz,
while licensed bands are used for applications such as AM radio (535 kHz-1.605 MHz), LTE (700 MHz—
2.6 GHz), and marine/aerospace communication (300-535 kHz) [3]. Within the cognitive radio network
(CRN), two categories of users are identified: primary users (PUs), who possess licensed access to exact
spectrum bands, and secondary users (SUs), who opportunistically utilize vacant spectrum without causing
interference to PUs [4], [5]. CRs address the issue of spectrum scarcity through dynamic and intelligent
spectrum access, enabled by spectrum sensing (SS) techniques. SS detects spectrum holes (unoccupied
frequency bands) that can be utilized by SUs [6]-[8]. Various techniques have been developed for SS,
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including matched filter detection (MFD), cyclostationary feature detection and energy detection (ED).
Among these methodologies, ED is the most widely used due to its simplicity, fast implementation and
independence from prior knowledge of PU signals [9], [10].

ED functions by comparing the energy of the received signal to a predefined threshold to determine
availability of spectrum. While ED performs well in noise-stable environments, its effectiveness deteriorates
at low signal-to-noise ratios (SNRs) and under noise uncertainty [11], [12]. Several enhancements have been
proposed to address these limitations. The entropy-based detection has gained attention as a promising SS
technique. It offers low complexity and robustness to noise without requiring prior knowledge of the PU
signal. Since entropy quantifies signal uncertainty and reaches its maximum for uniform distributions, it
serves as a useful criterion to differentiate between signal and noise [13], [14]. Numerous entropy-augmented
ED methodologies have been proposed in the literature. For example, kernel principal component analysis
has been used to implement adaptive threshold for ED under noise uncertainty, particularly in low SNR
conditions [15]. Other studies have modelled the impact of sample size on noise ambiguity [16], and
examined how fading, shadowing, and the hidden terminal problem influence ED performance [17], [18].
Hybrid matched filter detection (HMFD) [19], which combines MFD and ED is though effective, but
introduces higher computational complexity. However, entropy-based techniques remain attractive due to
their noise resilience and lower computational demands [20]. The histogram-based entropy estimators [21]
and multi-stage detectors [22] balance complexity and performance. Techniques like the K-slot ED algorithm
[23] and sample entropy for multiband sensing [24] enhance performance, but at the cost of increased
computational load. The machine learning (ML) [25] and deep learning (DL) [26] methods also have been
applied for SS. The ML methods have been explored to enhance detection accuracy under complex
conditions like fading, shadowing and low SNR [26]. However, these approaches are less practical for
lightweight CR devices due to high training costs, data requirements and computational complexity [27].
Most prior work has used Shannon entropy [28] along with the various sensing techniques. The ED methods
and its variants that are reported in the literature are compared in Table 1.

Table 1. Comparison of the reported works in the literature

Authors (year) Method Remarks
Zhang et al. Frequency domain entropy-based SS scheme is studied Studied for Shannon entropy only. Analyzed for
(2010) [12] and compared with ED and cyclostationary detectors additive white gaussian noise (AWGN) and

Rayleigh channels. Used double sideband (DSB)
and single sideband (SSB) modulation. Poor Py at

low SNR.
Prieto et al. Bartlett periodogram employed for entropy estimation Shannon entropy only used. Studied for AWGN
(2018) [13] channel. Inferior performance at low SNR.
Prieto et al. ED with Shannon entropy Shannon entropy used. No modulation. Poor
(2019) [21] performance at low SNR. AWGN channel only.
Tenorio et al. Sample entropy-based SS Evaluated only for AWGN, ignores Rayleigh,
(2022) [24] Rician, and Nakagami channels.
Pandian et al. Random forest, logistic regression, support vector Classical ML method used. No SNR effects and
(2023) [26] machine (SVM), and k-nearest neighbor (KNN) fading channel considered.
Usman et al. ED with Shannon entropy Shannon entropy employed. No modulation.
(2022) [28] AWGN channel only.

Among the ED with different entropy methods, the ED with Shannon entropy shows better
performance. Most of the studies have been carried out for AWGN channels only. Despite the progress in
entropy-based detection and hybrid approaches, challenges remain in ensuring high detection accuracy at low
SNR conditions, fading environments, and noise uncertainty while maintaining computational efficiency. The
existing better performing ED method rely on Shannon entropy. This motivates the current study, which
proposes a novel entropy augmented ED technique that incorporates Kapur and Renyi entropy methods. The
proposed method aims to strike a balance between detection performance and computational complexity,
offering robust sensing capabilities both under AWGN and various fading channels with different modulation
methods.

The paper is structured as follows: following this introduction, section 2 presents the proposed
entropy-augmented EDE method and presents the detection probability (Pg) under various channel
conditions. Section 3 discusses the simulation and performance evaluations, including a comparison of the
proposed techniques with the existing methods such as conventional ED and involving Shannon entropy.
Finally, section 4 provides the conclusions and outlines future research directions.
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2. METHOD

The proposed EDE method is shown in Figure 1. It has two distinct stages. The initial stage
computes the energy of the received signal r(t) after band pass filtering through squaring and integration
process. The second stage estimates the entropy. This entropy is then compared with the predefined threshold
level to determine whether the spectrum is present or not. Both simulation and theoretical evaluation have
been carried out and they are discussed.

1
, Entropy

1 estimation

1
SUsignal |
! Estimation

(Kapur,
Renyi)

Decision

PU Present

Figure 1. The proposed entropy-augmented ED method

2.1. Theoretical evaluation
Pq of signal for the spectrum holes is theoretically computed based on the equations obtained for the
different channel conditions and the different entropy methods. The equations are obtained as:

— Representation of signals: the signal received by the SUs is described as a binary hypothesis (Ho & Ha)
testing to determine whether PU is in idle or busy state. Ho denotes the absence of PU and H; denotes the
existence of PU [29]. The signal received r(t) by SU is characterized by the subsequent two distinct
hypotheses (1):

_ (e(t); H,
r®={" m(t) + e(t); Hy @

m(t) represents the signal transmitted by PU and e(t) represents the noise component. k stands for the
channel’s amplitude gain and its value depends on the noisy environment. The value of k for AWGN channel
is 1.

— Filtering: it is assumed that both the signal m(t) and noise e(t) are independent and identically distributed,
exhibiting a mean of zero and variance o2 and o2 respectively. Further, m(t) is statistically independent
of e(t) [30]. The signal r(t) received by SU is subjected to a band-pass filter with bandwidth B, and its
transfer function is given as (2):

2 f-fl<B
Hepy = o S S @
0;1f —fl>B

where N, is power spectral density (PSD), f. is carrier frequency, and B is bandwidth.
— Energy estimation: the filtered signal r(t) is subsequently squared and integrated over a time period T [31]
to estimate its energy. The resultant energy (Z) is given as NifoT r2(t)dt. The estimated energy is
0
considered to have a chi-square distribution with 2BwT degrees of freedom when there is only noise (Ho).
If both signal and noise (H1) are present, it is considered having non-central chi-square distribution, which

has the same degrees of freedom and a non-centrality parameter that is based on the signal strength. The
decision statistic for evaluating the energy of a signal is expressed as (3):

X3a s H
~{ 2d 0 (3)

X%d(zy); H;
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The PDF corresponding to a chi-squared distribution in this case, labelled as Z, described by (4) [32]:

- i H

)24l () € %t 4

fZ(Z) - 1y d-1 2y+y ( )
5(;) ze z Iy 1(2yy); Hy

Here, I'(.) stands for the gamma function and Iu(.) stands for the u-th order modified Bessel function of the

first kind [33].

— Entropy estimation: a measure of the average amount of information contained in each symbol is called
entropy. For a continuous random variable, the entropy of PDF f(r) is as (5):

H@) =— [ fMlog,f(r)dr (5)

The Shannon entropy associated with a random variable is given by (6):

Es(r) = = Xri-o f(Nlog,f (r) (6)
Kapur’s entropy with entropy order a is represented by (7):
_ 1R o fYD”
Ey () = e 0V ™

Renyi entropy is represented by (8):
Ep(r) = = log (57— f (1)) 8)

— Decision: the ED relies on a predefined threshold, which is important for evaluating aspects that
contribute to its performance: i) probability of false alarm (Ps) and ii) detection probability (Pg). For a
particular threshold, Pqand Prcan be described as (9):

Py =P(H > A/Hy) and P = P(H > A/H,) 9)
P4 for different channel environments are evaluated as:
— AWGN channel: the probability of failure Ps, is obtained for AWGN channel using the incomplete gamma

function [33]. The Pq is obtained from the cumulative distribution function given in (4) involving the
generalized Marcum Q-function, which depends on the SNR, P4 = 1 — Fz(2), where F(2) is (10):

F7(z) = 1 — Qq(y/2v,V2) (10)

Then P4 for an AWGN channel can be expressed as (11):

Py = Qa(y/2y, VD) (11)

where Qq (.,.) signifies the generalized Marcum-Q function [34].

— Rayleigh fading channel: Py under Rayleigh fading is determined by averaging in (10) over the SNR
distribution using an integral involving the generalized Marcum Q-function. This occurs when the signal
undergoes multipath scattering, causing its amplitude to follow a Rayleigh distribution, resulting in an
exponential probability density function for the SNR 7.

r2
Paray = fooo Qq (r, \/7\) %e(_ﬁ)rdr (12)

substituting p? = % m=d, a=1, and b = /1 yields the Pqin Rayleigh channel given in (13):
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— Rician fading channel: the SNR has a PDF involving the modified Bessel function when the signal power
follows a Rician distribution, which is defined by the Rician factor K. The average P4 under Rician
fading, Paqric, is determined by averaging (10):

K+1)
Paric = J Qa(r VD) (e S Ie. Ay (15)
For u=1, the corresponding solution may be solved using [35], which is provided in (16):

Jy dx.x. exp (— g) Io(cx)Q(ax,b) = exp ( )Q(pm m) (16)
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— Nakagami fading channel: when the signal follows a Nakagami distribution with fading parameter m [36],
the average Py under Nakagami fading is obtained by averaging (10) over this distribution using the

change of variable r = /2y.

mrz
Py Nak = (xfooo Qa(r, \/X)rzm‘le(_W)dr (18)

Following the evaluation of the integral, P4 nak Can be expressed in a closed form as described in (19):
© 2,2
Gy = [, dx.x”exp (— %) Qm(ax,b);p > -1 (19)

N _

Paak = &[Gy + BEAZ L F (min + 135+ -] (20)
The confluent hypergeometric function is denoted by F1(:, :.) [33], and (21) and (22) provide the
representations of B and the solution of G1 [34].

B= F(m)( )m (21)
= [ x*™ L exp (— ";—’}_iz) Q(x,V2)dx (22)

2.2. Simulation

The ED is evaluated through simulation considering various fading channels in MATLAB©
platform. Primary user signals are randomly generated using rand function. Fading channel effects are
obtained using Rayleigh Chan and Rician Chan for Rayleigh and Rician channels respectively. Nakagami-m
fading is implemented with gamma distributed random variables. The hist function approximates the signals
probability distribution for entropy calculation. A bandwidth of 12 kHz and a carrier frequency of 40 kHz are
considered in our work based on existing literature [12]. These parameters are chosen to represent typical
narrowband communication scenarios commonly used in CR applications with low SNR. A single user SS is
considered to evaluate the fundamental performance of the EDE for improving PU detection, without
involving multiple users [13], [18], [28]. P4 is evaluated for both binary phase shift keying (BPSK) and
quadrature phase shift keying (QPSK) modulated signals with varying SNR levels. Monte Carlo simulations
with 10,000 runs are done to get statistically robust results. The parameters and the assumptions made for the
simulation is listed in Table 2.
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Table 2. Simulation parameters

Simulation parameters Type and value
Cognitive user One user
Primary signal type Random
Sensing method ED with Shannon, Kapur, and Renyi entropy
Ps 01ltol
Modulation type BPSK and QPSK
Channel AWGN, Rayleigh, Rician, and Nakagami
Number of samples and number of Monte Carlo simulations 1,000 and 10,000
Bandwidth 12 kHz
Carrier frequency 40 kHz
SNR indB -25dBto5dB
Fading coefficient for Nakagami, m 3
Entropy order (Kapur, Renyi), @ 2

The receiver operating characteristics (ROC) for both theoretical and simulation results are
compared and found to be close. As an example, ROC curve for the Rician fading channel is shown in
Figure 2. The simulated results are closely matches with the results obtained through theoretical evaluations
with the deviation ranging 0 to 1.1%.
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Figure 2. Simulated and theoretical P4 comparison for Rician channel at SNR=-25 dB
The computational complexity analysis for the Shannon, Renyi, and Kapur methods are shown in
Figure 3. Shannon and Renyi entropies have linear computational complexity O(k) and takes a single pass-

through k bin, executing one logarithm and a few multiplications offers efficient and robust performance for
SS. While Kapur entropy involves higher complexity O(k?) with fixed threshold for SS [37].
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Figure 3. Computational complexity of entropy methods
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3. RESULTS AND DISCUSSION

The performance of the method proposed in terms of P4 and SNR is analyzed, with results presented
in Figures 4(a) to (d) for various channel fading environments using BPSK modulation. The detection
capabilities of SU are evaluated by limiting the Ps to the lowest level, i.e., 0.1, in line with the IEEE 802.22
standard [13], [14], [21], [28]. The results indicate that P4 increases with rising SNR values across all
scenarios. Among the channels, the Nakagami channel yields the lowest Pq4, followed by the Rayleigh
channel, while the AWGN and Rician channels shows better detection performance as 0.9149 and 0.9085

respectively for ED with Renyi entropy.
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Figure 4. SNR vs Pq at Ps=0.1; (a) ED, (b) ED+Shannon, (c) ED+Kapur, and (d) ED+Renyi

The Pq values at a selected low SNR of —25 dB are summarized in Table 3. It is observed that ED
with Renyi entropy consistently achieves the highest Pq across all SNR levels and channel conditions,
followed by Kapur entropy, Shannon entropy, and ED. Renyi entropy performs better than Kapur entropy
due to its tunable parameter alpha, which enhances adaptability to diverse statistical distributions and
improves noise robustness. It also benefits from faster computation, as it has only power-law and logarithmic
operations. The Nakagami channel causes the greatest degradation because it models severe multipath fading
with higher fading depth than Rayleigh or Rician channels, leading to greater signal fluctuations and reduced
detection performance in all the entropy methods.

Table 3. Performance of Pq for various ED+entropy method

Channel

Probability of detection (Py) at Ps=0.1, SNR=-25dB

AWGN Rayleigh Rician Nakagami
ED 0.6118 0.0336 0.6177 0.0178
ED+Shannon entropy ~ 0.7493 0.1035 0.7569 0.0309
ED+Kapur entropy 0.8121 0.1508 0.8028 0.0943
ED+Renyi entropy 0.9149 0.2957 0.9085 0.2592
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The performance of the EDE method considering both BPSK and QPSK modulation is analyzed in
terms of Ps vs Py at the fixed lower SNR of -25 dB in this section and shown in Figures 5(a) to (d) and
Figures 6(a) to (d) respectively. The results indicate that a correlation exists among P4 and Pr. The probability
of signal detection rises in proportion to Pr. The Py is higher when the Pr increases. However, the spectrum
quality gets worse when there is a high rate of false alarms affecting the system’s overall performance.
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Figure 5. Performance of the detection methods under fading channels; (SNR=-25 dB, BPSK modulation);
(a) AWGN channel, (b) Rayleigh channel, (c) Rician channel, and (d) Nakagami channel

3.1. Binary phase shift keying modulation

Figures 5(a) to (d) depicts the performance of the ED under various channel environments at a lower
SNR of -25 dB considering BPSK modulated signals. The results obtained for the fixed P=0.1 are tabulated
in Table 4. The results show that the proposed ED with Kapur and ED with Renyi techniques perform better
than the conventional ED and the existing ED with Shannon method. The greatest improvement is observed
in ED with Renyi method with gains of approximately 15-fold and 8-fold, compared to conventional ED
under severely faded Nakagami and Rayleigh channels respectively. The BPSK modulation scheme, due to
simpler constellation, is more robust to noise and fading compared and obviously provides higher Pgq
compared to QPSK.

3.2. Quadrature phase shift keying modulation

Figures 6(a) to (d) depicts the performance of the EDE under various channel environments at a
lower SNR of -25 dB considering QPSK modulated signals. The results obtained for the fixed P+=0.1 are
tabulated in Table 5. As expected, Py is lower than with BPSK, due to the denser constellation in QPSK
which is more sensitive to noise and fading. However, QPSK provides better bandwidth efficiency. In all
fading environments, Renyi entropy consistently outperforms Kapur and Shannon entropies because its
greater sensitivity to the behavior of the probability distribution helps it better distinguish signals from noise,
even under severe fading, resulting in significantly higher Pq.

Bulletin of Electr Eng & Inf, Vol. 15, No. 1, February 2026: 361-372



Bulletin of Electr Eng & Inf ISSN: 2302-9285 a 369

1.0 T T T T 1.0
0.9 - 097
0.8
= 0.8
& £ 0.7
o )
= 5
= 0.7 =
1] £ 0.6
2 7]
c T
= 0.6 = 0.5
S 5 ]
£ 054 Z 044
= = 1
= = 0.3
= 0.4+ " = 1
= ED+Renyi = 024 ED+Renyi
0.3 —&— ED+Kapur 1 —&— ED+Kapur
- —#— ED+Shannon 0.1 4 —*— ED+Shannon
—a—ED 1 ——ED
0.2 T T T T T T T T T 0.0 -
00 01 02 03 04 05 06 07 08 09 1.0 00 01 02 03 04 05 06 07 08 09 1.0
Probability of false alarm,Pf Probability of false alarm,Pf
(@) (b)
Lo T T T T 1.0 T T ¥ L 2
0.9 094
0.8 - 0.8 - .
= = ]
= 0.7 & 0.7
2 £ 1
S 0.6 B o 0.6 .
< 2 ]
= 0.5 = 0.5+
s T
z. 0.4 . E. 0.4 - J
= 3 = 0.3+
2 0. _§ 1
S 0.2 ED+Renyi & 02 ED+Renyi
B —&— ED+Kapur 1 —#— ED+Kapur
0.1 —*— ED+Shannon 0.1+ —#— ED+Shannon
—a— ED 1 —a—ED
0.0 T ! ! 1 | T ! : 1 0.0 T T T T T T T T T
00 01 02 03 04 05 06 07 08 09 10 00 01 02 03 04 05 06 07 08 09 10
Probability of false alarm,Pf Probability of false alarm,Pf
(c) (d)

Figure 6. Performance of the detection methods under fading channels; (SNR=-25 dB, QPSK modulation);
(a) AWGN channel, (b) Rayleigh channel, (c) Rician channel, and (d) Nakagami channel

Table 4. P4 Performance of the proposed EDE method (SNR=-25 dB, BPSK)
Probability of detection (Pg) at P+=0.1

Channel ED ED+Shannon entropy  ED+Kapur entropy  ED+renyi entropy
AWGN 0.6284 0.7576 0.8136 0.9197
Rayleigh 0.0376 0.1024 0.1529 0.2994
Rician 0.6299 0.7610 0.8089 0.9120
Nakagami  0.0186 0.0316 0.0958 0.2604

Table 5. P4 Performance of the proposed EDE method (SNR=-25 dB, QPSK)
Probability of detection (Pg) at P=0.1

Channel ED ED+Shannon entropy  ED+Kapur entropy  ED+Renyi entropy
AWGN 0.5234 0.7021 0.7563 0.8000
Rayleigh  0.0275 0.0952 0.1321 0.2534
Rician 0.5521 0.6521 0.7065 0.8021
Nakagami  0.0165 0.0295 0.0934 0.2314

It is obvious that the ED method with QPSK modulation results in lower P4 compared to the BPSK
modulation as the noise and fading level affects the signal constellation. However, it provides the benefit of
higher bandwidth efficiency compared to the BPSK.

4. CONCLUSION

In this work, ED methods incorporating various entropy-based SS techniques are proposed to
improve Py of PUs. The effectiveness of the proposed approaches is evaluated across diverse channel
environments. At an SNR of —25 dB, ED integrated with Kapur and Renyi entropy shows the Py as 0.8089
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370 a ISSN: 2302-9285

and 0.9120, respectively, for BPSK modulation, 0.7065 and 0.8021 respectively, for QPSK modulation,
under Rician fading channel. These results indicate that both Kapur and Renyi entropy-based ED methods
significantly outperform the conventional ED and the Shannon entropy-based ED in terms of Pg. Among the
two, ED with Renyi entropy exhibits superior performance. Furthermore, Py is strongly influenced by the
channel environment. The Nakagami channel exhibits the most significant degradation in Pg, followed by the
Rayleigh channel. The effects of AWGN and Rician channels are comparatively less. The analysis of the
present work is limited to single user environment.

The EDE approach can be further investigated by incorporating dynamically adaptive thresholds to
enhance robustness in fluctuating signal conditions. Integration of ML and DL techniques presents a
promising direction for future exploration. The practical deployment of the proposed methods can be
evaluated using software-defined radios (SDRs). The current framework aligns with IEEE 802.22 standard
requirements (Pt=0.1), ensuring reliable SS under low SNR conditions. Future work will focus on robustness
analysis under noise uncertainty, hardware prototyping, and experimental validation to enhance real-world
applicability.
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