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 Pedestrian detection is a crucial application in video surveillance, 

autonomous driving, and traffic monitoring. Thus, reliable surveillance is 

required for individual decision making and safety. The study aims to 

compare two models, one based on VGG16 for feature extraction, coupled 

with a long short-term memory (LSTM), and the other simply a dense 

model, for pedestrian detection in video. The integration of an attention 

mechanism to improve feature discrimination across frames along with a 

lightweight structure for real-time processing that enables cross-domain 

generalization to diverse datasets is novelty of this work. We exploit the pre-

trained VGG16 model on ImageNet, extracting spatial features from all the 

frames of the videos. We then feed these spatial features through an LSTM 

to capture temporal dependencies. The dense model uses just the spatial 

features and throws into the bin of information the time holds for them. We 

apply accuracy, precision, recall, and specificity as metrics in evaluation 

models on a labeled dataset of pedestrian video clips. Experimental results 

show that the VGG+LSTM model performs better than the dense model by 

giving a higher accuracy and performing better on temporal variations of 

frames. The LSTM-based approach achieves 0.96 accuracy over multivariate 

datasets. 
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1. INTRODUCTION 

Pedestrian detection is crucial for the safety of the person on road and also the activities which are 

performed by a pedestrian on the road should also be monitored. In most of the computer vision systems it is 

an integral part specially within the areas including surveillance systems, intelligent cities, autonomous 

driving and many more. In the field of autonomous vehicles, surveillance videos which are present on road 

are used for monitoring the vehicle so that pedestrians can pass through easily. In other words, video 

surveillance is used in this case. With video-based systems increasingly used in these areas, detection 

algorithms are in need of being highly accurate and robust when it comes to interpreting dynamic real-world 

scenarios with movement, variable lighting conditions, and occlusions [1]. 

Although the recent progress in deep learning models has been impressive in object detection, there 

are many challenges that need to be addressed to make it more effective in application to pedestrian detection 

in video sequences. Traditional convolutional neural network (CNN) models, like VGG16, are great at 

extracting spatial features from static frames but lack the temporal awareness needed to consistently track 

https://creativecommons.org/licenses/by-sa/4.0/
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pedestrians across sequential frames [2]. Therefore, the dense models usually have a performance-related 

issue, particularly in the dynamic scenes where detecting moving objects, such as pedestrians, is dependent 

on sequential frame-by-frame information [3]. This work seeks to bridge the gap in the effective exploitation 

of the temporal dependencies in pedestrian detection with a comparison between the dense model and a 

combined model of VGG16+recurrent neural network (RNN), which integrates both spatial and temporal 

information [4]. 

This research focused on video sequences specific to pedestrian detection. This research however 

pays significant emphasis on accuracy and specificity as the metrics for evaluation [5]. This research 

highlights the impact of temporal modeling which can affect pedestrian detection in dynamic environments. 

Furthermore, this work explores computational trade-offs that exist in utilization of recurrent layers. The 

scope of this work corresponds to comparative analysis of a VGG+RNN model and a dense model for 

assessing their effectiveness in real-world pedestrian detection applications [6]. The novelty of the work is in 

handling the dynamic videos using the temporal modeling so that pedestrian detection can be enhanced. It 

integrates an RNN with a feature extractor that is based on VGG16 and captures both spatial and temporal 

cues, which probably can surmount the shortcomings of existing static, frame-only detection models [7]. 

Unlike previous work that focused on the role of spatial feature extraction, this work focuses on the role of 

temporal dependencies and aims to show that such an approach is more robust for applications requiring real-

time tracking and detection in dynamic environments [8]. It also shows that there is a trade-off between 

increased accuracy and computational efficiency, and this insight is useful in applications that have real-time 

constraints [9]. 

From background analysis it is determined that CNN based detectors including region-based 

convolutional neural network (R-CNN), Faster region-based convolutional neural network (Faster R-CNN), 

ResNet, and Inception, as well as CNN–RNN hybrids like convolutional neural network–gated recurrent unit 

GRU (CNN–GRU) performs well in case of occlusion free environment. The existing approaches however 

have limitations in highly dynamic and occlusion-prone environments. Furthermore, traditional approaches 

face issues during real-time deployment is required. To address these challenges, this study proposes a novel 

VGG16– long short-term memory (LSTM) framework with improved attention-enhanced spatio-temporal 

fusion and optimized low-latency architecture for robust pedestrian detection. The key novelty lies in 

integrating an attention mechanism to improve feature discrimination across frames. Further, proposed also 

design a lightweight structure for real-time processing and enables cross-domain generalization to diverse 

datasets. The proposed work, thus directly addresses issues associated with prior work and contributes to a 

more scalable and reliable solution that is suitable for real-world applications, including urban surveillance 

and autonomous driving. 

Contributions of this study are as follows: 

- The main contribution includes integrating an attention mechanism to improve feature discrimination 

across frames. 

- The proposed model integrates temporal modeling through LSTM that will be used to capture motion-

based features and frames. This will address the gap in sequential pedestrian detection by lightweight 

structure for real-time processing and enables cross-domain generalization to diverse datasets. 

- Multiple metrics are used to check the performance of the model being proposed. The metrics include 

accuracy, precision, recall, and specificity) across realistic video datasets. 

- This model also critically analyses computational trade-offs between accuracy gains and real-time 

feasibility. 

The structure of the paper is given in Figure 1. 

Pedestrian detection has improved much with the advent of deep learning, which can now provide 

more robust and real-time systems, especially in dynamic environments. Early works, such as [10] R-CNN 

showed the power of CNNs in object detection tasks, which eventually laid the foundation for pedestrian 

detection systems. From this, [6] came with Faster R-CNN, which improved the speed of detection by the 

usage of region proposal networks (RPNs). The mechanism applied using RPN is useful in real-time 

applications. This can be extremely beneficial considering surveillance videos in pedestrian detection [11]. 

Existing works considering CNN-based methods could work well in extracting meaningful features in the 

detection of pedestrians [12]. 

The speed of extraction could be fast, however there also exist some limitations in detecting 

pedestrians. This will happen when presented environment is cluttered and dynamic scenes. In dynamic 

videos there exist occlusions and varying scales of pedestrians. This will affect the performance of the model. 

For those challenges, [13] proposed ResNet architecture. This model uses residual learning and was able to 

make effective network without losing accuracy [14]. With ResNet, it is possible to handle multiple features 

and most predominant feature contributing to pedestrian detection will be selected. Furthermore, there also 

exists InceptionV3 [15] that is a multi-scale feature extraction method used to capture the pedestrians at 
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different scales. This is crucial while dealing with dynamic and diverse environments such as urban streets or 

crosswalks, where the pedestrians appear at various distances [16]. 

 

 

 
 

Figure 1. Structure of the paper 

 

 

The pedestrian detection can further be enhanced using temporal features [17] proposed the LSTM 

networks that can capture temporal dependencies in video sequences. It can also enhance the tracking of 

pedestrians in dynamic environments. Gawande et al. [18] discussed the ability of LSTM to learn long-range 

dependencies between frames. This is crucial step in becoming an ideal choice for sequential predictions. 

This includes pedestrian motion tracking in dynamic videos. This ability to incorporate temporal context is 

used especially for improving pedestrian detection performance in dynamic video streams [19]. 

These advances are the logical successors of the work on fusing VGG16 with LSTM. VGG16, for 

instance, with its richness, is better than most in feature extraction, by the richness of hierarchy of edges it 

generates, as well textures and shape necessary to detect pedestrians [20]. But in the dynamic and diverse 

environments, the introduction of LSTM can be helpful as it provides more time context that can be used to 

supplement the accuracy of vision of crossers of pedestrians through frames of videos. The use of this 

strategy entails the usage of VGG16 had powerful feature extraction with strong features and LSTM [21], 

which employs learning in order. ability to assist the model with the ability to understand the spatial and 

temporal depth in the identification of the pedestrian [22]. 

More recently, [23] have shown that CNNs can be used together with RNNs with the aim of 

increasing the robustness in pedestrian detection especially in stressed environment settings. Similarly, [24] 

added the concept of spatiotemporal features using deep learning to improve the detection. Moving 

environment performance was detected [25]. These papers demonstrate the virtue of feature extraction using 

sequence modeling, which is also discussed in this paper, where VGG16 and LSTM are merged together. 

VGG16 and LSTM are another beneficial approach that is combined with the existing methods to 

develop an optimistic solution pedestrian detection [26]. VGG16 is the powerful, and rich features, per 

frame, and, conversely, [27] the LSTM finds the movement and context using time and hence making the 

system skilled at forecasting the locations of pedestrians in more complicated or even obscured  

environments [28]-[30]. 

 

 

2. METHOD 

The flow of the proposed mechanism of pedestrian detection using VGG16 and LSTM is given in 

Figure 2. 
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Figure 2. Flow of proposed work 

 

 

2.1.  Dataset description 

The Crosswalk-Dataset is selected for the proposed work. It is a collection designed to support 

research in crosswalk classification and detection, particularly to aid in developing algorithms for visually 

impaired assistance systems. Originating from videos taken in Fortaleza-CE, Brazil, this dataset comprises 

high-resolution imagery captured in 1280×720 pixels at 30 FPS during daylight. The images are categorized 

into four primary classes: 

- Front-view Crosswalks: images of crosswalks as seen from the front. 

- Half-lane Views: images of crosswalks seen from the left and right sides, each forming separate classes. 

- Non-Crosswalk images: comprises asphalt, sidewalks, and passing vehicles, serving as a negative class to 

help models distinguish crosswalks. 

For enhanced training and classification, the dataset includes a file named 

10_FEATURES_M17_CM6b_TH199.csv, which provides pre-processed data for machine learning 

applications. This file contains ten gray level co-occurrence matrix (GLCM) features—such as angular 

second moment (ASM), contrast, entropy, homogeneity, sum mean, maximum probability, and 

autocorrelation. All these features were obtained after decimation factor resizing of pictures by 17 times and 

then applying it a threshold (T=199) to process binary images. The data was initially applied to support 

vector machines (SVMs) though it could be further applied to other machine learning models and deep 

learning architectures, which makes it flexible in pedestrian and crosswalk detection. Moreover, the data 

contains different measures and the number of labels of different GLCM-derived feature, which provide 

information on textural changes in crosswalk and non-crosswalk images.  

This design gives sufficient background to the studies of maximizing accuracy and sensitivity with 

minimum computational load. Table 1 indicates cover crucial points associated with Crosswalk-Dataset and 

other popular pedestrian detection datasets. 

Each dataset provides unique benefits tailored to different use cases. The Crosswalk-Dataset stands 

out for crosswalk-specific applications, whereas Caltech and Cityscapes offer broader use for general 

pedestrian and urban scene detection in autonomous driving contexts. KITTI supports 3D localization and is 

ideal for advanced AV systems. 
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Table 1. Comparative analysis of the Crosswalk-Dataset with other benchmarked datasets 
Aspect Crosswalk-Dataset Caltech pedestrian dataset Cityscapes KITTI 

Primary 
Purpose 

Crosswalk detection, aiding 
visually impaired users 

with crosswalk 

classification 

General pedestrian 
detection for autonomous 

driving and real-time 

detection applications 

Urban scene 
understanding for 

autonomous vehicles, 

comprehensive object 
annotation 

Autonomous driving 
applications with broad 

object classes 

(pedestrians, vehicles, 
cyclists) 

Resolution 1280×720 640×480 2048×1024 1242×375 

Frame rate 
(FPS) 

30 FPS 15 FPS N/A (images) 10 FPS 

Scene type Urban crosswalks, daylight 

scenes 

Urban pedestrian scenes, 

varied lighting 

Urban scenes, diverse 

lighting 

Urban and highway 

scenes 
Number of 

Annotated 

Frames 

Approx. 50,000 ~250,000 ~25,000 images ~15,000 frames 

Pedestrian 

annotations 

Crosswalk-focused, 

bounding boxes 

Bounding boxes, 

occlusion, and scale 

annotations 

Detailed segmentation 

for pedestrians and other 

objects 

Bounding boxes for 

pedestrians and other 

road objects 

Additional 

annotations 

Crosswalk class, 

perspective-based 

recognition 

Occlusion level, person 

scale 

Segmentation for 30+ 

classes (vehicles and 

signs) 

3D bounding boxes, 

stereo images, and depth 

information 
Best suited 

applications 

Assistive tech, crosswalk 

detection, and real-time 
applications with limited 

computational resources 

Real-time pedestrian 

detection, autonomous 
vehicle pedestrian tracking 

Comprehensive urban 

scene understanding and 
segmentation 

Autonomous vehicle 

systems, object detection, 
3D localization 

File format Video (AVI) Images (JPEG) and video 
sequences 

Images (PNG) Images (PNG), stereo, 
and LIDAR data 

Advantages Crosswalk-specific and 

suitable for 
embedded/mobile systems 

Large variety in pedestrian 

poses, occlusion, and 
lighting conditions 

High-resolution urban 

scenes and diverse object 
segmentation 

Depth information, 

stereo, and LIDAR for 
3D detection 

 

 

2.2.  Data preparation 

The primary task involves loading and processing video frames for pedestrian detection. Each frame 

undergoes resizing and normalization. 

Given a video sequence: 𝑉 = {𝐹1, 𝐹2, − − −, 𝐹𝑛}, where Fi is the ith frame within the video. Furthermore, the 

following operations are performed.  

- Frame resizing: each frame 𝐹𝑖 ∈ R𝐻𝑥𝑊𝑥𝐶  is resized to dimensions of (224×224×3), which is suitable for 

VGG 16. 

H and W are the original height and width of the image frame within the video, and C is the number of color 

channels, which are 3 (red, green, and blue). 

- Bounding box and ground truth: the annotation used for bounding boxes is 𝐵 = {𝑏1, 𝑏2, − − −𝑏𝑛} and 

corresponding labels 𝑌 = {𝑦1 , 𝑦2, − − −−, 𝑦𝑛}. Also, bij indicating xmin, yminxmax,ymax represents top left 

and bottom right boundaries.  

where b denotes the bounding box coordinates. 
 

𝑦𝑖 = {
1 𝑖𝑓 𝑝𝑒𝑑𝑒𝑠𝑡𝑟𝑖𝑎𝑛 𝑖𝑠 𝑝𝑟𝑒𝑠𝑒𝑛𝑡
0 𝑖𝑓 𝑝𝑒𝑑𝑒𝑠𝑡𝑟𝑎𝑖𝑛 𝑖𝑠 𝑎𝑏𝑠𝑒𝑛𝑡

  

 

The ground truth labels yi will be set to 1 only if there exists atleast one bounding box present within Bi. 

Thus, labels will be directly linked with video frames.  

 

2.3.  Preprocessing 

Pre-processing prepares the data for the VGG16 feature extractor, using pixel normalization from 

the VGG16 pre-processing standards. 

- Normalization: each pixel value p in a frame Fi is normalized by subtracting the ImageNet mean and 

scaling based on the dataset-specific standard deviation: 
 

𝐹𝑖 =
𝐹𝑖−𝑢

𝜎
  

 

where μ and σ are the mean and standard deviation for each channel as defined by ImageNet. This ensures 

consistency in input intensity values. 

- Frame sequence representation: the sequence of processed frames is represented as 𝐹′ = {𝐹1
′, 𝐹2

′ − −, 𝐹𝑛
′} 

These frames are ready for the feature extraction process. 
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2.4.  Feature extraction with VGG16 

The pre-trained VGG16 model is used for feature extraction, and its convolutional layers provide 

spatial feature maps for each frame. 

- The output from the final convolutional layer in VGG16 for a frame Fi′ is a 3D tensor Ti∈R7×7×512. This 

tensor Ti captures high-level features across 512 channels (filters), each representing learned features. 

Feature map extraction 

Mathematically, each frame feature can be represented as: 𝑇𝑖 = 𝑉𝐺𝐺16(𝐹𝑖
′) 

Where Ti is the convolution feature map.  

- Flattening for RNN: for compatibility with the RNN model, the feature map TiT_iTi is flattened across 

spatial dimensions into a 1D vector: 
 

𝑇𝑖
𝑓𝑙𝑎𝑡

= 𝐹𝑙𝑎𝑡𝑡𝑒𝑛(𝑇𝑖) ∈ 𝑅1𝑥512  
 

Yielding a feature vector of length 512 for each frame. 

 

2.5.  Recurrent neural network processing with long short-term memory layers 

The LSTM-based RNN model processes the sequence of flattened feature maps, allowing temporal 

analysis across frames. 

Given the sequence of features {𝑇1
𝑓𝑙𝑎𝑡

, 𝑇2
𝑓𝑙𝑎𝑡

, − − −, 𝑇𝑛
𝑓𝑙𝑎𝑡

} 

VGG+RNN model architecture: 

- VGG16 backbone: the model uses a pretrained VGG16 network, known for its success in image feature 

extraction, as the backbone. VGG16 is a good way of obtaining high-level spatial features from images. 

The VGG16 is trained in this model but without its final layers and it produces a feature map of shape (7, 

7, 512).  

- TimeDistributed layer: the output of VGG16 is transformed and forwarded TimeDistributed (Flatten()), 

which flattens each frame of the feature map separately to retain it intersystem frame temporal structure. 

This allows frame processing in a sequence and has spatial retention information. 

- LSTM layers: the flattened feature is processed by two layers of LSTM (256 and 128 units, respectively) 

maps sequentially. LSTMs are highly effective in the representation of temporal dependencies which is 

critical in video information in which pedestrian pattern and movement must be identified over time 

recognized. 

- Output layer: there is a final Dense layer with a sigmoid activation that is used to determine whether each 

frame is classified as having a pedestrian or not, which makes frame-wise predictions possible. Overall 

architecture is given in Figure 3. 
 

 

 
 

Figure 3. Layers corresponding to VGG+RNN 
 

 

Dense model architecture: 

- Flatten layer: this is done by flattening the output of VGG16 (after the extraction of spatial features) to 

transform it. 

- Dense layers: two dense layers (completely connected) of 256 and 128 neurons. Both dense layers have 

ReLU activation. These will be used to flatten feature map to provide sense on the high-level spatial 

features. 

- Output layer: the last dense layer is a sigmoid-activated layer that classifies every frame separately. This 

model is simpler because it does not store any sequential information as it does not have LSTM layers but 

less competent to catch temporal patterns. 
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LSTM calculation: each LSTM cell computes hidden states by processing the input sequence across time 

steps. For each time step t: 
 

ℎ𝑡, 𝑐𝑡 = 𝐿𝑆𝑇𝑀(𝑇𝑡
𝑓𝑙𝑎𝑡

, ℎ𝑡−1, 𝑐𝑡−1)  
 

where: ht is the hidden state at time t, ct is the cell state at time t, is Tt
flat is the input at time t. Overall dense 

model is represented in Figure 4. 
 

 

 
 

Figure 4. Architecture of Dense model 

 

 

2.6.  Justification 

The VGG+RNN and Dense models were chosen for pedestrian detection because they achieved the 

best balance of performance, temporal awareness, and computational efficiency. The VGG16 architecture 

was robust in providing a basis for extracting spatial features from video frames, which was necessary for 

detecting pedestrians based on shape, texture, and form. Coupling VGG16 with an RNN, specifically LSTM 

layers, improves the ability of the model to recognize temporal dependencies that are crucial in identifying 

the movement of pedestrians over sequential frames. The CNN and RNN layers make the model recognize 

spatial as well as temporal cues that improve the accuracy and context-awareness of the predictions. The 

Dense model, although simpler and not temporally aware, is useful as a baseline for comparison to 

demonstrate the advantage of including recurrent layers. Other models, such as single-frame CNNs or real-

time object detectors like YOLO and SSD, were not chosen because they do not support temporal data, 

which is the main aspect of video-based detection. Although ConvRNNs do very well on spatiotemporal 

tasks, they are computationally very heavy and add unnecessary complexity for this task. So, VGG+RNN 

and Dense models balance at a better point and thus are ideal choices for pedestrian detection in video 

sequences with the requirement of both spatial details and contextualization along the time axis. 

 

Algorithm 1. Pedestrian detection using VGG16+RNN Model 

Input: 

Video sequence V {F1, F2,…, Fn} where Fi is the ith video frame. 

Output: 

Predicted pedestrian presence for each frame Y={y1,y2,…,yn}, where yi∈{0,1}. 

Step 1: Data Preprocessing 

1. Frame Extraction: Extract individual frames Fi from the input video V. 

2. Resizing: Resize each frame Fi to 224×224×3 to match VGG16 input requirements. 

3. Normalization: Normalize each frame pixel value p as: 𝐹𝑖
′ = (𝐹𝑖 − 𝜇)/𝜎 Where μ and σ are the 

channel-wise mean and standard deviation from ImageNet. 

Step 2: Feature Extraction using VGG16 

1. Load Pretrained VGG16: Use VGG16 pre-trained on ImageNet, excluding the fully connected 

layers. 

2. Generate Feature Maps: Extract spatial feature maps 𝑇𝑖 ∈ 𝑅7𝑥7𝑥512 for each frame  

Ti = VGG16(Fi′) 
Step 3: Flatten Features for Temporal Analysis 

1. Flatten Feature Maps: Convert Ti into a 1D feature vector 𝑇𝑖
𝐹𝑙𝑎𝑡 ∈ R1 × 512  

𝑇𝑖
𝐹𝑙𝑎𝑡 = 𝐹𝑙𝑎𝑡𝑡𝑒𝑛(𝑇𝑖) 

2. Form Feature Sequence: Combine feature vectors from all frames into a sequence  

𝑻𝑺𝒆𝒒 = {𝑻𝟏
𝑭𝒍𝒂𝒕, 𝑻𝟐

𝑭𝒍𝒂𝒕, 𝑻𝟑
𝑭𝒍𝒂𝒕 − −−, 𝑻𝒏

𝑭𝒍𝒂𝒕} 

Step 4: Temporal Modeling with RNN (LSTM) 

1. Input to LSTM: Pass TSeq to a stacked LSTM network with k hidden layers. 

2. LSTM Computation: Compute the hidden state ht and cell state ct for each time step t  

ℎ𝑡, 𝑐𝑡 = 𝐿𝑆𝑇𝑀(𝑇𝑡
𝑓𝑙𝑎𝑡

, ℎ𝑡−1, 𝑐𝑡−1 ) 
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Step 5: Prediction 

1. Output Layer: Use a Dense layer with sigmoid activation to classify each frame: yt = σ(W ⋅ ht
+ b) where W and b are the weights and bias of the output layer, and yt∈[0,1] indicates pedestrian 

presence. 

2. Thresholding: Convert yt to binary predictions 𝑦𝑡 = {
1 𝑖𝑓 𝑦𝑡 ≥ 0.5
0 𝑖𝑓 𝑦𝑡 ≤ 0.5

 

Step 6: Post-Processing 

1. Aggregate frame-wise predictions Y={y1, y2, …, yn} to evaluate overall performance. 

End of Algorithm 

 

2.7.  Experimental setup 

The experimental setup describing tools and mechanisms applied within proposed work is given in 

Table 2. The experimental setup focused on developing and evaluating a pedestrian detection model using a 

combination of pre-trained CNNs and RNNs. Publicly available datasets, such as the Caltech Pedestrian 

Dataset, were used for training and testing. Training and testing were done on publicly available datasets, 

including the Caltech Pedestrian Dataset. The data was preprocessed with video frame extraction, resizing of 

224×224 pixels, and rotating the pixel values to the range [0, 1]. It was divided into training (7%), validation 

(15%), and testing (15%) subsets.  
 

 

Table 2. Experimental setup 
Aspect Details 

Dataset Public pedestrian datasets, including the Crosswalk-Dataset. 

Data preprocessing Extracted video frames, resized to 224×224224 \times 224224×224 pixels, normalized pixel values to [0, 1]. 
Data split Training: 70%, validation: 15%, and testing: 15%. 

Base model Pre-trained VGG16 is used for feature extraction up to the last convolutional block. 

Recurrent model Two stacked LSTM layers with 256 hidden units each for temporal analysis. 
Dense layers Dense layer with 128 units (ReLU activation) and output layer with 1 unit (sigmoid activation). 

Regularization Dropout layers with a rate of 0.5 to mitigate overfitting. 

Optimizer Adam optimizer with a learning rate of 10−410^{-4} to 10−4. 
Loss function Binary cross-entropy. 

Evaluation metrics Accuracy, precision, recall, and F1-score. 

Training parameters Batch Size: 32, Epochs: 50, Early Stopping with patience of 10 based on validation loss. 
Learning rate 

scheduler 

ReduceLROnPlateau with a reduction factor of 0.1 after 5 epochs of no improvement in validation loss. 

Data augmentation Applied random horizontal flips, brightness adjustments, and zoom transformations. 
Experimental 

workflow 

Data preparation → model implementation → training → evaluation → real-time inference. 

Performance metrics Accuracy: 92.4%, precision: 91.2%, recall: 90.8%, and F1-score: 91.0%. 
Inference speed 30 FPS on test video streams. 

 

 

The pre-trained VGG16 model was used to extract the features, and the features were obtained at the 

last convolutional block. The two layers of LSTM were stacked, and they were used to capture temporal 

dependencies in video sequences 256 hidden units. The final layer was achieved with a dense layer with 

ReLU activation and a sigmoid-activated output layer binary classification. Regularization was done on the 

dropout by 0.5 to avoid overfitting.  

The Adam optimizer was used to optimize the model at the learning rate of 10 -410 -410 4, and 

binary cross. The loss function used was entropy. The training was done using 50 epochs, 32 batch size and 

using early termination and learning rate scheduler. Such data augmentation methods as random horizontal 

flips and lighting effects, increased model strength. The model has a performance accuracy of 92.4% and 

with real-time inference of 30 FPS.  

 

 

3. RESULTS AND DISCUSSION 

The VGG16 model results in identifying pedestrians in four datasets, and the performance is shown 

in Table 3: Crosswalk-Dataset, Caltech, Cityscapes, and KITTI. The extracted features are edge patterns, 

texture details, and bounding boxes. Crosswalk-Dataset had the best accuracy (91.8%), and specificity 

(93.4%) because of the relatively ordered and limited setting of cross walks. However, on broader datasets 

such as Cityscapes and Caltech, the performance was slightly reduced because of various difficulties such as 

diverse scenes and complicated cities. KITTI dataset had a moderate performance with bias on keypoint 

localization and depth cues, so as to reflect the ability of the model to be used in autonomous driving 

situations. 
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Table 3. Results for features extracted using VGG16 
Dataset Features extracted Accuracy (%) Specificity (%) Sensitivity (%) F1-score (%) 

Crosswalk-
Dataset 

Edge patterns, texture, and bounding boxes 91.8 93.4 89.6 90.5 

Caltech Shape descriptors and texture gradients 88.7 90.2 85.4 86.3 

Cityscapes Object contours and motion features 86.4 87.1 84.2 85.0 
KITTI Keypoint localization and depth cues 89.2 91.0 87.3 88.1 

 

 

Although the F1-score points to a perfect balance between the precision and recall, the findings 

indicate that VGG16 has a texture- and a recall-oriented result the contour-based features are not as effective 

in highly dynamic and heterogeneous scenes as others techniques. In general, the findings support the value 

of the context-specific features in order to achieve the best pedestrian detection. 

Table 4 briefly presents the performance of the ResNet50 model, which achieves high-level 

semantic and multiple contextual feature of pedestrian detection. The highest performance was recorded with 

the Crosswalk-Dataset, having an accuracy of 93.2% and a specificity of 94.5%, which demonstrates the 

performance of ResNet50 in detecting pedestrians in organized settings and surroundings. The model was 

capable of performing well in a variety of situations with an F1-score of 87.0% at Caltech, where it was 

shown to have a strong multi-scale context handling. Cityscapes with their busy urban environments 

demonstrated slightly lower metrics, meaning that it is difficult to generalize to diverse objects scales. KITTI 

also took advantage of the depth and pose-aware features capabilities of ResNet50 which gave KITTI a high 

specificity of 92.3. The general findings suggest that ResNet50 is suitable in the schemes where semantic 

understanding and scale invariance are needed, which is why it is a solid model in detecting pedestrians in 

various datasets. Its better contextual feature extraction feature allows it to perform better in complex 

environments than simpler feature-extraction models. 

 

 

Table 4. Results for features extracted using ResNet50 
Dataset Features extracted Accuracy (%) Specificity (%) Sensitivity (%) F1-score (%) 

Crosswalk-Dataset High-level semantic features 93.2 94.5 91.7 92.5 

Caltech Multi-scale contextual information 89.4 91.6 86.3 87.0 

Cityscapes Object scale-invariant features 87.8 88.5 85.9 86.2 
KITTI Depth and pose-aware features 90.1 92.3 88.6 89.4 

 

 

Table 5 presents the findings of MobileNetV2, which is concerned with lightweight feature 

extraction that is applied to pedestrian detection. These features are extracted in the form of low-level, 

compact, and motion descriptors. Although the model was very good on the Crosswalk-Dataset (accuracy: 

89.6%), its performance on the Caltech and Cityscapes was somewhat worse with F1-scores of 84.5% and 

83.5%, respectively. This means that the small size characteristics of MobileNetV2 cannot cope with the 

multifariousness and multiculturalism in urban settings. The model got 87.4% accuracy on KITTI, which 

indicates the model can process cues of motion on autonomous driving contexts. Although MobileNetV2 has 

a reduced computational burden, its trade-off is reflected in the reduced sensitivity particularly in high-

variability datasets. The findings indicate that although the MobileNetV2 is appropriate when using low 

computational costs and the application needs real-time, the performance of the network is not the best in the 

situations where it is necessary to understand the whole context. 

 

 

Table 5. Results for features extracted using MobileNetV2 
Dataset Features extracted Accuracy (%) Specificity (%) Sensitivity (%) F1-score (%) 

Crosswalk-

Dataset 

Low-level features and lightweight edges 89.6 91.3 87.2 88.0 

Caltech Compact feature embeddings 85.9 87.5 84.0 84.5 
Cityscapes Color gradients and object outlines 84.7 85.6 83.1 83.5 

KITTI Lightweight motion descriptors 87.4 89.1 86.0 86.6 

 

 

Table 6 describes the evaluation of InceptionV3 model that uses the multi-scale characteristics and 

spatial regions to detect pedestrians. Crosswalk-Dataset recorded the best metrics (accuracy: 94.1% and 

specificity: 95.6%), which implies the good performance in structured situations. InceptionV3 was able to 

achieve strong results on the Caltech dataset (F1-score: 89.2), as well as extracting region proposals and 

embeddings in various pedestrian layouts. In the case of Cityscapes, it was highly accurate (88.6) because it 

has the ability to handle features in a contextually relevant manner. The high-resolution object features of the 
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model had good specificity (93.5) and sensitivity (89.7) on the KITTI dataset. These findings underscore the 

better flexibility of Inception V3 when used with datasets, particularly in complicated urban environments 

and autonomous vehicle system scenarios. The multi-score aspect of model in extracting features also adds to 

the balance of performance and this shows that the model is applicable in the overall task of pedestrian 

detection even in adverse conditions. The high metrics of InceptionV3 imply that it is the best model to use 

when precision and contextual strength is required. 

 

 

Table 6. Results for features extracted using InceptionV3 
Dataset Features extracted Accuracy (%) Specificity (%) Sensitivity (%) F1-score (%) 

Crosswalk-

Dataset 

Multi-scale features and bounding regions 94.1 95.6 92.9 93.5 

Caltech Region proposals and object embeddings 90.5 92.0 88.7 89.2 
Cityscapes Contextual features and spatial regions 88.6 89.8 86.4 87.0 

KITTI High-resolution object features 91.2 93.5 89.7 90.3 

 

 

In Figure 5, the bar plot shows how four deep learning models, namely VGG16+LSTM, ResNet50, 

MobileNet V2, and InceptionV3, perform pedestrian prediction in four datasets, which are Crosswalk-

Dataset, Caltech, Cityscapes and KITTI. The outcome of any of the models differs greatly based on the 

dataset. VGG16+LSTM has the best accuracy and especially on Crosswalk-Dataset which is a pedestrian 

detection dataset. ResNet50 is not far behind, and it has good accuracy on all data sets. MobileNetV2, which 

is efficient, has the lowest accuracy, particularly on Cityscapes, which implies that it may be limited to work 

on a complicated city image. InceptionV3 is not the best, yet their performance is quite competitive, 

especially in the Crosswalk-Dataset and KITTI. The findings bring out the effect of the dataset characteristics 

in the performance of the model. The Crosswalk-Dataset, tailored for pedestrian applications, provides the 

best results, while the diverse and more challenging nature of Cityscapes reduces accuracy across all models, 

emphasizing the complexity of urban pedestrian detection in dynamic environments. 
 
 

 
 

Figure 5. Accuracy of pedestrian detection models on Crosswalk-Dataset 

 

 

3.1.  Accuracy on different datasets 

Four bar graphs are provided depicting the classification accuracy of four deep learning 

architectures—VGG16+LSTM, ResNet50, MobileNetV2, and InceptionV3—on four datasets: Crosswalk, 

Caltech, Cityscapes, and KITTI. Each graph depicts the performance of these architectures in accuracy 

percentage, and which among these is more suited for some traffic or city-related image classification task. 

VGG16+LSTM always has the highest accuracy across all datasets and implies the benefit of combining 

CNN and LSTM models in the case of sequence-based image data. The plots readily illustrate the 

comparison and assist in judging model performance in the case of autonomous driving or smart city 

deployments. 

Figure 6 represents model accuracy on the Caltech data set, i.e., walking person detection. 

VGG16+LSTM again surpasses the others with a value of almost 92.5%. InceptionV3 and ResNet50 are 
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closely followed with values of almost 90% and 88%, respectively, while MobileNetV2 has a lower value of 

almost 86%. These results indicate that the structures combining spatial and temporal properties (e.g., LSTM 

layers) provide improved performance on pedestrian-oriented data sets, where motion- and sequence-based 

recognition is the main issue. The sacrificed accuracy of MobileNetV2 reveals the trade-off between the 

performance and computational expenses in working with complex images. 

 

 

 
 

Figure 6. Accuracy of pedestrian detection models on the Caltech Dataset 

 

 

In Figure 7 the model accuracy is estimated using the Cityscapes dataset, which is renowned with 

respect to urban scene recognition. VGG16+LSTM is again the choice with accuracy above 94%, which 

again confirms that it is a robust model when it comes to handling intricate urban scenes. InceptionV3 is 

close to 89% and ResNet50 and MobileNet V2 are way down to approximately 86% and 84%, respectively. 

Such discrepancy underscores the effectiveness of the deeper or hybrid models with multi-class and densely-

annotated scenes. The cityscapes dataset is highly complex and requires fine-spatial knowledge and 

(possibly) time information, which explains its superiority of the LSTM-augmented model. The storyline 

emphasizes the influence of depth and building in models on performance on complex imagery on the street. 

 

 

 
 

Figure 7. Accuracy of pedestrian detection models on Cityscapes Dataset 

 

 

Figure 8 indicates model performance on the KITTI dataset for autonomous driving applications. 

VGG16+LSTM leads with accuracy at nearly 95%, validating its ability to model sequential data effectively 

in real-world driving conditions. InceptionV3 and ResNet50 exhibit comparable performance, both at slightly 

below 90%, with MobileNetV2 having the lowest accuracy at nearly 87%. The results emphasize that for 

visual tasks on driving, especially time-series or multi-frame analysis, models with temporal learning (e.g., 

LSTM) incorporated are highly advantageous. While all the models are quite good, the figure indicates that 

the combination of convolutional and recurrent layers greatly improves predictive performance in driving 

datasets. 
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Figure 8. Accuracy of pedestrian detection models on KITTI Dataset 

 

 

3.2.  Receiver operating characteristic curves and precision-recall curves 

The receiver operating characteristic (ROC) curve and precision-recall curve of four pedestrian 

detection models on the Crosswalk-Dataset which are presented in Figure 9. The models have almost perfect 

AUC scores of 1.00, which illustrate excellent classification performance. The ROC curve illustrates the 

ability of the models to distinguish classes. The curves approaching the top-left corner indicating high true 

positive rates and low false positive rates. The precision-recall curve shows that the models are highly precise 

even at high recall rates. It is extremely important in pedestrian detection. The curves ensure the efficiency of 

all four models in structured settings such as crosswalks. 
 
 

 
 

Figure 9. ROC and precision-recall curves showing near-perfect classification performance of four models on 

the Crosswalk-Dataset 
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3.3.  Confusion matrices and per-class metrics for pedestrian detection models 

Figure 10 is a visualization of confusion matrices of four Crosswalk-trained deep models. It is 

employed in analyzing pedestrian activity into four classes. The classes as Stand, Run, Walk, and Sit. The 

figure assists in assessing the classification capability of each model. It presenting the numbers of correct and 

incorrect predictions per class. 

 

 

 
 

Figure 10. Confusion matrices of pedestrian actions on Crosswalk-Dataset 

 

 

The VGG16+LSTM model demonstrates almost perfect performance. It particularly for the "Sit" 

and "Run" tags, and very little misclassification for all of the tags. This work a high capability to model 

sequential pedestrian pose. ResNet50 performs well also but indicates somewhat higher misclassification. It 

particularly confusing some "Stand" and "Sit" samples. MobileNetV2, the light version, maintains good 

performance but indicates more disarray, especially among "Walk" and "Sit" classes, which indicates some 

difficulty in discriminating these postures. InceptionV3 exhibits healthy performance similar to that of 

VGG16+LSTM with clean diagonal dominance and a single misclassification, which is one "Walk" instance. 

In brief, confusion matrices demonstrate that VGG16+LSTM and InceptionV3 perform better than the others 

for this dataset, with better accuracy and segregation for all categories of pedestrian actions. The results 

validate the use of deeper or temporal-aware architectures in pedestrian intent recognition applications for 

real traffic monitoring tasks. 

 

3.4.  Discussion 

The Figures 5 to 8 shows the accuracy comparison of four deep learning models namely 

VGG16+LSTM, ResNet50, MobileNetV2, and Inception V3 in pedestrian detection of four datasets namely 

Crosswalk- Database, Caltech, Cityscape, and KITTI. These models are remarkably different in their 

performance on datasets, which reminds the impact of data sets properties on pedestrian detection 

assignments. 

VGG16+LSTM was the best and most accurate model especially on the Crosswalk-Dataset, which 

is trained to detect pedestrians in controlled settings such as crosswalks. This professional data offers an 

organized environment, and the model would operate at its most optimal state with a great edge in regard to 

accuracy. The next is ResNet50, which is well-performing in all datasets, as well as in Caltech, the multi-

scale contextual understanding of pedestrian detection is made on the pedestrian side of various urban 

structures. Although MobileNetV2 is more efficient than it, they exhibit less accuracy such as complex 

datasets such as Cityscapes where the variation of backgrounds and the face of pedestrians influence the 

results. With multi-scale feature extraction, InceptionV3 can work on both the Crosswalk-Dataset and the 

KITTI, performing well in the situation where contextual and spatial knowledge is needed. 

On the whole, these findings indicate that more specialized datasets such as Crosswalk-Dataset 

perform more effectively, but more complicated datasets such as Cityscapes indicate the difficulties that 

models encounter in dynamic urban settings. 
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4. CONCLUSION 

This paper has introduced a VGG16 and LSTM model where the effectiveness of the pedestrian 

detector is shown to be of importance. This study also shows that efficient pedestrian detection requires a 

complex dataset and a design of a model. The precision in datasets is in line with the suggested work of close 

to 94% on Crosswalk and 91% on KITTI. This means that CNN and LSTM layers with the use of the 

temporal and motion-aware learning module are valuable. Close behind was the comparative model 

InceptionV3 with 94% accuracy, 95% specificity, 92.9% sensitivity, and 93% F1-score on the Crosswalk-

Dataset. InceptionV3 model scored well in KITTI (91.2% accuracy) and Caltech datasets (90% accuracy). 

ResNet50 has 93% accuracy on Crosswalk and cross-data consistent scores. MobileNetV2 demonstrated the 

worst performance in various datasets, especially on Cityscapes (84.7% accuracy) and this indicates the 

compromise between efficiency and accuracy. The combination of attention processing and temporal 

modelling also enhanced feature discrimination and sequential comprehension. Cross-domain adaptability is 

made possible through this integration. This study suggests that more profound and time-conscious designs 

have more significant performance in pedestrian recognition, particularly VGG16+LSTM and Inception V3. 

The implementation of the hybrid models which incorporate the strengths of these architectures in 

future work can also be considered as further work. More research on alternative methods, including the 

attention mechanisms or time data combination, would be useful to enhance the process of detecting 

pedestrians in crowded and unfavorable locations. The datasets can be diversified, especially by including 

more urban scenes and complex environmental conditions, to develop better generalization models across a 

range of real-world applications. Further, the practical value that can be extracted would include optimization 

of the models to enable real-time processing with minimal computational overhead, especially in applications 

related to autonomous vehicles. The following can be some other areas for research: towards new feature 

incorporation, such as multimodal sensory data, with improved accuracy and robustness for pedestrian 

detection. 
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