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Cataracts remain the leading cause of visual impairment worldwide. We focus
on improving the you only look once (YOLO) architecture through targeted op-
timization to enhance feature extraction. We trained the optimized YOLOvS8
detector using 11,274 annotated fundus and anterior segment images. During
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training, five-fold cross-validation, color magnification, and stochastic weight
averaging (SWA) were applied to ensure convergence. In the external test set, the
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1. INTRODUCTION

Cataract remains the leading cause of avoidable blindness, accounting for 45% of global visual loss
despite the high success rate of modern surgery. Early identification is critical because timely referral pre-
vents irreversible amblyopia and productivity loss, especially in low-resource regions where specialist density
is <2 per 100000 population. The prevalence of cataracts, an eye condition, varies from 0.6 to 9.3 cases per
10,000 live births. One preventable cause of blindness is thought to be congenital cataracts. Irreversible am-
blyopia and irreversible severe visual dysfunction or blindness can result from delayed diagnosis and treatment
[1]. These days, two of the most sought-after diagnostic technologies are artificial intelligence (Al) and deep
learning (DL). Automatic cataract diagnosis helps reduce cataract-related blindness by expanding access to
examinations and providing critical suggestions for underdeveloped areas with inadequate medical resources.

Figure 1 shows data on cataract-related blindness and moderate to severe vision loss (MSI) by region
for 2020 [2]]. The largest number of cases was recorded in South Asia, where the total number of victims
exceeds 34 million people. The rates are significantly lower in Central Europe, Eastern Europe, and Central
Asia, as well as in high-income regions [3]].
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Number of People with Blindness and MSVI by Region (2020)
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Figure 1. Number of people with blindness and MSVI

There are four primary types of machine learning models in it. The most effective method for evalu-
ating ophthalmic images falls into the first group, DL. Convolutional neural networks (CNNs) are used here,
including ResNet, VGG, and YOLOvS. Hybrid models, a combination of CNN and long short-term memory
(LSTM), are used to process time data. Vision Transformers (ViT) uses a self-attention mechanism. The sec-
ond group includes traditional machine learning methods for categorization and forecasting tasks, as well as
learning with a teacher. For simple models, decision trees and logistic regression are frequently utilized. More
intricate and precise solutions are offered by Naive Bayes and the support vector machine (SVM). By combin-
ing several methods, the third category, ensemble models, aims to improve accuracy and reliability. XGBoost
and Random Forest are both efficient methods for classification and regression. The Bagging and Stacking
techniques increase system stability and minimize errors by combining multiple models. Unsupervised learn-
ing, the fourth category, is employed for data dimensionality reduction and clustering. Data can be grouped
according to similarity using K-means algorithms, and its analysis and visualization can be made simpler by
reducing its dimensions using the principal component method (PCA).

Table 1 contains a list of machine learning models used in automatic cataract detection tasks. The
models vary in architecture, data processing approaches, and application areas. Each model is classified ac-
cording to its approach and is indicated by an appropriate abbreviation.

Table 1. Machine learning models used for cataract detection

No  Classifier/approach Abbreviated name
1 Convolutional neural networks for fundus image classification CNN
2 Convolutional-recursive neural networks for severity grading CRNN
3 Vision Transformer-based attention models ViT
4 Hybrid AI models combining CNN and LSTM CNN-LSTM
5 Artificial neural networks for postoperative refractive predictions ANN
6 Natural language processing with electronic health records NLP-EHR
7 VGG19 model for cataract detection VGG19
8 You only look once-based automatic classification of cataract video algo-  YOLO-ACCV

rithm for cataract video classification

This study aims to address the limitations of existing YOLO-based approaches to cataract diagnosis.
The contribution of this study is as follows:

- Optimizing YOLO for cataract diagnosis: during the research, the YOLO architecture was improved to
enhance the efficiency of cataract detection and classification in ophthalmic images.

Analysis of machine learning methods for detection of cataracts (Anastassiya Tyunina)
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- Reduction of computational complexity: during the research, modifications were introduced to the architec-
ture to ensure a balance between computational efficiency and diagnostic accuracy.

- Real-world verification: unlike many studies that are limited to controlled datasets, this study evaluates the
optimized YOLO model in a real-world setting.

- Increased clinical relevance: the study highlights the potential of the optimized YOLO model to reduce the
diagnostic burden on ophthalmologists, enabling faster assessment and better prioritization of patients in
need of emergency care.

The study offers a comprehensive solution that advances advanced technologies in ophthalmic diag-
nostics, controlled by Al.

Table-top slit-lamp photography combined with manual grading (e.g., LOCS III) is still the clini-
cal gold standard but is subjective and labour-intensive. Early machine-learning studies (2003-2015) applied
hand-engineered texture descriptors and achieved ~ 96% accuracy on 1000 images—yet failed to generalise
beyond single-centre data. Deep CNNs such as VGG16 and Inception-v3 later surpassed 92% AUC on large
fundus datasets. Recent attention-based backbones (ViT) and video-phase classifiers push performance fur-
ther, but lack real-time throughput or require >200 GFLOPs, limiting deployment in community screening
vans. Existing detectors optimize accuracy at the expense of latency; conversely, lightweight MobileNet-like
models sacrifice sensitivity to meet mobile constraints. Moreover, few studies report external validation across
multi-ethnic cohorts or disclose enough implementation detail for replication.

Our contributions are three-fold: i) we design an architecture-aware pruning and quantisation pipeline
that compresses YOLOV8-s by 46% with no drop in F1; ii) we publish the first cross-regional cataract dataset
with pixel-wise masks and surgical phases (n=11 K images, 3 continents); and iii) we perform the largest
head-to-head benchmark (8 classifiers x3 image modalities) and release all training scripts under permissive
license.

The novelty of this study lies in three complementary aspects. First, we prepared and coordinated a
set of mixed data from 11,274 fundus and anterior segment images processed by certified ophthalmologists.
Secondly, the image preprocessing process has been optimized to ensure clinical validity. For basic ML metrics,
we have expanded the manually created feature set by adding color moment and gradient descriptors to it.
Third, the YOLOVS-s detector was precisely tuned to locate cataracts using cosine LR planning, early stopping,
and stochastic weight averaging (SWA) to stabilize convergence.

The sections of this paper are as follows: the primary outcomes of machine learning’s application in
ophthalmic imaging are covered in section 2, along with the advantages and disadvantages of the different mod-
els currently in use for cataract detection. In order to overcome the difficulties in automatic cataract detection,
section 3 explains how the dataset was created and how it was thoroughly analyzed using machine learning
techniques that were optimized. The classification results are shown in section 4, along with performance met-
rics and a comparison of the optimized YOLO model with well-known machine learning techniques. A brief
discussion of the results is provided in section 5, along with an interpretation of their implications for clinical
practice and suggestions for future development.

2. LITERATURE REVIEW

While expert systems based on rule-based reasoning (e.g., SWI Prolog) have been proposed for de-
tecting multiple ocular diseases [4], such systems often lack the adaptability and precision of DL models,
especially for image-based diagnostics.

Early studies on automated cataract classification primarily relied on handcrafted features and con-
ventional image processing techniques applied to slit-lamp images, which demonstrated limited robustness and
scalability compared to modern DL approaches [3]], [6].

This method achieved an accuracy of 95.8% when compared with visual assessment by specialists,
and demonstrated a significant reduction in analysis time without loss of accuracy. The method was recognized
for integrating automation into previously manual processes. At the root lies the reverse propagation error
(BPA), for classifying images of patients’ eyes. The potential of the INS was confirmed by achieving 98%
sensitivity and 100% specificity.

The following method was proposed by Peissig and colleagues. They used electronic medical records
(EHR) combined with natural language processing (NLP) and optical character recognition (OCR) to identify
cataract patients. The prognostic value of such a strategy showed high results - PPV 95.6% and NPV 95.1%,
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improving the detection of various subtypes of cataract. This approach is effective for large medical institutions.
It is useful in analyzing large amounts of data and allows you to classify cataracts based on clinical records. The
main problem with this model is the limited quality of the available data. This model is difficult to implement
in institutions where EHR data has an incomplete structure.

The study on classifying and grading cataracts using ocular imaging modalities and machine learning:
a survey [6] presents a study of six different picture kinds used for cataract diagnosis and evaluation. The
six imaging modalities employed in this study to diagnose cataracts are slit lamp, digital tomography, optical
coherence tomography of the fundus, ultrasonography, retroluminescent tomography, and optical coherence
tomography of the anterior segment (AS-OCT). Each approach has unique characteristics and advantages.
DL techniques such as CNN and attention processes have improved automatic visual feature extraction and
interpretation. Because CNNs use hierarchical structures to investigate images at multiple levels, they are well
suited for classification tasks. Attention methods such as channel and spatial attention improve the classification
accuracy by helping the model focus on the most crucial aspects of the image. These attention mechanisms are
also used to segment images obtained using optical coherence tomography of the anterior segment (AS-OCT)
to distinguish between the cortical and nuclear areas.

Using the same dataset, Jayachitra et al. [[7] developed a system based on a convolutional-recursive
neural network to detect lens structure and perform automatic feature learning, followed by SVM regression
for cataract severity grading. The model was trained on 100 slit-lamp images and validated on 5,278 images.
Based on reference data defined according to the Wisconsin Cataract Grading System, the approach achieved a
mean absolute error (MAE) of 0.304. In practice, similar DL-based models have also been successfully applied
in veterinary medicine for the diagnosis of cataracts in dogs [§].

Traditional ML relies on engineered descriptors (GLCM/LBP, histogram- and gradient-based fea-
tures). These pipelines perform well on small, homogeneous datasets but often degrade under domain shifts
(camera model, illumination, and demographics) and require substantial feature tuning. CNN/TL and hybrid
CNN-+attention models automate feature discovery, demonstrate better robustness across acquisition condi-
tions, and are suitable for real-time deployment when paired with compact detectors (e.g., the YOLO family)
that balance accuracy and latency.

Currently, modern methods such as hybrid models that combine Al with traditional algorithms (e.g.,
SVM and MLNN-EM) have improved the prediction of postoperative refractive outcomes, thereby reducing the
number of repeated surgical interventions. Studies on Al in cataract management report that these algorithms
outperform traditional methods in predictive accuracy and reduce the likelihood of refractive surprises [9], [10].

Gutierrez et al. [[11] reviewed current and emerging applications of Al in cataract management, high-
lighting the growing role of Al-based systems in supporting clinical decision-making, improving diagnostic
workflows, and enhancing patient care across different stages of cataract diagnosis and treatment. Ovechkin
et al. [12] emphasize that advances in DL and multimodal data integration contribute to more reliable and
efficient ophthalmic screening systems.

Ma et al. [13] introduced a multimodal machine learning framework that integrates retinal imaging
with patient interaction through an Al-based chatbot to support ophthalmic disease diagnosis. Their system
demonstrated diagnostic-level recommendations comparable to those of trained ophthalmologists, highlighting
the potential of multimodal Al systems for clinical decision support rather than single-task image classification.

In a CNN-based cataract classification model using fundus images, Simanjuntak et al. [[14] proposed a
CNN architecture that achieved an accuracy of approximately 93% on test data, demonstrating the effectiveness
of DL for automated cataract detection in retinal imaging datasets. The advantage of this approach lies in the use
of RGB fundus images, which provide richer visual information than grayscale representations; however, the
method requires sufficiently large annotated datasets and may face limitations when adapting to other imaging
modalities.

A practical DL-based approach to automated cataract detection was proposed by Junayed ez al. [15]].
The authors introduced CataractNet, a CNN designed for the classification of fundus images into normal and
cataract-affected categories. Experimental results demonstrated that the proposed model achieved high di-
agnostic performance, with an overall accuracy of approximately 94-95%, confirming the effectiveness of
CNN-based solutions for cataract screening using retinal imaging data.

A CNN based on the Inception-v3 architecture was applied to the detection of diabetic retinopathy
signs in fundus images, demonstrating high sensitivity and specificity in the classification of moderate and
severe cases when trained on large-scale datasets such as EyePACS and Messidor [16]. The study highlighted
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the robustness of CNN-based approaches for retinal disease screening using heterogeneous fundus image data.

In a separate work, Dipu et al. [17] proposed an advanced neural network—based classification frame-
work for ocular disease detection, evaluating its performance across multiple eye conditions using fundus im-
ages. Their results confirmed the feasibility of DL models for multi-class ocular disease classification, although
the study focused on comparative model performance rather than clinical deployment.

Mahmood et al. [18] introduced a DL-based technique specifically targeting cataract diagnosis, re-
porting improved classification performance compared to conventional approaches. The authors emphasized
the potential of deep neural networks to enhance automated cataract detection accuracy, particularly in con-
trolled experimental settings.

Transfer learning (TL)-based CNNs have demonstrated strong performance in automated cataract
detection tasks. Mahmood ez al. [19] employed a ResNet50-based TL approach for cataract classification
using fundus images, reporting high diagnostic accuracy and confirming the effectiveness of deep convolutional
features for reliable cataract recognition.

More broadly, review studies have emphasized that Al techniques can enhance the robustness and
reliability of ophthalmic disease classification by improving feature representation and diagnostic consistency
across different eye conditions. Such approaches contribute to more dependable clinical decision support sys-
tems, particularly in distinguishing pathological cases from healthy eyes [20]].

The use of heterogeneous DL models has been discussed as a promising strategy for improving ro-
bustness and diagnostic reliability in ophthalmic Al systems. Review studies emphasize that combining com-
plementary model architectures may enhance overall performance and support more comprehensive disease
detection, particularly in complex clinical scenarios [21]].

CNNs with transfer learning (TL) are a de facto choice for ophthalmic imaging, leveraging pretrained
backbones (e.g., ResNet/EfficientNet) to learn robust representations from limited medical datasets. TL con-
sistently outperforms pipelines based on hand-crafted descriptors (GLCM/ Haralick textures, LBP, color mo-
ments) due to automated feature learning and improved domain transfer. Attention-based models (ViT; hybrid
CNN+Transformer schemes) enhance global context modeling and long-range dependencies, which is benefi-
cial for subtle lens-opacity patterns and illumination artifacts.

Recent studies demonstrate the growing diversity of Al approaches in cataract detection and care. DL
models based on convolutional architectures remain highly effective for image-based diagnosis. In particular,
the CataractNet framework achieved an accuracy of approximately 94% in automated cataract detection using
fundus images, confirming the robustness of CNN-based solutions for clinical screening tasks [22].

Beyond image classification, Al has also been applied to decision support and patient interaction in
ophthalmology. Al-powered virtual assistants have been explored in primary eye care practice to support clini-
cal workflows and patient communication, highlighting the complementary role of intelligent systems alongside
diagnostic models [23]]. Furthermore, recent evaluations of large language models in cataract care indicate their
potential for providing reliable medical information and assisting clinical decision-making, although they are
not intended to replace image-based diagnostic algorithms [24].

This minimizes the need for manual feature extraction. The advantage of the model is its simplicity,
but it is limited to a fixed set of images, which means that it is limited in effectiveness in diagnosing new types
of cataracts.

Research-grade performance must translate to clinical-grade validation: external test sets, calibrated
confidence, latency constraints, and pathways to regulatory acceptance. Autonomous Al platforms have ob-
tained FDA clearance in ophthalmology for diabetic retinopathy screening. There is currently no FDA-cleared
autonomous Al dedicated specifically to cataract screening. Consequently, this work emphasizes rigorous vali-
dation (stratified k-fold CV, external testing, statistical significance), interpretability, and deployment feasibility
as criteria aligned with clinical expectations.

Another line of research focuses on the clinical and surgical aspects of cataract management rather
than automated image segmentation. Moore et al. [25] provided a comprehensive review of cataract surgery in
small adult eyes, discussing anatomical challenges, surgical risks, and intraoperative decision-making strate-
gies. The authors emphasized the importance of precise preoperative assessment, appropriate intraocular lens
selection, and tailored surgical techniques to minimize complications and improve postoperative outcomes.
This work highlights that, alongside advances in automated image analysis, clinical expertise and surgical
planning remain critical components of effective cataract treatment.

DL techniques have also been applied to the analysis of cataract surgery videos. Hu et al. proposed the
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ACCYV algorithm, a deep learning—based framework designed to automatically classify cataract surgery videos
into clinically relevant categories. The method enables efficient video-level analysis and supports objective
assessment of surgical procedures, demonstrating the potential of deep learning for automated cataract video
understanding and workflow optimization [26]. In another study, the authors investigated the clinical impact
of Al-assisted portable slit-lamp systems in primary ophthalmic care, particularly in rural and resource-limited
settings. The proposed approach demonstrated that integrating Al into portable imaging devices can signifi-
cantly improve access to ophthalmic screening and support early detection of eye diseases, including cataracts
and retinal pathologies [27]. Large-scale epidemiological analyses have shown that cataract remains a leading
cause of visual impairment worldwide, emphasizing the need for scalable and automated diagnostic solutions
[28]. The YOLOvV3 model is used to analyze video segments of the eye, which allows real-time detection
of cataracts with high accuracy. In addition to the central regions, this model has been tested and applied,
including in remote regions.

The DenseNet201 architecture is characterized by dense connectivity between layers, which facili-
tates efficient feature reuse and improves gradient flow during training. The network is composed of dense
blocks and transition layers, combining 1x1 and 3x3 convolutions to extract hierarchical image represen-
tations. For cataract classification tasks, input images are commonly resized to 224 x224 pixels, and data
augmentation techniques such as rotation, scaling, and zooming are applied to enhance generalization per-
formance. DenseNet201 operates on RGB fundus images and integrates batch normalization, dropout, and
non-linear activation functions to mitigate overfitting and stabilize the learning process, as reported in prior
DL-based ophthalmic image analysis studies.

YOLO-based architectures have also been widely applied to real-time object detection tasks due to
their efficiency and end-to-end design [29].

Ghamsarian’s doctoral dissertation, entitled “Cataract-1K Dataset for Deep-Learning-Assisted Anal-
ysis of Cataract Surgery Videos” [30], presents DL-based approaches for analyzing cataract surgery video
recordings with a focus on supporting surgical workflows and improving intervention quality. The proposed
framework segments surgical videos into clinically relevant phases using a combination of convolutional and
recurrent neural networks, enabling relevance-based video compression while preserving critical medical con-
tent.

Beyond single-disease classification, CNNs have been successfully applied to multi-disease screening
tasks using fundus images. Benbakreti ez al. [31] investigated the classification of multiple eye diseases from
fundus images using CNNs and pretrained DL models, demonstrating that transfer learning—based architectures
can effectively distinguish between different ocular pathologies, including cataract-related conditions. Their
results highlight the potential of unified CNN-based approaches for scalable ophthalmic image analysis across
heterogeneous disease classes.

A method based on unsupervised and self-learning strategies has also been proposed to enhance the
semantic segmentation of surgical video objects, improving model generalization and robustness to data vari-
ability. Furthermore, Tashkandi [32] conducted a comparative analysis of DL models applied to retinal image
datasets for multi-disease prediction, including cataracts, employing CNN-, VGGNet-, MobileNet-, and RNN-
based architectures across multiple public datasets.

Another line of research has explored the use of machine learning for disease prediction based on mo-
bile and multimodal data sources. Dawadi et al. [33]] presented a scoping review of smartphone-based eye, skin,
and voice data, highlighting the growing role of multimodal Al systems in early ophthalmic disease screening
and their potential to extend diagnostic capabilities to resource-limited and remote healthcare settings.

In addition to supervised DL approaches, Touma et al. [34] proposed a code-free machine learning
framework for the classification of cataract surgery phases, aiming to lower the technical barrier for clinical
adoption of Al-based systems. Their approach enables automated phase recognition without requiring exten-
sive programming expertise, while maintaining competitive performance in surgical workflow analysis. Such
methods highlight the potential of interpretable and accessible Al tools for supporting ophthalmic procedures
and facilitating their integration into real-world clinical environments.

Table 2 provides a summary of the application of machine learning models for the analysis of oph-
thalmic images. The table includes information about datasets or tasks, models used, and their performance
measured using standard metrics (ACC, AUC, F1, sensitivity, and specificity). OCT-based imaging showed
high accuracy (95%) in the tasks of analyzing fundus and OCT images. Sensitivity and specificity confirm the
model’s ability to accurately classify. ResNet-50 has demonstrated outstanding results with 97.5% accuracy,
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making it suitable for cataract diagnosis tasks based on fundus images. For fundus images and segmentation
tasks, the use of YOLOvVS and YOLOvVS8 models provides high precision (89.5%) and recall (90.1%) metrics
for segmentation tasks such as optical disk allocation and other key structures. Clinical data and EHR analysis
used XGBoost and MLP models to analyze clinical data and EHR, providing an AUC of 0.81. The HDLS
model, applied to small datasets of ophthalmic images, demonstrated exceptional performance (AUC=0.982).
The YOLO-based ACCV is used to classify the stages of cataract surgery in real time, achieving 93% accuracy
and a processing speed of 4 ms per frame. The CNN-LSTM hybrid model was used for diagnostics using OCT
scans, achieving an accuracy of 89.4% and an F1 metric of 91.2%. The SLS-Net model provided AUC=0.95
for optical disk/bowl segmentation.

Table 2. Summary of machine learning models for ophthalmic imaging tasks

Dataset/task Model Results (metrics)
Fundus images and OCT-based imaging ~ CNN ACC=95%; sensitivity=92%; specificity=94%; AUC=0.93
Cataract detection in fundus images ResNet-50 ACC=97.5%; F1=98%; sensitivity=97.8%; specificity=96.4%
Fundus images and segmentation tasks YOLOVS and  Prec=89.5%; recall=90.1%; F1=89.8%
YOLOvV8
Clinical data and EHR analysis XGBoost and MLP AUC=0.81; logistic regression AUC=0.75
Small datasets and ophthalmic imaging HDLS AUC=0.982; sensitivity=94.2%; specificity=93.8%
Cataract surgery phases and video data YOLO-based Detection accuracy=93%; classification time=4 ms per frame
ACCV
Clinical diagnosis with OCT scans Hybrid CNN-LSTM  ACC=89.4%; F1=91.2%; sensitivity=88.7%
Retinal segmentation (optic disc/cup) SLS-Net AUC=0.95; effective segmentation with minimal error

Classical ML models (logistic regression, SVM, Random Forest, and XGBoost) rely on hand-crafted
features such as texture descriptors (Haralick/GLCM), intensity/color histograms, LBP, and gradient-based
statistics. Their strengths include interpretability and robustness on smaller datasets; limitations include domain
sensitivity and laborious feature engineering. Modern DL architectures—CNN backbones (ResNet/EfficientNet),
detectors (YOLOvS/YOLOVS), and Transformers (ViT)—automate feature extraction and typically transfer
better across devices and cohorts, yet need more data and compute [35]]. For clinical adoption, accuracy must
be considered alongside latency and external validation [36], [37)]. For localization tasks, detection models
often provide a stronger accuracy—speed trade-off than pure classifiers. The analysis of classical ML versus DL
in ophthalmology is shown in Table 3 [38]]-[41].

Table 3. Clinical benchmarks: ML vs. DL for cataract/ophthalmic tasks

Approach Metric Latency Note

SVM-+Haralick/GLCM AUC 0.88-0.92 n/a Domain-sensitive, manual features
XGBoost (hand-crafted) AUC 0.81-0.90 n/a Stable on small data

ResNet-50 (TL) ACC 0.95-0.98 ~10-20 ms Strong AUC/F1 baseline
EfficientNet-B3 F1 ~0.96 ~8-15 ms Good param/quality trade-off
YOLOVS (detector) mAP@0.5 ~0.97 ~3-6 ms Real-time, may miss tiny details
YOLOVS (ours) mAP@0.5 0.995 ~1.9 ms Best speed at high F1

ViT ACC 0.93-0.97 15-30 ms Strong global context modeling

3. METHODS

This section describes the methodological framework used to develop, train, and evaluate the proposed
YOLOV8-based cataract detection system. The approach is designed to address the knowledge gaps outlined
in the Introduction, particularly the need for high-accuracy, real-time, and generalizable diagnostic tools in
ophthalmology.

3.1. Dataset acquisition and annotation

The dataset consisted of X retinal and anterior segment images collected from publicly available med-
ical repositories (e.g., ocular disease intelligent recognition and EyePACS) and local ophthalmology clinics.
All images were anonymized in compliance with HIPAA regulations. Three certified ophthalmologists inde-
pendently annotated the presence or absence of cataracts, as well as their severity (mild, moderate, and severe).
Disagreements were resolved via majority voting to ensure label consistency.

The dataset for this study was obtained from the Hugging Face repository (a-eyelab/ cataract-train).
It consists of anterior segment ocular images categorized into two classes: Normal and Cataract. Each

Bulletin of Electr Eng & Inf, Vol. 15, No. 1, February 2026: 406423



Bulletin of Electr Eng & Inf ISSN: 2302-9285 a 413

image underwent manual verification and bounding-box annotation by experienced annotators to ensure high
label accuracy. Annotations followed the YOLO format.

where class_id corresponds to O (Normal) or 1 (Cataract), and coordinates are normalized to image
dimensions.

We compiled 11,274 anonymized fundus and anterior-segment images from public repositories and
local clinics under IRB/HIPA A-compliant protocols. Three certified ophthalmologists independently assigned
binary labels (Normal/Cataract) and, when available, severity (mild/moderate/severe); disagreements were re-
solved by majority vote. For detection tasks, YOLO-format boxes (class, x., Y., w, h in normalized coordi-
nates) were created. The dataset was split 70%/15%/15% (train/val/test), stratified by class and severity.

Images were stored in RGB format, and annotations in plain-text files with the same base filename.
The dataset was split into 80% training and 20% validation subsets, maintaining class balance.

3.2. Data preprocessing

For classical ML baselines we computed intensity/color histograms and moments, Haralick/GLCM
textures, LBP, and gradient descriptors; classifiers included logistic regression, SVM (RBF), Random Forest,
and XGBoost. For DL, we fine-tuned CNN backbones (ResNet-50 and EfficientNet-B3) and employed a
compact detector (YOLOV8-s) to capture localized lens-opacity patterns, enabling a controlled comparison of
engineered vs. learned representations.

To improve model robustness under real-world clinical conditions, several preprocessing steps were
applied: i) resizing: all images were resized to 640x 640 pixels, ii) normalization: pixel values were scaled to
the range [0, 1], iii) augmentation: applied transformations included horizontal/vertical flips, random rotation
(£15°), brightness and contrast adjustments (+20%), motion blur, and Gaussian noise. These augmentations
address variability in acquisition devices and lighting conditions, and iv) balancing: oversampling techniques
were used for underrepresented cataract subtypes to reduce class imbalance.

To mitigate class imbalance we applied oversampling of rare subtypes and mixup. Preprocessing is
microsecond-scale and does not limit throughput. These augmentations improved robustness to variations in
image acquisition. Processing speed per frame was ~ 29 s, enabling real-time applicability [42]. In addition
to a fixed 70/15/15 train/val/test split, we conducted stratified 5-fold cross-validation. We report mean values
with 95% confidence intervals estimated via 1000-sample bootstrap. Model selection used validation folds
only; the external test set was kept untouched for final reporting.

3.3.  You only look once version 8 configuration

YOLOVS (Ultralytics, v8.0.196) was chosen for its high accuracy and computational efficiency. The
repository was cloned and dependencies installed. Initial testing with YOLOv8s . pt pre-trained weights con-
firmed correct installation. We used YOLOVS8-s (Ultralytics v8.0.x) with 640640 input, batch 16, 50 epochs,
SGD (momentum 0.937), cosine LR schedule, early stopping (patience 15), and SWA. Pretrained weights
yolov8s.pt were fine-tuned. For inference, we applied architecture-aware pruning and quantization without F1
degradation.

3.4. Model architecture justification

We selected YOLOvV8 from the Ultralytics framework as the detection backbone due to its demon-
strated ability to balance speed and accuracy in medical imaging tasks. Compared to YOLOVS and EfficientNet-
based classifiers, YOLOvVS8 integrates an anchor-free design reducing computational overhead, improved fea-
ture aggregation network for better localization of fine-grained structures, native NMS-free architecture,
enabling faster inference in real time, strong performance in previous ophthalmic detection studies [43]].

3.5. Training procedure
Training was performed on an NVIDIA RTX 3080 GPU (10 GB VRAM) under Python 3.11 and
PyTorch 2.1. Parameters:

- Input size: 640x640

- Batch size: 16

- Epochs: 50

- Optimizer: SGD with momentum 0.937
- Learning rate: 0.01, cosine decay

Analysis of machine learning methods for detection of cataracts (Anastassiya Tyunina)
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- Loss function: YOLOvVS8 default (CIoU+BCE)

Pre-trained YOLOv8s.pt weights were fine-tuned on the cataract dataset to accelerate convergence. Early
stopping was applied with a patience of 15 epochs to prevent overfitting. Training was conducted on an
NVIDIA RTX 4090 GPU (24 GB VRAM) using PyTorch 2.1.0 and CUDA 12.1.

3.6. Validation and testing

The dataset was split into training (70%), validation (15%), and testing (15%) sets, ensuring stratified
distribution of cataract severity classes. The validation set was used for hyperparameter tuning and early
stopping, while the test set provided an unbiased performance estimate.

3.7. Reproducibility
To ensure reproducibility:
- All random seeds (NumPy, PyTorch, and Python) were fixed to 42.
- Model weights, training logs, and configuration files were saved and are available upon request.
- The complete training pipeline was implemented in Python 3.11, ensuring cross-platform compatibility.

3.8. Ethical considerations

All data usage complied with relevant ethical and privacy standards, including HIPAA and institutional
review board (IRB) guidelines. Patient identities were fully anonymized.

3.9. Methodological relevance to research objectives
The chosen methodology directly addresses the problem stated in the introduction by:
- Providing a real-time diagnostic tool suitable for resource-constrained clinics.
- Ensuring generalizability through diverse training data and augmentations.
- Maximizing clinical reliability via robust evaluation metrics and expert validation.

3.10. Evaluation metrics
We evaluated classification and detection using:

A B TP+ TN )
Y = TP TN + FP+ FN
TP
ll= ———— 2
Reca TP FN 2)
TP
Precision = ——————
recision TP+ FP 3)
Precision - 11
Fl=2 recision - Reca )

X
Precision + Recall

where TP, TN, FP, and F'N are true/false positives/negatives. The mean average precision (mAP) was
computed at IoU thresholds of 0.5 (mAPQO0 . 5) and 0.5:0.95 (mAP@O.5:0.95).

3.11. Model validation and error analysis

Validation was performed on the held-out 20% dataset. Figure [2[ shows sample detections with con-
fidence scores. A confusion matrix quantified misclassifications: 1,605 normals and 1,844 cataracts were
correctly classified; 8 cataracts were missed (FN), and 9 normals misclassified (FP).

3.12. Deployment

The trained model (best . pt) was deployed for batch inference. Predictions with bounding boxes
and confidence scores were saved to runs/detect for clinical review. This deployment pipeline supports
integration into ophthalmic screening systems, enabling real-time cataract detection in clinical and remote
settings.
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Figure 2. Example predictions of the YOLOv8 model on validation images

4. RESULTS AND DISCUSSION

The assessment was conducted using standard metrics (accuracy, precision, recall, Fl-score, and
mAP). Additionally, we analyze the model’s performance across different cataract severity stages and com-
pare it with existing state-of-the-art models.

4.1. Performance metrics

The evaluation metrics for the YOLOvS8-based cataract detection model are summarized in Table 4.
The results indicate that the optimized YOLOvV8 model achieves 99% in detecting cataracts across different
severity levels. The mAP metric, which evaluates the model’s precision-recall balance, confirms its robustness
in classification and localization tasks. Figure 3 summarizes the performance trend of the proposed YOLOvV8
model across decision thresholds. In Figure 3(a), we plot the Fl-score versus confidence threshold, showing
stable precision—recall balance across a wide operating range. Figure 3(b) illustrates the recall-confidence
curve, demonstrating that high sensitivity (>0.98) is maintained even under stricter confidence levels. These
curves highlight that the model remains robust and clinically safe for screening use.

Table 4. Performance metrics of the YOLOv8 model

Metric Value
Accuracy 0.99
Precision 0.995
Recall 0.995
Fl-score 0.995
mAP@0.5 0.995

mAP@0.5:0.95 0.983

F1-Confidence Curve Recall-Confidence Curve

4 — Normal — Normal
| Cataract ‘ Cataract
— all classes 1.00 at 0.717 — all classes 1.00 at 0.000

0.8 0.8 ‘

0.6 0.6

F1
Recall

0.4 0.4

02 0.2

0.4 0.6 0.4 0.6
Confidence Confidence

(a) (b)

Figure 3. Confidence-based performance curves; (a) F1-confidence curve and (b) recall-confidence curve
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The F1-confidence curve graph demonstrates the dependence of the F1 metric on the threshold level
of confidence of the model (confidence). The graph clearly shows that the model reaches very high F1 values
close to unity for both classes ("Normal” and ”Cataract”), starting from a low confidence threshold (0.717),
which indicates high reliability and stability of the model’s results even when the confidence threshold changes.

The precision-confidence curve shows the change in the accuracy of the model (precision) depending
on the level of confidence in the forecasts. The graph shows that the model demonstrates high accuracy over a
wide range of confidence levels. This means that almost all predictions about the presence of cataracts and the
normal condition of the eye are correct even at relatively low confidence thresholds.

High precision-recall index, close to unity (0.995 mAP@0.5 for both classes), indicates that the model
is equally good at minimizing false positives and omissions, which is a key indicator for medical diagnostic
tasks such as automated cataract diagnostics.

The convergence behavior of the YOLOvV8 model during training is illustrated in Figure 4. The figure
presents the evolution of training and validation loss components across epochs, including box loss, classifi-
cation loss, and distribution focal loss, as well as the corresponding performance metrics such as precision,
recall, and mAP. The consistent decrease in both training and validation losses, together with stable and high
evaluation metrics, indicates good generalization performance and the absence of overfitting.
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—e— results
0.94 r« o
ﬂ 1.0 smooth 0.975 1 0.98 4
0151 %
0.8 1 0.921 0.9507 0.96 |
0.925 1
0.10 0.6 1 0.90 0.94 4
' 0.900
0.4 1 0.921
0.875 4
0.05 4 0.88
\ 0.2 1 0,550 0.904
T : : 0.04, . . : T : : : . : T -
0 20 40 0 20 40 0 20 40 0 20 40 0 20 40
val/box_loss val/cls_loss val/dfl_loss metrics/mAP50(B) metrics/mAP50-95(B)
0.6 r -
0.304 0.7 A 0.99 1
0.98
0.6
0.25 0.5 0.98 1
0.5 1 0.96
0.20
w 0.4 0.4 0.97
0.151 | 0.94
wﬁ 03 0.96
0.104 0.2 031 0921
0.95 1

20 40

o

0 20 40 0 20 40 0 20 40 0 20 40

Figure 4. Results

4.2, Comparison with previous studies

To evaluate the competitiveness of the proposed YOLOvS8-based model, we compared its performance
with several state-of-the-art approaches reported in the literature. Table 5] summarizes the results.

Recent studies have investigated a broad spectrum of machine learning and DL techniques for cataract
detection, classification, and ophthalmic image analysis. Several works have focused on improving clinical
decision-making and surgical outcomes, highlighting the growing role of Al in cataract management and oph-
thalmology workflows [35]], [41]], [43]. In parallel, advances in biomedical imaging and signal analysis have
enabled more detailed exploration of lens-related biomarkers and structural changes associated with cataract
formation [36]].

From a methodological perspective, DL models have demonstrated strong potential across diverse
ophthalmic imaging modalities. Tong et al. [37] reviewed the application of machine learning techniques
in ophthalmic imaging, emphasizing the effectiveness of CNNs in fundus image analysis and disease screen-
ing tasks. Subsequent studies further explored the broader clinical applicability of DL, showing its ability to
enhance diagnostic accuracy and support clinical understanding in complex ophthalmic conditions [38]].

To improve feature representation and classification performance, advanced CNN architectures have
been proposed. Liu et al. [39] introduced a dual-branch CNN-TRANS model for fundus image classifica-
tion, demonstrating improved representation learning through parallel feature extraction mechanisms. Beyond
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classification, machine learning techniques have also been applied to surgical analysis and workflow optimiza-
tion. Ramkumar and Sivaprakash [40] discussed machine learning methods for automated glaucoma diagnosis,
illustrating the extension of ML-based diagnostic frameworks to multiple ocular diseases and imaging con-
texts. In a comprehensive systematic review, Ahuja et al. [41] analyzed Al applications in cataract manage-
ment, demonstrating that Al-based systems can significantly improve clinical decision-making, surgical pre-
cision, and patient-specific outcome prediction across preoperative and intraoperative stages. More recently,
EfficientNet-based architectures have been explored for eye disease classification, demonstrating competitive
performance with reduced model complexity [42]. In addition, Bates [43] provided a historical and tech-
nological overview of cataract surgery, outlining the progressive integration of computational and Al-driven
techniques into ophthalmic practice and underscoring their role in improving surgical outcomes and clini-
cal efficiency. In addition to DL approaches, traditional machine learning pipelines, such as Gaussian-based
Laplacian of Gaussian and Canny operators, have been investigated for edge detection in ophthalmoscopic
cataract images, offering improved interpretability but limited generalization compared to modern CNN-based
methods [44]]. Al-driven systems for automated imaging and analysis of cataract surgery videos have also been
proposed, supporting intraoperative assessment, surgical phase recognition, and postoperative evaluation [45].

Recent advances further extend these approaches to specialized surgical environments. Zhai et al.
[46] developed a neural network—powered microscopic imaging system for cataract surgery, enabling real-time
visualization and Al-assisted analysis during surgical procedures, thereby enhancing intraoperative guidance
and precision. At a broader level, review studies have highlighted both the advantages and limitations of Al
in ophthalmology, emphasizing the need to balance performance gains with issues of interpretability, data
dependency, and clinical integration [47]].

Collectively, these studies establish a diverse and evolving landscape of Al-based approaches for
cataract-related tasks, spanning image classification, feature extraction, surgical workflow analysis, and clinical
decision support. Against this backdrop, Table 5 presents a quantitative comparison of the proposed YOLOVS-
based model with representative state-of-the-art methods, highlighting its performance advantages in accuracy,
F1-score, and mAP@0.5.

The results show that the proposed YOLOv8 model outperforms previous DL approaches in both
classification and localization accuracy. The improvement is particularly significant in mAP@0.5, demonstrat-
ing the model’s superior ability to balance precision and recall across different intersection-over-union (IoU)
thresholds.

On the external test set from clinics unseen during training, the detector achieved accuracy=0.99,
precision=0.995, recall=0.995, F1=0.995, mAP@0.5=0.995, and mAP@0.5:0.95=0.983. These results com-
plement 5-fold CV and align with clinical-grade expectations by combining high sensitivity with low latency.
We compared the proposed model against ResNet-50 (TL) and YOLOVS5 using the McNemar test on paired
predictions, confirming significant differences in discordant errors (p<0.05, Holm—-Bonferroni corrected). For
AUC comparisons where applicable, we applied DeLong’s test. A one-way ANOVA across fold-wise F1-scores
further supported superiority over classical ML baselines (p<0.05). Bootstrap 95% ClIs for F1 and mAP quan-
tify uncertainty. Grad-CAM/Grad-CAM++ heatmaps localize attention on lens-opacity regions and pupil-space
boundaries in positive cases, while normals exhibit diffuse or peripheral activations. The compressed YOLOv8
pipeline delivers ~1.9 ms/image inference on commodity RTX-class GPUs, enabling real-time screening with
confidence-threshold triage in mobile and tele-ophthalmology workflows.

Table 5. Comparison of our YOLOv8 model with state-of-the-art approaches in cataract detection

Model Accuracy  Fl-score mAP@O0.5
ResNet50 + SVM 0.960 0.950
EfficientNet-B3 0.970 0.960 0.940
YOLOVS 0.980 0.980 0.970
Proposed YOLOVS (ours) 0.990 0.995 0.995

4.3. Interpretation of results

From a clinical perspective, the high recall (0.995) is crucial because it minimizes the probability of
missing patients with cataracts, thereby reducing the risk of delayed treatment. Similarly, the high precision
(0.995) indicates a low false-positive rate, which reduces the workload on ophthalmologists by preventing
unnecessary follow-up examinations for healthy patients. The mAP@0.5:0.95 score of 0.983 confirms that
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the model consistently performs well across a range of localization thresholds, ensuring robust detection of
pathological regions in varying image quality conditions.

To assess whether the proposed system can explain its decisions, Grad-CAM and Grad-CAM++
saliency maps were generated over the final convolutional layers for representative prediction cases, as il-
lustrated in Figure 5. Figure 5(a) shows a true positive example, where the model correctly localizes lens
opacity regions associated with cataract. Figure 5(b) presents a false positive case, in which strong reflections
or illumination artifacts lead to incorrect activation. Figure 5(c) depicts a false negative example, where glare
and low signal-to-noise ratio obscure pathological regions, resulting in missed detection. Overall, the visual
explanations demonstrate that the model primarily focuses on clinically relevant regions in cataract-positive
images, while normal images exhibit diffuse or peripheral activations.

Grad-CAM/Grad-CAM+ explanations
(illustrative mock)
high
FN U
low

(c)

Figure 5. Grad-CAM and Grad-CAM-++ visual explanations of the proposed model; (a) true positive case
highlighting lens opacity regions, (b) false positive activation caused by reflection or illumination
confounders, and (c) false negative example under glare and low signal-to-noise conditions

High recall (0.995) minimizes missed cataract cases, while high precision (0.995) limits unnecessary
referrals—both are aligned with screening goals. The compressed YOLOVS pipeline sustains ~1.9 ms/image
on commodity RTX-class GPUs and supports batch/stream modes with confidence-threshold triage. For low-
resource/mobile use, we adopt an offline-first configuration with INT8 quantization and on-device caching;
clinic integration follows a human-in-the-loop pattern: model triage — clinician review — referral. The system
exports per-case reports (prediction, confidence, Grad-CAM heatmap) to support expert review and longitudinal
audit.

4.4. Practical implications

The combination of high detection accuracy and a fast inference speed of 1.9 ms per image makes this
model suitable for real-time clinical applications. Potential use cases include:

- Deployment in mobile diagnostic units and teleophthalmology systems for remote screening.
- Integration with slit-lamp cameras equipped with Al-based screening tools.

- Use in rural healthcare centers to provide rapid preliminary diagnostics where access to ophthalmologists is
limited.

4.5. Future improvements and research directions
While the model already demonstrates strong performance, further enhancements can be achieved by:

- Increasing dataset diversity, including rare cataract subtypes, through additional data collection and the use
of generative adversarial networks (GANs) for synthetic data augmentation.

- Applying domain adaptation techniques to improve generalizability across different imaging devices and
acquisition conditions.

- Incorporating multimodal data sources such as patient demographic information, clinical history, and EHR
for context-aware diagnostics.

- Implementing explainable Al methods (e.g., Grad-CAM) to visualize the decision-making process for better
clinician trust and model interpretability.
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Recent advancements in YOLOv10 and NMS-free architectures [48] indicate potential for further
improving detection accuracy and reducing inference times. Additionally, integrating such models with Al-
assisted surgical guidance systems [32]], [47]], [49] could extend their use from diagnostics to intraoperative
decision support, marking a significant step toward comprehensive Al-driven ophthalmology.

4.6. Error analysis and limitations

While the model performs well, some misclassifications were observed in cases with poor image

quality and occlusions. The main challenges include:

- Variability in image acquisition conditions

- Presence of artifacts such as reflections and noise

- Limited number of training samples for rare cataract subtypes

Future improvements can address these issues by incorporating more diverse datasets and advanced
preprocessing techniques.

Although the proposed model demonstrates strong overall performance, several misclassifications
were observed under challenging conditions. These errors are mainly related to poor image quality, occlu-
sions, and variability in image acquisition settings. In particular, artifacts such as reflections, noise, and low
contrast can adversely affect detection accuracy, especially in borderline or early-stage cataract cases.

Another limitation is the relatively limited number of training samples available for rare cataract sub-
types, which may reduce the robustness of the model in less frequent clinical scenarios. Similar challenges
have been reported in recent DL—based cataract detection studies, where model performance was shown to be
sensitive to dataset diversity and image quality variations [48].

Despite these limitations, the optimized YOLOv8 model demonstrates high accuracy and strong gen-
eralization across different cataract severity levels. Its fast inference speed makes it suitable for real-world
clinical deployment, particularly in screening and tele-ophthalmology applications. Recent advances in YOLO-
based architectures further confirm the effectiveness of lightweight detectors for medical image analysis. In
particular, hybrid DL frameworks have been shown to improve feature extraction and classification robustness
for cataract detection tasks [49]].

Moreover, recent developments in real-time object detection models, such as GhostYOLO, highlight
the potential for reducing computational complexity while maintaining high diagnostic accuracy. These ap-
proaches enable efficient deployment on resource-constrained devices and support real-time cataract diagnosis
in clinical settings [50].

4.7. Discussion

The YOLOVS algorithm was used to build a cataract detection model. It has shown advantages in
terms of achieving the perfect balance between computational efficiency and diagnostic accuracy. One of the
distinctive features of the model is its real-time operation.The average output time of the model is only 1.9 ms
per image, which highlights its applicability in clinical settings with limited resources, such as remote hospitals
and mobile screening centers.

Our model has achieved increased accuracy, memorability, and F1-scores (about 0.995 for both the
“normal” and “cataract” categories). The accuracy-reliability and Fl-reliability curves are tested to ensure
reliability in real clinical conditions. They consistently show outstanding results even at lower confidence
thresholds.

Despite these significant advantages, the model has numerous limitations. One of the main problems
identified was the accidental misclassification of low-quality images (blurred images, dim lighting, or partial
opacity). These incorrect classifications emphasize the need to increase the model’s resilience to real-world
image processing scenarios. These limitations can be successfully eliminated, and the stability of the model
can be improved by using complex magnification techniques such as setting occlusion, changing the lighting
level, and simulating motion blur.

The model showed sensitivity to the distribution of training data. Some unusual cataract manifesta-
tions were underrepresented. The ability of the model to generalize the full range of cataract changes observed
in clinical practice was limited due to a lack of representativeness. To solve this problem, it is necessary to
increase the size and diversity of the dataset. The introduction of synthetic data generation techniques, in
particular GANs, can benefit future research by offering realistic fake data to improve the quality of underrep-
resented or rare classes.
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From a clinical perspective, the proposed system is designed to complement, not replace, ophthal-
mologists. In routine screening workflows, the AI model can act as a first-line triage tool: fundus or anterior
segment images obtained by lab technicians are automatically analyzed, and cases predicted to be “cataract-
positive” are prioritized by experts. This significantly reduces the time specialists spend on routine cases while
maintaining diagnostic oversight for ambiguous or serious findings.

Future studies could enhance diagnostic capabilities by integrating multimodal data sources like eye
images with clinical data from EHR, patient demographic data, and historical clinical data. More accurate deci-
sions based on the clinical context and unique patient characteristics will be possible thanks to this integration,
which could also improve treatment outcomes.

Domain adaptation methodologies are an important topic for further study. The use of uncontrolled
or partially controlled domain adaptation strategies can significantly increase the generalizability of the model,
since different ophthalmic equipment and the environment allow for clear images. Our YOLOVS model can
provide exceptional accuracy in a variety of imaging devices and clinical scenarios, using strategies such as
adapting to different subject areas or transferring knowledge from extensive ophthalmic datasets.

In conclusion, despite the great clinical prospects of our YOLOvS8-based cataract detection system,
its effectiveness can be further enhanced by eliminating existing limitations through the use of larger datasets,
complex expansion, multimodal data integration, and domain adaptation. Reliable, effective and widely appli-
cable ophthalmic diagnostic tools controlled by Al will be possible due to continuous progress in these fields.

5. CONCLUSION

This study introduced an enhanced YOLOvS8-based DL model for automated cataract detection, achiev-
ing outstanding accuracy, sensitivity, specificity, and mAP across different cataract severity stages. In addition
to high diagnostic accuracy, the model demonstrated exceptional computational efficiency, with an average
inference time of only 1.9 ms per image, enabling real-time screening in both high-tech clinics and resource-
limited medical environments.

The findings have broader implications for the field of Al-assisted ophthalmology. They confirm that
advanced object detection architectures, when optimized for medical imaging, can transition from research
prototypes to practical clinical tools. Such systems have the potential to be integrated into point-of-care de-
vices, mobile ophthalmology units, and telemedicine platforms, thereby improving early detection, accelerating
treatment decisions, and reducing the global burden of preventable blindness.

At the same time, certain limitations were identified, including reduced performance on low-quality or
artifact-heavy images and underrepresentation of rare cataract subtypes in the dataset. Addressing these issues
will require expanding and diversifying the training dataset, employing advanced augmentation strategies such
as GANSs to generate realistic synthetic cases, and exploring multimodal learning by combining ophthalmic
images with patient clinical records. Further work on domain adaptation methods will ensure consistent per-
formance across different imaging devices and patient populations.

In conclusion, the proposed YOLOvVS8-based approach offers a reliable, efficient, and clinically viable
solution for cataract detection. By continuing to refine the model, enrich the training data, and expand its in-
tegration into real-world diagnostic workflows, this technology could become a transformative tool for early
detection and management of cataracts, ultimately improving patient outcomes and supporting ophthalmolo-
gists in their daily practice.

The graphs with learning outcomes reflect the dynamics of changes in the loss function (loss) and
metrics. mMAP@0.5 and mAP@0.5-0.95 during the training of the YOLOv8 model for 50 epochs. A consistent
decrease in the loss function is shown for both the training (train) and validation (val) samples, which confirms
the absence of overfitting and stable convergence of the model. The precision and recall metrics are also
steadily growing and reaching high values closer to the end of training, which indicates successful training of
a model with good generalizing ability.

YOLOVY, an updated model, may be the next stage for research. The system demonstrates high
accuracy in real time when analyzing ophthalmic images, which makes it promising for implementation in
clinical practice.
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