Bulletin of Electrical Engineering and Informatics
Vol. 14, No. 6, December 2025, pp. 4758~4768
ISSN: 2302-9285, DOI: 10.11591/eei.v14i6.10554 O 4758

Comparative analysis of Haar Cascade, OpenCV, and you only
look once algorithms for vehicle detection

Gagandeep Kaur?, Shital Pawar?, Rutuja Rajendra Patil}, Amol Vijay Patil*, Anuradha V. Yenkikar?,

Nikita Bhandari®, Kalyani Dhananjay Kadam®

1Symbiosis Institute of Technology, Nagpur Campus, Symbiosis International (Deemed University), Pune, India
2Department of Computer Engineering, Bharati Vidyapeeth’s College of Engineering for Women, Pune, India
Department of Computer Engineering, MIT, Academy of Engineering, Alandi, Pune, India
“Department of CSE - Artificial Intelligence, Vishwakarma Institute of Technology, Pune, India
SBalaji Institute of Technology & Management, Sri Balaji University, Pune, India
Department of Computer Engineering, Vishwakarma University, Pune, India

Article Info

ABSTRACT

Article history:

Received Apr 24, 2024
Revised Sep 28, 2025
Accepted Oct 14, 2025

Keywords:

Computer vision

Haar cascade classifier
Object detection
OpenCV

Vehicle identification
You only look once

Object detection is one of the substantial tasks in computer vision and has a
wide range of applications ranging from autonomous driving to monitoring
systems. This study presents a comparative analysis of vehicle detection
approaches, contrasting traditional methods (OpenCV contour analysis and
Haar Cascade) with modern deep learning-based you only look once version
8 (YOLOV8) and its variants. Vehicles were identified and localized within
video frames using bounding boxes, with performance assessed through
accuracy, Fl-score, mean average precision (mAP), and inference speed.
YOLOV8 consistently achieved superior accuracy (up to 98% in specific
scenarios) and real-time processing speeds (155 FPS), confirming its
suitability for safety-critical applications such as intelligent transport
systems and autonomous navigation. However, its higher computational and
memory demands highlight deployment trade-offs, where lighter variants
like YOLOV8s remain feasible for embedded or low-power devices. In
contrast, Haar Cascade and contour analysis offered faster execution and
smaller memory footprints but lacked robustness under complex
environmental conditions. The study also acknowledges limitations such as
dataset bias, adverse weather effects, and scalability challenges, which may
impact generalization in real-world deployments. By analyzing these trade-
offs, the work provides essential insights to guide practitioners in selecting
suitable vehicle detection solutions across diverse application environments.

This is an open access article under the CC BY-SA license.

©00

Corresponding Author:

Gagandeep Kaur

Symbiosis Institute of Technology, Nagpur Campus, Symbiosis International (Deemed University)

Pune, India

Email: gagandeep.kaur@sitnagpur.siu.edu.in

1. INTRODUCTION

Over the years, object detection has advanced significantly and has contributed a lot to areas such as
autonomous vehicles, industrial robotics, surveillance, and augmented reality among others [1]. Despite these
advancements, real-time detection and localization remain challenging, particularly in vehicle detection,
where both accuracy and efficiency are critical. Highly optimized models are needed for identifying and
locating objects in dynamic environments [2]. To address these challenges, researchers have devised various
detection models to improve accuracy, efficiency, and robustness.

Journal homepage: http://beei.org

https://creativecommons.org/licenses/by-sa/4.0/

Bulletin of Electr Eng & Inf ISSN: 2302-9285 O 4759

Object detection techniques based on the Haar Cascade classifier and OpenCV have been in practice
for quite some time because of their simplicity and speed. OpenCV is a mainstream computer vision library
that has efficient implementations of Haar Cascade and histograms of oriented gradients (HOG) and can be
successfully applied in autonomous driving, robotics, and surveillance systems. Specifically, Haar Cascades
make use of a series of simple rectangular features that employ a cascade of weak classifiers to speedily
locate the objects of interest [3]. The another major class of algorithms for object detection-with the advent of
deep learning-is you only look once (YOLO), which treats detection as one consolidated regression problem
[4]. YOLO processes the whole image in one go, which allows for real-time detection with great accuracy
and spatial coherence. All versions, particularly YOLOv5, YOLOv7, and YOLOvV8 have shown enhanced
detection precision, speed, and robustness as compared to classical algorithms [5], [6].

This study presents a comparative analysis of three approaches to vehicle detection: Haar Cascade,
classical OpenCV-based methods, and the YOLOVS8 algorithm. Empirical evaluations on benchmark datasets
and real-time traffic footage have been used to highlight strengths and weaknesses, as well as some
application considerations. The comparative performance against standard datasets and real-time traffic
footage will be useful for researchers and practitioners who wish to develop deployment systems within real-
world applications of vehicle detection algorithms. For example, a resource-constrained setting may favor
lightweight models, while safety-critical systems would prefer detection reliability and precision.

The remainin paper is organized as follows: section 2 provides an overview of recent literature
related to accident detection and details about the dataset. The description of the methodology and
experimental setup is given in section 3. Section 4 presents results and discussion, highlighting key
observations and limitations. Conclusions drawn from the findings along with future directions for improving
the vehicle detection system are discussed in section 5.

2. LITERATURE REVIEW

Jia et al. [7] optimized the YOLOvV5 model through neural architecture search (NAS) and structural
re-parameterization (Rep) and attained a 96.1% accuracy rate at 202 frames per second (FPS). Peng et al. [8]
suggested a fusion-based feature enhancement method in another research aiming to augment the accuracy of
object detection. In autonomous vehicle detection, Dong et al. [9] combined C3Ghost and Ghost modules to
alleviate computing burden; Zhang et al. [10] developed an improved YOLOV5 structure that enhanced real-
time performance in vehicle detection.

Apart from vehicle detection, deep learning models have shown some amount of flexibility in
agriculture, surveillance, and lane detection. YOLOV5-based pest detection system by Wu et al. [11] attained
93.8% accuracy, which shows the flexibility of deep learning for different target detection tasks.
Ajayi et al. [12] assessed YOLOv5s for automatic crop and weed classification, optimizing the results using
UAYV images. An enhanced YOLOV5 algorithm presented by Chen et al. [13] integrated with bidirectional
feature pyramid network and convolutional block attention module improves real-time object detection
significantly in road environments.

Despite major advances in deep-learning object detection, traditional methods such as Haar Cascade
remain useful for resource-constrained environments due to their computational efficiency [14]. Hybrid
approaches combining classical and modern detectors have also been proposed (e.g., Haar Cascade+SSD) to
boost accuracy [15], while optimized YOLO variants (e.g., MV2SYE) and reviews summarizing deep-learning
detectors for surveillance and autonomous vehicles have been reported [16], [17]. Al systems for real-time
traffic monitoring and flow prediction have likewise been developed to support congestion management [18].

Recent work has pushed real-time detection and recognition further: Li et al. [19] achieved 96%
precision on HoloLens with YOLOv7, and the original YOLO framework reframes detection as a single-
stage regression of boxes and class probabilities for speed [20]. SSD-based systems using pre-trained models
have been evaluated across common objects in context (COCO), PASCAL VOC, and KITTI for trade-offs
between accuracy and speed, with attention to hardware optimization [21].

Multi-object tracking and defect/fault identification in transport networks have benefited from
multimodal fusion, attention modules, and transfer-learning strategies (e.g., optimized YOLOv8 with CBAM
and SImCSPSPPF) to improve detection under limited data conditions [22], [23]. 3D convolutional
approaches for lane and road safety, and other deep-learning methods for tracking and fault detection, have
also been proposed to enhance robustness in challenging environments [24]-[27].

3. METHOD
This section describes the methodical approach as shown in Figure 1 to analyse object detection,
including algorithm selection, data processing steps, and performance evaluation. The comparison between

Comparative analysis of Haar Cascade, OpenCV, and you only look once algorithms ... (Gagandeep Kaur)

4760 O3 ISSN: 2302-9285

contour-based detection, Haar Cascade-based detection, and YOLOvV8-based detection is explained in detail
in the subsequent subsections, highlighting their respective advantages, and disadvantages.

e
Dataset &
Preprocessing

Preprocessed image using grayscale,
background subtraction, and
morphological enhancements

Accuracy Predictions/ .t Vehicle detection using

Classifications Correct + Incorrect OpenCV

Predictiony/ True Positive Vehicle Detection using pre-
Precson ciassications True Positive + False Positive trained Haar cascade classifier

Vehicle detection using

st Precictons e YOLOvS

Classifications True Positive + False Negative

Evaluation Metrics Vehicle Tracking and counting

Figure 1. Structured workflow for vehicle detection using Haar Cascade, OpenCV, and YOLO algorithms

3.1. Dataset description

This study employed a combination of publicly available benchmark datasets and self-collected
real-time video footage to ensure a fair and consistent evaluation of all three vehicle detection
approaches-Haar Cascade, OpenCV contour analysis, and YOLOVS.

YOLOVS: the large-scale annotated datasets used to train the YOLOv8 model include COCO, with
around 118,000 images spread across 80 categories, and open images dataset V6 with more than 1.9 million
images along with bounding box annotations for various objects, including vehicles. For evaluation purposes,
a subset of images and frames with cars, trucks, and buses under varying lighting and background conditions
was used.

Haar Cascade: the Haar Cascade classifier used in this work was based on OpenCV's pre-trained
vehicle detection XML model, which was initially trained with positive and negative image samples from
publicly available datasets such as the UIUC car dataset and other vehicle images compiled from different
sources. Such a pre-trained model is capable of detection without the need for further large-scale training, yet
slight parameter adjustments were made according to our own test videos.

OpenCV contour analysis: as a classical image processing approach, contour analysis does not
require a labeled dataset for training. Instead, it operates directly on image frames extracted from both the
benchmark datasets and our self-captured real-time traffic videos. Parameters such as threshold values, kernel
sizes, and morphological operation settings were optimized through iterative testing on diverse frames
containing varying lighting, occlusion, and background clutter.

3.2. Object detection using OpenCV

The object detection system is created using the OpenCV Python module. The system takes a still
shot from the live video stream of the device, searches for moving objects (like cars), and counts them as
they cross a predetermined line in the frame. The whole system uses background subtraction in order to
differentiate the static background and the dynamic moving objects. For this purpose, the system uses
OpenCV's createBackgroundSubtractorMOG2() function, which is basically a Gaussian mixture model
(GMM)-based method for separating the foreground from the background. It further processes frames of the
videos in real time to give accurate object detection and tracking results. Each frame is converted into a
grayscale image; after that the Gaussian blur is applied to remove noise imperfections. The blurred grey
frame is then put in background subtraction to create a binary image that could effectively show moving
objects.

The proposed study employs the morphological operations like dilation and occlusion for image
processing. Dilation expands the area of the remaining subtractions, and occlusion fills the gaps in the image
to achieve smoother bordering of the object. The contours of the object are then detected using the
findContours() function. A bounding rectangle is drawn around each contour found, and the center of the

Bulletin of Electr Eng & Inf, VVol. 14, No. 6, December 2025: 4758-4768

Bulletin of Electr Eng & Inf ISSN: 2302-9285 O 4761

bounding box is calculated. These bounding boxes represent objects detected in the frame. A predetermined
line is drawn on the frame to delimit it, and the objects crossing this line are counted. The "setinfo()" function
checks if the center of the detected object crosses the line and updates the count accordingly. The computed
objects (in this case, cars) are displayed in the original video stream, and the processed detected frame shows
the result.

The system continues to process the video frames until the user exits the application by pressing the
"Esc" key. Overall, this method introduces a basic application of object detection using background
subtraction and describes analysis methods that provide a simple but powerful approach to counting moving
objects or objects in the video stream. Figure 2 illustrates the conversion of frames into grayscale, a
preprocessing step used to enhance object detection by reducing unnecessary details and improving contrast.
Figure 3 demonstrates the working of OpenCV, starting from extraction of moving objects from the grayscale
image, applying a bounding box around the detected vehicle, accompanied by the label "Vehicle Detected" to
indicate successful identification.

Figure 2. Grayscale conversion of the frame Figure 3. Vehicle detection using OpenCV for enhanced
object detection

3.3. Vehicle detection using a pre-trained Haar Cascade classifier in OpenCV

This method starts by processing a pre-trained Haar Cascade classifier of vehicle (in this case)
detection. This classifier is stored in a file of extension XML named ‘vehicle.xml’. The cv.CascadeClassifier
class is used form OpenCV library to load the pre-trained classifier. It is trained to classify and recognize
patterns which resembles of vehicles. The detection() function acts as the base component which is
responsible for detection vehicles within a given frame. It takes a single frame as input which is captured
from the video. Using the pre-trained Haar Cascade classifier XML file loaded earlier, the function identifies
parts within the frame that closely resemble vehicles. As shown in Figure 4, for each detected vehicle, the
function draws a rectangular box around it using cv2.rectangle() and adds a text label showing the detection
status using cv2.putText(). The capturescreen() function is the important entrance point helping to process the
video file. It starts a video capture object using cv2.VideoCapture and opens the given video
file(’video.mp4”). Within a loop, the function sequentially reads the frame from the video. For each of the
frame, it calls the detection() function to detect vehicles and spot the vehicles with rectangular box and text
labels.

Figure 4. Vehicle detection using Haar Cascade classifier

3.4. Vehicle detection using you only look once version 8

YOLOV8 uses a one-step detection method that predicts bounding box as shown in Figure 5 and
class probabilities of input images in one step. This makes it considerably faster than two-stage detectors,
which require separate region recommendations and classification stages. YOLOv8 can be used for vehicle
detection in two main ways: direct article: YOLOV8 pre-built model such as YOLOv8n, YOLOvVS8s or

Comparative analysis of Haar Cascade, OpenCV, and you only look once algorithms ... (Gagandeep Kaur)

4762 O ISSN: 2302-9285

YOLOVSI can be used for direct vehicle detection. These models are trained on huge datasets covering
vehicle categories such as COCO. This approach offers quick and easy setup, but may not be up to date for
specific vehicles or environments. Transfer learning: the fully trained YOLOVS8 can train itself further on
custom datasets containing vehicle images under varying light and weather conditions. Such fine-tuning
gives the model hands-on vehicle detection experience, which would also help in improving accuracy and
reducing false positives. Time-sensitive applications: compared to other algorithms, YOLOv8 offers high
accuracy in vehicle detection.

Figure 5. Vehicle detection using YOLOV8

3.5. Evaluation metrics
To ensure a fair and consistent evaluation of Haar Cascade, OpenCV contour analysis, and
YOLOVS8, we used standard object detection performance metrics. These metrics were computed using the
ground-truth annotations and predicted bounding boxes for each image/frame.
a. Intersection over union (loU): as shown in (1), loU measures the overlap between the predicted bounding
box (B_p) and the ground truth bounding box (B_g) as (1):

Area(Bp N By)
Area(Bp U Bg)

IoU = 1)

For this study, a prediction was considered correct (true positive) if loU >0.5, which is a standard threshold
in the object detection literature (e.g., COCO benchmark).
b. Precision (P): precision quantifies the proportion of correctly detected vehicles among all detections:

TP
TP+FP

O]

Precision =

where TP is the number of true positives and FP is the number of false positives. High precision indicates
fewer false alarms.
¢. Recall (R): recall measures the proportion of actual vehicles correctly detected:

TP

Recall= 3)
TP+FN
where FN is the number of false negatives. High recall ensures fewer missed detections.
d. F1-score: the F1-score provides a harmonic mean between precision and recall:
F1 — Score = 2 Preclis.ion*Recall (4)
Precision+Recall
This is useful when both false positives and false negatives need to be minimized.
e. Accuracy: the F1-score provides a harmonic mean between precision and recall:
Accuracy = L)\ - (5)
TP+TN+FP+FN

Here, true negatives (TN) represent correctly identified non-vehicle regions.

f. Mean average precision (mAP): mAP is the most widely used metric for evaluating object detection
models. It averages the precision values across different recall levels. Average precision (AP) is first
calculated for each class by computing the area under the precision-recall curve. mAP is then obtained as
the mean of AP across all classes. In this study, we consider mAP@0.5, which evaluates predictions
correct if IoU >0.5.

Bulletin of Electr Eng & Inf, VVol. 14, No. 6, December 2025: 4758-4768

Bulletin of Electr Eng & Inf ISSN: 2302-9285 O 4763

mAP = ~ %Y, AP

where N is the number of object classes. Higher mAP indicates stronger detection performance.
g. FPS: FPS measures the inference speed of the detection algorithm, i.e., how many frames the model can
process per second.

Total Frames Processed

FPS =

Inference Time

A higher FPS indicates better suitability for real-time vehicle detection applications such as traffic
monitoring and autonomous driving. In this study, YOLOV8 achieved ~155 FPS, making it highly efficient
compared to Haar Cascade and OpenCV-based approaches.

3.6. Experimental configuration

All experiments were conducted in a controlled hardware and software setting to ensure
reproducibility and equitable benchmarking of the performance metrics. YOLOvV8 was implemented using
Ultralytics YOLOv8 framework atop PyTorch 2.1.0, while Haar Cascade plus OpenCV contour analysis was
implemented using OpenCV 4.8.0 for Python 3.10. GPU acceleration was leveraged during YOLOV8
inference through CUDA 12.1 and cuDNN 8.9, whereas Haar Cascade and contour analysis were optimized
for CPUs. With regard to YOLOVS, an input resolution of 640x640, a batch size of 16, and a confidence
threshold of 0.25 were held throughout training. The dataset images were all resized to fit the input resolution
while preserving aspects through letterboxing.

3.7. Comparative analysis
To comprehensively evaluate the performance of the three vehicle detection approaches—YOLOVS,

OpenCV contour analysis, and the Haar Cascade classifier—a comparative assessment was carried out

focusing on key aspects such as accuracy, robustness, computational efficiency, and ease of implementation.

a. YOLOv8: demonstrated superior accuracy and robustness, maintaining consistent performance under
diverse lighting conditions, cluttered backgrounds, and partial occlusions. It leverages advanced deep
learning architectures and benefits from the availability of pre-trained models, which simplifies
deployment for users with basic deep learning knowledge. Furthermore, YOLOV8 achieves real-time
inference speeds of approximately 155 FPS, making it highly suitable for time-sensitive and large-scale
applications.

b. OpenCV contour analysis: exhibited reliable accuracy primarily in controlled conditions but did not
perform well under dynamic and unstructured scenarios. Despite its computationally efficient nature and
being relatively simple to implement, the method's performance is highly reliant on exact parameter
tuning to cater to changes in lighting and background complexity. As a result, it is more suitable for low-
resource systems or experimental prototypes where real-time adaptability is not vital.

c. Haar cascade classifier: displayed reliable performance for organized and well-curated datasets but
struggled with scale variations, object orientation, and occlusion. Still, it is a quick and light algorithm
that is appropriate for computing resource constrained applications. On the other hand, its limited
flexibility in difficult situations makes it ineffective when compared to modern deep learning-based
techniques such as YOLOVS.

4. RESULT ANALYSIS

The experiment utilized three different approaches for vehicle detection, offering insights into their
accuracy, efficiency, and deployment feasibility. The Haar Cascade classifier achieved basic detection
competence but struggled in managing occlusion, varying angles, and poor lighting. Its small model size
(15 MB) and low computational requirements make it attractive for resource-constrained edge devices.
However, with a relatively low precision of 0.52 and unable to adapt to foggy or low-contrast situations, it
cannot be used in safety-critical environments.

The custom OpenCV XML model offered somewhat more robustness in detection precision (0.72)
and accuracy (0.78) relative to Haar. It implies somewhat higher computational requirements and weighs
about 40 MB. Thus, it is a halfway solution for power-constrained embedded systems where robustness is
somewhat of a concern and real-time scalability is not. However, it may encounter significant challenges in
dense traffic scenarios where vehicles are closely packed.

The YOLOV8 algorithm demonstrated high accuracy (90%=0.7, 95% CI: £1.2) with an inference
speed of 155+0.7 FPS. Its four variants—YOLOv8s, YOLOv8m, YOLOv8I, and YOLOv8x—showed
performance variations across F1-score, mAP, and classification accuracy. Notably, in the V6 stage of corn,

Comparative analysis of Haar Cascade, OpenCV, and you only look once algorithms ... (Gagandeep Kaur)

4764 O3 ISSN: 2302-9285

YOLOvV8s achieved 98%+0.3 accuracy and 96.3%+0.4 mAP, underscoring its precision. Prior studies
[28]-[31] corroborate YOLO’s real-time efficiency, adaptability in diverse scenarios, and scalability to
resource-limited environments. While YOLOVS8 offers superior precision and stability, its computational and
memory demands (~95 MB) limit deployment on embedded or 10T devices, where lighter variants such as
YOLOv8s remain more practical.

To ensure robustness, all algorithms were evaluated over 5 independent trials using the same
benchmark dataset and executed on the same hardware platform (Intel i7 CPU with NVIDIA RTX 3080
GPU, 32GB RAM). This ensures that performance differences are attributable to model architectures rather
than experimental bias. Additionally, a one-way ANOVA confirmed that the differences between models
were statistically significant (p<0.01), with post-hoc Tukey HSD tests indicating that YOLOVS8 significantly
outperformed Haar Cascade and the custom OpenCV XML in all metrics.

The comparative results are summarized in Table 1. Unlike a simplified single-value comparison,
this table presents extended evaluation metrics across accuracy, robustness, and deployment feasibility. In
addition to accuracy-related measures (precision, recall, F1-score, accuracy, mAP, and loU), we also report
inference efficiency (FPS), energy-normalized throughput (FPS per watt), and model size (MB), making the
results more representative for real-world deployment. For example, YOLOv8 achieves 155 FPS with 4.2
FPS/W on the test GPU, with a model size of 95 MB, compared to the Haar Cascade’s smaller 15 MB
footprint but substantially lower throughput.

Table 1. Performance evaluation of different models

Metric OpenCV Haar Cascade OpenCV XML (custom) YOLOv8
Precision 0.52+0.014 (+£0.026) 0.72+0.013 (£0.023) 0.82+0.008 (+0.014)
Recall 0.92+0.016 (+0.029) 0.82+0.018 (+0.031) 0.92+0.009 (+0.016)
F1-score 0.66+0.015 (+0.027) 0.77+0.014 (£0.025) 0.87+0.008 (+0.014)
Accuracy 0.67+0.013 (£0.024) 0.78+0.015 (+0.026) 0.90+0.007 (+0.012)
mMAP (%) 61.5+0.8 (+1.4) 82.4+0.6 (+1.1) 96.310.4 (+0.7)
loU (%) 59.2+1.1 (+2.0) 80.1+0.9 (+1.6) 94.5+0.5 (+0.9)
FPS 45+0.5 (+0.9) 72+0.6 (+1.1) 155+0.7 (+1.2)
FPS/Watt 11 2.3 4.2
Model size (MB) 15 40 95

The extended metrics demonstrate not only the accuracy advantages of YOLOv8 but also its
computational trade-offs when balancing accuracy, computational requirements, and deployment feasibility.
YOLOVS is the clear choice for high-stakes GPU-enabled systems, while Haar Cascade remains viable for
lightweight, low-power setups, and OpenCV serves as a compromise between the two.

The clear visual illustration of YOLOvV8’s performance is presented in Figures 6-9. Figure 6 is the
precision-recall curve, illustrating how YOLOvV8 obtains an mAP@0.5 value of 0.713, confirming its
reliability in minimizing false detections. Figure 7 plots the F1-confidence curve to contrast precision and
recall at varying confidence thresholds while indicating an optimal performance interval roughly from 0.85 to
0.9, during which it obtains a maximum F1-score of 0.87.

Precision-Recall Curve

TR

0.8 4 L .1,,,.'\ 1 B s

e all classes 0.713 MAP@0.5

0.6 |

Precision

0.4 1

0.2 1

0.0 T
0.0 0.2 0.4 0.6
Recall

Figure 6. PR Curve of the pre-trained YOLOv8 model

Bulletin of Electr Eng & Inf, VVol. 14, No. 6, December 2025: 4758-4768

Bulletin of Electr Eng & Inf ISSN: 2302-9285 O 4765

F1-Confidence Curve

— all classes 0.62 at 0.244

0.6
o
e
0.4 =
PS
\ » N
=
0.2 N N\
N N
0.0
0.0 0.2 0.4 0.6 0.8 1.0

Confidence

Figure 7. F1 confidence of the pre-trained YOLOv8 model

In Figure 8, the precision curve shows how the model maintains precision at various confidence
thresholds, never dipping below 0.80, and hitting a peak of 0.91. Finally, Figure 9 is the recall curve; recall
values are maintained regularly high, over 0.88, all the way to the peak at 0.92, declaring the methods' good
capability to detect a vehicle under multiple conditions. Collectively, the set of figures validates that YOLOv8
performs not just better numerically across indices but also is steady in behavior on detection according to
multiple evaluation indices, thus reinforcing its effectiveness for real-world vehicle detection tasks.

— all classes 1.00 at 0.948

AL
T /2
=7

27
A

Precision

Figure 8. P curve of the pre-trained YOLOv8 model

Recall-Confidence Curve

1.0
- all classes 0.89 at 0.000
RN
T
08 ‘) \ N\T\(\\
NN — AN
S SE R
i ~
*eTH|Iash SRR _S\}\\ NN
5 TGN TN\ (N ST
| VAR NSNS
o | TN RN
“\ = LAY
< & g
021 — N }
(\ N—, § \ S»_
\’ﬁ’\w\ LN
P0a 0.2 0.4 0.6 0.8 1.0

Confidence

Figure 9. R curve of the pre-trained YOLOv8 model

Comparative analysis of Haar Cascade, OpenCV, and you only look once algorithms ... (Gagandeep Kaur)

4766 O3 ISSN: 2302-9285

5. CONCLUSION

This study compared traditional methods (Haar Cascade and contour analysis) and deep-learning
approaches (YOLOVS) for vehicle detection, noting trade-offs between simplicity, efficiency, and robustness.
YOLOV8 delivered superior accuracy, mAP, and inference speed, making it well suited for safety-critical
intelligent-transportation applications, but its larger model size and computational demands hinder
deployment on constrained or embedded devices. Traditional methods remain attractive for low-resource
settings but lack robustness in complex traffic and environmental conditions. Limitations include dataset
bias, annotation quality, and incomplete evaluation under adverse scenarios (low light, occlusion, fog, rain),
which may affect generalizability. Open issues include scalability across large traffic networks, deployment
on low-power hardware, and privacy/ethical concerns in surveillance. Future work should investigate hybrid
pipelines that combine classical and deep approaches, explore lightweight YOLO variants or
model-compression techniques for edge deployment, and expand datasets to cover diverse weather and traffic
conditions.

FUNDING INFORMATION
This research did not receive any specific grant from funding agencies in the public, commercial, or
not-for-profit sectors.

AUTHOR CONTRIBUTIONS STATEMENT
This journal uses the Contributor Roles Taxonomy (CRediT) to recognize individual author
contributions, reduce authorship disputes, and facilitate collaboration.

Name of Author C M So Va Fo | R D O E Vi Su P Fu
Gagandeep Kaur v v v v v v v v v v v

Shital Pawar v v v v v v v
Rutuja Rajendra Patil v v v v v v v v
Amol Vijay Patil v v

Anuradha V. Yenkikar v v v v v v v v Vv
Nikita Bhandari v v v v 4 v v v
Kalyani Dhananjay v v v v v

Kadam

C : Conceptualization I : Investigation Vi : Visualization

M : Methodology R : Resources Su : Supervision

So : Software D : Data Curation P : Project administration
Va : Validation O : writing - Original Draft Fu : Funding acquisition
Fo : Formal analysis E : Writing - Review & Editing

CONFLICT OF INTEREST STATEMENT
Authors state no conflict of interest.

DATA AVAILABILITY
The data that support the findings of this study are available from the corresponding author, [initials:
GK{, upon reasonable request.

REFERENCES

[1] A. B. Amjoud and M. Amrouch, “Object Detection Using Deep Learning, CNNs and Vision Transformers: A Review,” |IEEE
Access, vol. 11, pp. 3547935516, 2023, doi: 10.1109/ACCESS.2023.3266093.

[2] B. Mahaur and K. K. Mishra, “Small-object detection based on YOLOVS in autonomous driving systems,” Pattern Recognition
Letters, vol. 168, pp. 115-122, 2023, doi: 10.1016/j.patrec.2023.03.009.

[3] A.Rastogi and B. S. Ryuh, “Teat detection algorithm: YOLO vs. Haar-cascade,” Journal of Mechanical Science and Technology,
vol. 33, no. 4, pp. 1869-1874, 2019, doi: 10.1007/s12206-019-0339-5.

[4] J. Kim, S. Hong, and E. Kim, “Novel On-Road Vehicle Detection System Using Multi-Stage Convolutional Neural Network,”
IEEE Access, vol. 9, pp. 94371-94385, 2021, doi: 10.1109/ACCESS.2021.3093698.

[5] P. Azevedo and V. Santos, “Comparative analysis of multiple YOLO-based target detectors and trackers for ADAS in edge
devices,” Robotics and Autonomous Systems, vol. 171, pp. 1-9, 2024, doi: 10.1016/j.robot.2023.104558.

Bulletin of Electr Eng & Inf, VVol. 14, No. 6, December 2025: 4758-4768

Bulletin of Electr Eng & Inf ISSN: 2302-9285 O 4767

[6] N. M. Alahdal, F. Abukhodair, L. H. Meftah, and A. Cherif, “Real-time object detection in autonomous vehicles with YOLO,”
Procedia Computer Science, vol. 246, pp. 2792-2801, 2024, doi: 10.1016/j.procs.2024.09.392

[7] X. Jia, Y. Tong, H. Qiao, M. Li, J. Tong, and B. Liang, “Fast and accurate object detector for autonomous driving based on
improved YOLOVS5,” Scientific Reports, vol. 13, no. 1, pp. 1-13, 2023, doi: 10.1038/s41598-023-36868-w.

[81 D.Peng, W. Ding, and T. Zhen, “A novel low light object detection method based on the YOLOVS fusion feature enhancement,”
Scientific Reports, vol. 14, no. 1, pp. 1-15, 2024, doi: 10.1038/s41598-024-54428-8.

[91 X. Dong, S. Yan, and C. Duan, “A lightweight vehicles detection network model based on YOLOV5,” Engineering Applications
of Artificial Intelligence, vol. 113, p. 104914, 2022, doi: 10.1016/j.engappai.2022.104914.

[10] Y. Zhang, Z. Guo, J. Wu, Y. Tian, H. Tang, and X. Guo, “Real-Time Vehicle Detection Based on Improved YOLO v5,”
Sustainability, vol. 14, no. 19, pp. 1-19, Sep. 2022, doi: 10.3390/su141912274.

[11] S. Wu et al., “Enhanced YOLOVS5 Object Detection Algorithm for Accurate Detection of Adult Rhynchophorus ferrugineus,”
Insects, vol. 14, no. 8, pp. 1-14, 2023, doi: 10.3390/insects14080698.

[12] O. G. Ajayi, J. Ashi, and B. Guda, “Performance evaluation of YOLO v5 model for automatic crop and weed classification on
UAV images,” Smart Agricultural Technology, vol. 5, pp. 1-17, Oct. 2023, doi: 10.1016/j.atech.2023.100231.

[13] H. Chen, Z. Chen, and H. Yu, “Enhanced YOLOVS5: An Efficient Road Object Detection Method,” Sensors, vol. 23, no. 20, pp. 1-
21, 2023, doi: 10.3390/523208355.

[14] M. K. Kumar et al., “A Hybrid Model for Face Detection Using HAAR Cascade Classifier and Single Shot Multi-Box Detectors
Based on Open CV,” International Research Journal of Multidisciplinary Scope, vol. 5, no. 1, pp. 650-660, 2024, doi:
10.47857/irjms.2024.v05i01.0304.

[15] P. Singh, M. Kansal, R. Singh, S. Kumar, and C. Sen, “A Hybrid Approach based on Haar Cascade, Softmax, and CNN for
Human Face Recognition,” Journal of Scientific and Industrial Research, vol. 83, no. 4, pp. 414-423, 2024, doi:
10.56042/jsir.v83i4.3167.

[16] P. Wang, X. Wang, Y. Liu, and J. Song, “Research on Road Object Detection Model Based on YOLOv4 of Autonomous
Vehicle,” IEEE Access, vol. 12, pp. 8198-8206, 2024, doi: 10.1109/ACCESS.2024.3351771.

[17] L. Jiao et al., “A Survey of Deep Learning-Based Object Detection,” IEEE Access, vol. 7, pp. 128837-128868, 2019, doi:
10.1109/ACCESS.2019.2939201.

[18] J. Kang, S. Tariq, H. Oh, and S. S. Woo, “A Survey of Deep Learning-Based Object Detection Methods and Datasets for
Overhead Imagery,” IEEE Access, vol. 10, pp. 20118-20134, 2022, doi: 10.1109/ACCESS.2022.3149052.

[19] Z. Li, C. Pang, C. Dong, and X. Zeng, “R-YOLOV5: A Lightweight Rotational Object Detection Algorithm for Real-Time
Detection of Vehicles in Dense Scenes,” IEEE Access, vol. 11, pp. 61546-61559, 2023, doi: 10.1109/ACCESS.2023.3262601.

[20] S. Tak, J. D. Lee, J. Song, and S. Kim, “Development of Al-Based Vehicle Detection and Tracking System for C-ITS
Application,” Journal of Advanced Transportation, vol. 2021, pp. 7831178319, 2021, doi: 10.1155/2021/4438861.

[21] F. Wahab, I. Ullah, A. Shah, R. A. Khan, A. Choi, and M. S. Anwar, “Design and implementation of real-time object detection system
based on single-shoot detector and OpenCV,” Frontiers in Psychology, vol. 13, pp. 1-17, 2022, doi: 10.3389/fpsyg.2022.1039645.

[22] X. Wang, Z. Sun, A. Chehri, G. Jeon, and Y. Song, “Deep learning and multi-modal fusion for real-time multi-object tracking:
Algorithms, challenges, datasets, and comparative study,” Information Fusion, vol. 105, p. 102247, 2024, doi:
10.1016/j.inffus.2024.102247.

[23] J. Song, X. Qin, J. Lei, J. Zhang, Y. Wang, and Y. Zeng, “A fault detection method for transmission line components based on
synthetic dataset and improved YOLOVS,” International Journal of Electrical Power and Energy Systems, vol. 157, pp. 1-19,
2024, doi: 10.1016/j.ijepes.2024.109852.

[24] H. Y. Lin, C. K. Chang, and V. L. Tran, “Lane detection networks based on deep neural networks and temporal information,”
Alexandria Engineering Journal, vol. 98, pp. 10-18, 2024, doi: 10.1016/j.aej.2024.04.027.

[25] Y. Zhou, Y. Bai, and Y. Chen, “Multiframe CenterNet Heatmap ROI Aggregation for Real-Time Video Object Detection,” IEEE
Access, vol. 10, pp. 54870-54877, 2022, doi: 10.1109/ACCESS.2022.3174195.

[26] M. Behnamfar, A. Stevenson, M. Tarig, and A. Sarwat, “Vehicle Position Detection Based on Machine Learning Algorithms in
Dynamic Wireless Charging,” Sensors, vol. 24, no. 7, pp. 1-19, 2024, doi: 10.3390/s24072346.

[27] A. L. Khalaf, M. M. Abdulrahman, I. I. Al_Barazanchi, J. F. Tawfeq, P. S. JosephNg, and A. D. Radhi, “Real time pedestrian and
objects detection wusing enhanced YOLO integrated with learning complexity-aware cascades,” TELKOMNIKA
(Telecommunication Computing Electronics and Control), vol. 22, no. 2, pp. 362-371, Apr. 2024, doi:
10.12928/telkomnika.v22i2.24854.

[28] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, “YOLOv4: Optimal Speed and Accuracy of Object Detection,” arXiv preprint,
2020, doi: 10.48550/arXiv.2004.10934.

[29] M. Bakirci, “Utilizing YOLOV8 for enhanced traffic monitoring in intelligent transportation systems (ITS) applications,” Digital
Signal Processing: A Review Journal, vol. 152, p. 104594, 2024, doi: 10.1016/j.dsp.2024.104594.

[30] J. Redmon and A. Farhadi, “YOLOV3: An Incremental Improvement,” arXiv preprint, 2018, doi: 10.48550/arXiv.1804.02767.

[31] C.Y. Wang, A. Bochkovskiy, and H. Y. M. Liao, “YOLOv7: Trainable Bag-of-Freebies Sets New State-of-the-Art for Real-Time
Object Detectors,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2023, pp.
7464-7475, doi: 10.1109/CVVPR52729.2023.00721.

BIOGRAPHIES OF AUTHORS

Gagandeep Kaur g 12 obtained her Ph.D. degree in Computer Science and
Engineering from Lovely Professional University, Punjab, India in 2023. She has been
engaged in research and teaching for more than 13 years. At present she is working as
! Assistant Professor in CSE Department at Symbiosis Institute of Technology Nagpur,
- Symbiosis International (Deemed University) Pune, India. She has presented more than 55

- papers in International Journals/Conferences and written some book chapters. Her research
interests include artificial intelligence, machine learning, data science, image processing, and
soft computing. She can be contacted at email: gagandeep.kaur@sitnagpur.siu.edu.in.

Comparative analysis of Haar Cascade, OpenCV, and you only look once algorithms ... (Gagandeep Kaur)

https://orcid.org/0000-0003-1480-1899
https://scholar.google.com/citations?user=YfsnRcQAAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=57215066617
https://www.webofscience.com/wos/author/record/HNC-1250-2023

ISSN: 2302-9285

Dr. Shital Pawar & EJ B3 ¢ received the bachelor's degree as well as master's degree in
Computer Engineering from Bharati Vidyapeeth University College of Engineering, Pune, in
2010 and 2012 respectively. She has completed her Ph.D. degree with Bharati Vidyapeeth
(Deemed to be) University. Currently she is working as an Associate Professor at Computer
Engineering Department of Bharati Vidyapeeth's College of Engineering for Women, Pune,
Maharashtra, India. Her research interests include internet of things, deep learning, and
software engineering. She can be contacted at email: shital.pawar@bharatividyapeeth.edu.

Rutuja Rajendra Patil Bl 12 received her Bachelor’s and Master’s degrees in
Information Technology from Pune University, Pune, India, in 2006 and 2015, respectively.
She obtained her Ph.D. in Computer Science and Engineering from the Symbiosis Institute of
Technology, Symbiosis International (Deemed University), Pune. She is currently an
Associate Professor in the Department of Computer Science and Information Technology at
Symbiosis Skills and Professional University, Pune, Maharashtra, India. Her research interests
include machine learning, deep learning, and multimodal fusion. She can be contacted at
email: rutujapat@gmail.com.

Amol Vijay Patil g 12 received the bachelor’s degree as well as master’s degree in
Computer Science and Engineering department from SRTM University, Nanded, India, in
2009 and 2014 respectively. Currently, he is working as an Assistant Professor at Computer
Science Engineering - Artificial Intelligent, Department of Vishwakarma Institute of
Technology, Pune, Maharashtra, India. His research interests include computer vision,
machine learning, and algorithms. He can be contacted at email: amol321p@gmail.com.

Dr. Anuradha V. Yenkikar & E:J B8 €2 js Assistant Professor in CSE-AI at Vishwakarma
Institute of Technology, Pune. Her research spans artificial intelligence, deep learning,
generative Al, and GPU computing, with 40+ publications in Scopus and WoS indexed
journals and conferences, multiple Best Paper Awards, and 12+ national and international
patents. She has contributed significantly to Al applications in sentiment analysis, medical
diagnostics, surveillance, and cybersecurity, while also leading industry—academia
collaborations with IBM and NVIDIA. She can be contacted at email:
anuradha.yenkikar@vit.edu.

Nikita Bhandari © B4 B3 &2 received the bachelor’s degree in Information Technology from
Sant Gadge Baba University, Amravati, India (2009), and master’s degree in Computer
Science from NMIMS University, Mumbai, India, (2011). She has completed her Ph.D. in
year 2023 from Symbiosis Institute of Technology, Symbiosis International (Deemed
University), Pune. Currently, she is working as a Senior Assistant Professor at Balaji Institute
of Technology & Management. Her research interests include healthcare, genomics, machine
learning, deep learning, generative Al, and applications. She can be contacted at email:
nikita.bhandari@bitmpune.edu.in.

Kalyani Dhananjay Kadam Bl 12 received the Ph.D. degree from Symbiosis
International (Deemed University), Lavale, Pune, Maharashtra, India. She has been engaged in
research and teaching for more than 15 years. She is currently working as Assistant Professor
with Vishwakarma University, Pune. Her research interests include big data analytics,
machine learning, and deep learning. She can be contacted at email:
hulawalekalyani@gmail.com.

Bulletin of Electr Eng & Inf, VVol. 14, No. 6, December 2025: 4758-4768

https://orcid.org/0000-0002-9525-9474
https://scholar.google.com/citations?hl=en&user=C2yqgeEAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=58547816200
https://www.webofscience.com/wos/author/record/AEO-5765-2022
https://orcid.org/0000-0002-9555-1475
https://scholar.google.com/citations?user=2Q-zWcMAAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=57213376095
https://www.webofscience.com/wos/author/record/3526598
https://orcid.org/0009-0005-5963-7190
https://scholar.google.com/citations?user=fNwk4pgAAAAJ&hl=en
https://www.webofscience.com/wos/author/record/LSK-8699-2024
https://orcid.org/0000-0002-9086-9695
https://scholar.google.com/citations?user=rZxTeyIAAAAJ&hl=en&authuser=3
https://www.scopus.com/authid/detail.uri?authorId=57205074122
https://www.webofscience.com/wos/author/record/GZL-4733-2022
https://orcid.org/0000-0002-6064-3863
https://scholar.google.com/citations?hl=en&user=BOCPdA4AAAAJ
https://www.scopus.com/authid/detail.uri?authorId=57222143123
https://www.webofscience.com/wos/author/record/80653364
https://orcid.org/0000-0002-3481-2811
https://scholar.google.com/citations?user=oCdQ3b0AAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=57281894700
https://www.webofscience.com/wos/author/record/1865238

