
Bulletin of Electrical Engineering and Informatics

Vol. 14, No. 6, December 2025, pp. 4758~4768

ISSN: 2302-9285, DOI: 10.11591/eei.v14i6.10554  4758

Journal homepage: http://beei.org

Comparative analysis of Haar Cascade, OpenCV, and you only

look once algorithms for vehicle detection

Gagandeep Kaur1, Shital Pawar2, Rutuja Rajendra Patil3, Amol Vijay Patil4, Anuradha V. Yenkikar4,

Nikita Bhandari5, Kalyani Dhananjay Kadam6
1Symbiosis Institute of Technology, Nagpur Campus, Symbiosis International (Deemed University), Pune, India

2Department of Computer Engineering, Bharati Vidyapeeth’s College of Engineering for Women, Pune, India
3Department of Computer Engineering, MIT, Academy of Engineering, Alandi, Pune, India

4Department of CSE - Artificial Intelligence, Vishwakarma Institute of Technology, Pune, India
5Balaji Institute of Technology & Management, Sri Balaji University, Pune, India

6Department of Computer Engineering, Vishwakarma University, Pune, India

Article Info ABSTRACT

Article history:

Received Apr 24, 2024

Revised Sep 28, 2025

Accepted Oct 14, 2025

 Object detection is one of the substantial tasks in computer vision and has a

wide range of applications ranging from autonomous driving to monitoring

systems. This study presents a comparative analysis of vehicle detection

approaches, contrasting traditional methods (OpenCV contour analysis and

Haar Cascade) with modern deep learning-based you only look once version

8 (YOLOv8) and its variants. Vehicles were identified and localized within

video frames using bounding boxes, with performance assessed through

accuracy, F1-score, mean average precision (mAP), and inference speed.

YOLOv8 consistently achieved superior accuracy (up to 98% in specific

scenarios) and real-time processing speeds (155 FPS), confirming its

suitability for safety-critical applications such as intelligent transport

systems and autonomous navigation. However, its higher computational and

memory demands highlight deployment trade-offs, where lighter variants

like YOLOv8s remain feasible for embedded or low-power devices. In

contrast, Haar Cascade and contour analysis offered faster execution and

smaller memory footprints but lacked robustness under complex

environmental conditions. The study also acknowledges limitations such as

dataset bias, adverse weather effects, and scalability challenges, which may

impact generalization in real-world deployments. By analyzing these trade-

offs, the work provides essential insights to guide practitioners in selecting

suitable vehicle detection solutions across diverse application environments.

Keywords:

Computer vision

Haar cascade classifier

Object detection

OpenCV

Vehicle identification

You only look once

This is an open access article under the CC BY-SA license.

Corresponding Author:

Gagandeep Kaur

Symbiosis Institute of Technology, Nagpur Campus, Symbiosis International (Deemed University)

Pune, India

Email: gagandeep.kaur@sitnagpur.siu.edu.in

1. INTRODUCTION

Over the years, object detection has advanced significantly and has contributed a lot to areas such as

autonomous vehicles, industrial robotics, surveillance, and augmented reality among others [1]. Despite these

advancements, real-time detection and localization remain challenging, particularly in vehicle detection,

where both accuracy and efficiency are critical. Highly optimized models are needed for identifying and

locating objects in dynamic environments [2]. To address these challenges, researchers have devised various

detection models to improve accuracy, efficiency, and robustness.

https://creativecommons.org/licenses/by-sa/4.0/

Bulletin of Electr Eng & Inf ISSN: 2302-9285 

Comparative analysis of Haar Cascade, OpenCV, and you only look once algorithms … (Gagandeep Kaur)

4759

Object detection techniques based on the Haar Cascade classifier and OpenCV have been in practice

for quite some time because of their simplicity and speed. OpenCV is a mainstream computer vision library

that has efficient implementations of Haar Cascade and histograms of oriented gradients (HOG) and can be

successfully applied in autonomous driving, robotics, and surveillance systems. Specifically, Haar Cascades

make use of a series of simple rectangular features that employ a cascade of weak classifiers to speedily

locate the objects of interest [3]. The another major class of algorithms for object detection-with the advent of

deep learning-is you only look once (YOLO), which treats detection as one consolidated regression problem

[4]. YOLO processes the whole image in one go, which allows for real-time detection with great accuracy

and spatial coherence. All versions, particularly YOLOv5, YOLOv7, and YOLOv8 have shown enhanced

detection precision, speed, and robustness as compared to classical algorithms [5], [6].

This study presents a comparative analysis of three approaches to vehicle detection: Haar Cascade,

classical OpenCV-based methods, and the YOLOv8 algorithm. Empirical evaluations on benchmark datasets

and real-time traffic footage have been used to highlight strengths and weaknesses, as well as some

application considerations. The comparative performance against standard datasets and real-time traffic

footage will be useful for researchers and practitioners who wish to develop deployment systems within real-

world applications of vehicle detection algorithms. For example, a resource-constrained setting may favor

lightweight models, while safety-critical systems would prefer detection reliability and precision.

The remainin paper is organized as follows: section 2 provides an overview of recent literature

related to accident detection and details about the dataset. The description of the methodology and

experimental setup is given in section 3. Section 4 presents results and discussion, highlighting key

observations and limitations. Conclusions drawn from the findings along with future directions for improving

the vehicle detection system are discussed in section 5.

2. LITERATURE REVIEW

Jia et al. [7] optimized the YOLOv5 model through neural architecture search (NAS) and structural

re-parameterization (Rep) and attained a 96.1% accuracy rate at 202 frames per second (FPS). Peng et al. [8]

suggested a fusion-based feature enhancement method in another research aiming to augment the accuracy of

object detection. In autonomous vehicle detection, Dong et al. [9] combined C3Ghost and Ghost modules to

alleviate computing burden; Zhang et al. [10] developed an improved YOLOv5 structure that enhanced real-

time performance in vehicle detection.

Apart from vehicle detection, deep learning models have shown some amount of flexibility in

agriculture, surveillance, and lane detection. YOLOv5-based pest detection system by Wu et al. [11] attained

93.8% accuracy, which shows the flexibility of deep learning for different target detection tasks.

Ajayi et al. [12] assessed YOLOv5s for automatic crop and weed classification, optimizing the results using

UAV images. An enhanced YOLOv5 algorithm presented by Chen et al. [13] integrated with bidirectional

feature pyramid network and convolutional block attention module improves real-time object detection

significantly in road environments.

Despite major advances in deep-learning object detection, traditional methods such as Haar Cascade

remain useful for resource-constrained environments due to their computational efficiency [14]. Hybrid

approaches combining classical and modern detectors have also been proposed (e.g., Haar Cascade+SSD) to

boost accuracy [15], while optimized YOLO variants (e.g., MV2SYE) and reviews summarizing deep-learning

detectors for surveillance and autonomous vehicles have been reported [16], [17]. AI systems for real-time

traffic monitoring and flow prediction have likewise been developed to support congestion management [18].

Recent work has pushed real-time detection and recognition further: Li et al. [19] achieved 96%

precision on HoloLens with YOLOv7, and the original YOLO framework reframes detection as a single-

stage regression of boxes and class probabilities for speed [20]. SSD-based systems using pre-trained models

have been evaluated across common objects in context (COCO), PASCAL VOC, and KITTI for trade-offs

between accuracy and speed, with attention to hardware optimization [21].

Multi-object tracking and defect/fault identification in transport networks have benefited from

multimodal fusion, attention modules, and transfer-learning strategies (e.g., optimized YOLOv8 with CBAM

and SimCSPSPPF) to improve detection under limited data conditions [22], [23]. 3D convolutional

approaches for lane and road safety, and other deep-learning methods for tracking and fault detection, have

also been proposed to enhance robustness in challenging environments [24]–[27].

3. METHOD

This section describes the methodical approach as shown in Figure 1 to analyse object detection,

including algorithm selection, data processing steps, and performance evaluation. The comparison between

  ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 14, No. 6, December 2025: 4758-4768

4760

contour-based detection, Haar Cascade-based detection, and YOLOv8-based detection is explained in detail

in the subsequent subsections, highlighting their respective advantages, and disadvantages.

Figure 1. Structured workflow for vehicle detection using Haar Cascade, OpenCV, and YOLO algorithms

3.1. Dataset description

This study employed a combination of publicly available benchmark datasets and self-collected

real-time video footage to ensure a fair and consistent evaluation of all three vehicle detection

approaches-Haar Cascade, OpenCV contour analysis, and YOLOv8.

YOLOv8: the large-scale annotated datasets used to train the YOLOv8 model include COCO, with

around 118,000 images spread across 80 categories, and open images dataset V6 with more than 1.9 million

images along with bounding box annotations for various objects, including vehicles. For evaluation purposes,

a subset of images and frames with cars, trucks, and buses under varying lighting and background conditions

was used.

Haar Cascade: the Haar Cascade classifier used in this work was based on OpenCV's pre-trained

vehicle detection XML model, which was initially trained with positive and negative image samples from

publicly available datasets such as the UIUC car dataset and other vehicle images compiled from different

sources. Such a pre-trained model is capable of detection without the need for further large-scale training, yet

slight parameter adjustments were made according to our own test videos.

OpenCV contour analysis: as a classical image processing approach, contour analysis does not

require a labeled dataset for training. Instead, it operates directly on image frames extracted from both the

benchmark datasets and our self-captured real-time traffic videos. Parameters such as threshold values, kernel

sizes, and morphological operation settings were optimized through iterative testing on diverse frames

containing varying lighting, occlusion, and background clutter.

3.2. Object detection using OpenCV

The object detection system is created using the OpenCV Python module. The system takes a still

shot from the live video stream of the device, searches for moving objects (like cars), and counts them as

they cross a predetermined line in the frame. The whole system uses background subtraction in order to

differentiate the static background and the dynamic moving objects. For this purpose, the system uses

OpenCV's createBackgroundSubtractorMOG2() function, which is basically a Gaussian mixture model

(GMM)-based method for separating the foreground from the background. It further processes frames of the

videos in real time to give accurate object detection and tracking results. Each frame is converted into a

grayscale image; after that the Gaussian blur is applied to remove noise imperfections. The blurred grey

frame is then put in background subtraction to create a binary image that could effectively show moving

objects.

The proposed study employs the morphological operations like dilation and occlusion for image

processing. Dilation expands the area of the remaining subtractions, and occlusion fills the gaps in the image

to achieve smoother bordering of the object. The contours of the object are then detected using the

findContours() function. A bounding rectangle is drawn around each contour found, and the center of the

Bulletin of Electr Eng & Inf ISSN: 2302-9285 

Comparative analysis of Haar Cascade, OpenCV, and you only look once algorithms … (Gagandeep Kaur)

4761

bounding box is calculated. These bounding boxes represent objects detected in the frame. A predetermined

line is drawn on the frame to delimit it, and the objects crossing this line are counted. The "setinfo()" function

checks if the center of the detected object crosses the line and updates the count accordingly. The computed

objects (in this case, cars) are displayed in the original video stream, and the processed detected frame shows

the result.

The system continues to process the video frames until the user exits the application by pressing the

"Esc" key. Overall, this method introduces a basic application of object detection using background

subtraction and describes analysis methods that provide a simple but powerful approach to counting moving

objects or objects in the video stream. Figure 2 illustrates the conversion of frames into grayscale, a

preprocessing step used to enhance object detection by reducing unnecessary details and improving contrast.

Figure 3 demonstrates the working of OpenCV, starting from extraction of moving objects from the grayscale

image, applying a bounding box around the detected vehicle, accompanied by the label "Vehicle Detected" to

indicate successful identification.

Figure 2. Grayscale conversion of the frame

Figure 3. Vehicle detection using OpenCV for enhanced

object detection

3.3. Vehicle detection using a pre-trained Haar Cascade classifier in OpenCV

This method starts by processing a pre-trained Haar Cascade classifier of vehicle (in this case)

detection. This classifier is stored in a file of extension XML named ‘vehicle.xml’. The cv.CascadeClassifier

class is used form OpenCV library to load the pre-trained classifier. It is trained to classify and recognize

patterns which resembles of vehicles. The detection() function acts as the base component which is

responsible for detection vehicles within a given frame. It takes a single frame as input which is captured

from the video. Using the pre-trained Haar Cascade classifier XML file loaded earlier, the function identifies

parts within the frame that closely resemble vehicles. As shown in Figure 4, for each detected vehicle, the

function draws a rectangular box around it using cv2.rectangle() and adds a text label showing the detection

status using cv2.putText(). The capturescreen() function is the important entrance point helping to process the

video file. It starts a video capture object using cv2.VideoCapture and opens the given video

file(’video.mp4’). Within a loop, the function sequentially reads the frame from the video. For each of the

frame, it calls the detection() function to detect vehicles and spot the vehicles with rectangular box and text

labels.

Figure 4. Vehicle detection using Haar Cascade classifier

3.4. Vehicle detection using you only look once version 8

YOLOv8 uses a one-step detection method that predicts bounding box as shown in Figure 5 and

class probabilities of input images in one step. This makes it considerably faster than two-stage detectors,

which require separate region recommendations and classification stages. YOLOv8 can be used for vehicle

detection in two main ways: direct article: YOLOv8 pre-built model such as YOLOv8n, YOLOv8s or

  ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 14, No. 6, December 2025: 4758-4768

4762

YOLOv8l can be used for direct vehicle detection. These models are trained on huge datasets covering

vehicle categories such as COCO. This approach offers quick and easy setup, but may not be up to date for

specific vehicles or environments. Transfer learning: the fully trained YOLOv8 can train itself further on

custom datasets containing vehicle images under varying light and weather conditions. Such fine-tuning

gives the model hands-on vehicle detection experience, which would also help in improving accuracy and

reducing false positives. Time-sensitive applications: compared to other algorithms, YOLOv8 offers high

accuracy in vehicle detection.

Figure 5. Vehicle detection using YOLOv8

3.5. Evaluation metrics

To ensure a fair and consistent evaluation of Haar Cascade, OpenCV contour analysis, and

YOLOv8, we used standard object detection performance metrics. These metrics were computed using the

ground-truth annotations and predicted bounding boxes for each image/frame.

a. Intersection over union (IoU): as shown in (1), IoU measures the overlap between the predicted bounding

box (B_p) and the ground truth bounding box (B_g) as (1):

IoU =
Area(𝐵𝑝 ∩ 𝐵𝑔)

Area(𝐵𝑝 ∪ 𝐵𝑔)
 (1)

For this study, a prediction was considered correct (true positive) if IoU ≥0.5, which is a standard threshold

in the object detection literature (e.g., COCO benchmark).

b. Precision (P): precision quantifies the proportion of correctly detected vehicles among all detections:

Precision =
TP

TP+FP
 (2)

where TP is the number of true positives and FP is the number of false positives. High precision indicates

fewer false alarms.

c. Recall (R): recall measures the proportion of actual vehicles correctly detected:

Recall=
TP

TP+FN
 (3)

where FN is the number of false negatives. High recall ensures fewer missed detections.

d. F1-score: the F1-score provides a harmonic mean between precision and recall:

F1 − Score = 2 ∗
Precision∗Recall

Precision+Recall
 (4)

This is useful when both false positives and false negatives need to be minimized.

e. Accuracy: the F1-score provides a harmonic mean between precision and recall:

Accuracy =
TP+TN

TP+TN+FP+FN
 (5)

Here, true negatives (TN) represent correctly identified non-vehicle regions.

f. Mean average precision (mAP): mAP is the most widely used metric for evaluating object detection

models. It averages the precision values across different recall levels. Average precision (AP) is first

calculated for each class by computing the area under the precision-recall curve. mAP is then obtained as

the mean of AP across all classes. In this study, we consider mAP@0.5, which evaluates predictions

correct if IoU ≥0.5.

Bulletin of Electr Eng & Inf ISSN: 2302-9285 

Comparative analysis of Haar Cascade, OpenCV, and you only look once algorithms … (Gagandeep Kaur)

4763

mAP =
1

𝑁
∑ APi

𝑁
𝑖=1

where N is the number of object classes. Higher mAP indicates stronger detection performance.

g. FPS: FPS measures the inference speed of the detection algorithm, i.e., how many frames the model can

process per second.

FPS =
Total Frames Processed

Inference Time

A higher FPS indicates better suitability for real-time vehicle detection applications such as traffic

monitoring and autonomous driving. In this study, YOLOv8 achieved ~155 FPS, making it highly efficient

compared to Haar Cascade and OpenCV-based approaches.

3.6. Experimental configuration

All experiments were conducted in a controlled hardware and software setting to ensure

reproducibility and equitable benchmarking of the performance metrics. YOLOv8 was implemented using

Ultralytics YOLOv8 framework atop PyTorch 2.1.0, while Haar Cascade plus OpenCV contour analysis was

implemented using OpenCV 4.8.0 for Python 3.10. GPU acceleration was leveraged during YOLOv8

inference through CUDA 12.1 and cuDNN 8.9, whereas Haar Cascade and contour analysis were optimized

for CPUs. With regard to YOLOv8, an input resolution of 640×640, a batch size of 16, and a confidence

threshold of 0.25 were held throughout training. The dataset images were all resized to fit the input resolution

while preserving aspects through letterboxing.

3.7. Comparative analysis

To comprehensively evaluate the performance of the three vehicle detection approaches—YOLOv8,

OpenCV contour analysis, and the Haar Cascade classifier—a comparative assessment was carried out

focusing on key aspects such as accuracy, robustness, computational efficiency, and ease of implementation.

a. YOLOv8: demonstrated superior accuracy and robustness, maintaining consistent performance under

diverse lighting conditions, cluttered backgrounds, and partial occlusions. It leverages advanced deep

learning architectures and benefits from the availability of pre-trained models, which simplifies

deployment for users with basic deep learning knowledge. Furthermore, YOLOv8 achieves real-time

inference speeds of approximately 155 FPS, making it highly suitable for time-sensitive and large-scale

applications.

b. OpenCV contour analysis: exhibited reliable accuracy primarily in controlled conditions but did not

perform well under dynamic and unstructured scenarios. Despite its computationally efficient nature and

being relatively simple to implement, the method's performance is highly reliant on exact parameter

tuning to cater to changes in lighting and background complexity. As a result, it is more suitable for low-

resource systems or experimental prototypes where real-time adaptability is not vital.

c. Haar cascade classifier: displayed reliable performance for organized and well-curated datasets but

struggled with scale variations, object orientation, and occlusion. Still, it is a quick and light algorithm

that is appropriate for computing resource constrained applications. On the other hand, its limited

flexibility in difficult situations makes it ineffective when compared to modern deep learning-based

techniques such as YOLOv8.

4. RESULT ANALYSIS

The experiment utilized three different approaches for vehicle detection, offering insights into their

accuracy, efficiency, and deployment feasibility. The Haar Cascade classifier achieved basic detection

competence but struggled in managing occlusion, varying angles, and poor lighting. Its small model size

(15 MB) and low computational requirements make it attractive for resource-constrained edge devices.

However, with a relatively low precision of 0.52 and unable to adapt to foggy or low-contrast situations, it

cannot be used in safety-critical environments.

The custom OpenCV XML model offered somewhat more robustness in detection precision (0.72)

and accuracy (0.78) relative to Haar. It implies somewhat higher computational requirements and weighs

about 40 MB. Thus, it is a halfway solution for power-constrained embedded systems where robustness is

somewhat of a concern and real-time scalability is not. However, it may encounter significant challenges in

dense traffic scenarios where vehicles are closely packed.

The YOLOv8 algorithm demonstrated high accuracy (90%±0.7, 95% CI: ±1.2) with an inference

speed of 155±0.7 FPS. Its four variants—YOLOv8s, YOLOv8m, YOLOv8l, and YOLOv8x—showed

performance variations across F1-score, mAP, and classification accuracy. Notably, in the V6 stage of corn,

  ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 14, No. 6, December 2025: 4758-4768

4764

YOLOv8s achieved 98%±0.3 accuracy and 96.3%±0.4 mAP, underscoring its precision. Prior studies

[28]–[31] corroborate YOLO’s real-time efficiency, adaptability in diverse scenarios, and scalability to

resource-limited environments. While YOLOv8 offers superior precision and stability, its computational and

memory demands (~95 MB) limit deployment on embedded or IoT devices, where lighter variants such as

YOLOv8s remain more practical.

To ensure robustness, all algorithms were evaluated over 5 independent trials using the same

benchmark dataset and executed on the same hardware platform (Intel i7 CPU with NVIDIA RTX 3080

GPU, 32GB RAM). This ensures that performance differences are attributable to model architectures rather

than experimental bias. Additionally, a one-way ANOVA confirmed that the differences between models

were statistically significant (p<0.01), with post-hoc Tukey HSD tests indicating that YOLOv8 significantly

outperformed Haar Cascade and the custom OpenCV XML in all metrics.

The comparative results are summarized in Table 1. Unlike a simplified single-value comparison,

this table presents extended evaluation metrics across accuracy, robustness, and deployment feasibility. In

addition to accuracy-related measures (precision, recall, F1-score, accuracy, mAP, and IoU), we also report

inference efficiency (FPS), energy-normalized throughput (FPS per watt), and model size (MB), making the

results more representative for real-world deployment. For example, YOLOv8 achieves 155 FPS with 4.2

FPS/W on the test GPU, with a model size of 95 MB, compared to the Haar Cascade’s smaller 15 MB

footprint but substantially lower throughput.

Table 1. Performance evaluation of different models
Metric OpenCV Haar Cascade OpenCV XML (custom) YOLOv8

Precision 0.52±0.014 (±0.026) 0.72±0.013 (±0.023) 0.82±0.008 (±0.014)

Recall 0.92±0.016 (±0.029) 0.82±0.018 (±0.031) 0.92±0.009 (±0.016)
F1-score 0.66±0.015 (±0.027) 0.77±0.014 (±0.025) 0.87±0.008 (±0.014)

Accuracy 0.67±0.013 (±0.024) 0.78±0.015 (±0.026) 0.90±0.007 (±0.012)

mAP (%) 61.5±0.8 (±1.4) 82.4±0.6 (±1.1) 96.3±0.4 (±0.7)
IoU (%) 59.2±1.1 (±2.0) 80.1±0.9 (±1.6) 94.5±0.5 (±0.9)

FPS 45±0.5 (±0.9) 72±0.6 (±1.1) 155±0.7 (±1.2)

FPS/Watt 1.1 2.3 4.2
Model size (MB) 15 40 95

The extended metrics demonstrate not only the accuracy advantages of YOLOv8 but also its

computational trade-offs when balancing accuracy, computational requirements, and deployment feasibility.

YOLOv8 is the clear choice for high-stakes GPU-enabled systems, while Haar Cascade remains viable for

lightweight, low-power setups, and OpenCV serves as a compromise between the two.

The clear visual illustration of YOLOv8’s performance is presented in Figures 6–9. Figure 6 is the

precision-recall curve, illustrating how YOLOv8 obtains an mAP@0.5 value of 0.713, confirming its

reliability in minimizing false detections. Figure 7 plots the F1-confidence curve to contrast precision and

recall at varying confidence thresholds while indicating an optimal performance interval roughly from 0.85 to

0.9, during which it obtains a maximum F1-score of 0.87.

Figure 6. PR Curve of the pre-trained YOLOv8 model

Bulletin of Electr Eng & Inf ISSN: 2302-9285 

Comparative analysis of Haar Cascade, OpenCV, and you only look once algorithms … (Gagandeep Kaur)

4765

Figure 7. F1 confidence of the pre-trained YOLOv8 model

In Figure 8, the precision curve shows how the model maintains precision at various confidence

thresholds, never dipping below 0.80, and hitting a peak of 0.91. Finally, Figure 9 is the recall curve; recall

values are maintained regularly high, over 0.88, all the way to the peak at 0.92, declaring the methods' good

capability to detect a vehicle under multiple conditions. Collectively, the set of figures validates that YOLOv8

performs not just better numerically across indices but also is steady in behavior on detection according to

multiple evaluation indices, thus reinforcing its effectiveness for real-world vehicle detection tasks.

Figure 8. P curve of the pre-trained YOLOv8 model

Figure 9. R curve of the pre-trained YOLOv8 model

  ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 14, No. 6, December 2025: 4758-4768

4766

5. CONCLUSION

This study compared traditional methods (Haar Cascade and contour analysis) and deep-learning

approaches (YOLOv8) for vehicle detection, noting trade-offs between simplicity, efficiency, and robustness.

YOLOv8 delivered superior accuracy, mAP, and inference speed, making it well suited for safety-critical

intelligent-transportation applications, but its larger model size and computational demands hinder

deployment on constrained or embedded devices. Traditional methods remain attractive for low-resource

settings but lack robustness in complex traffic and environmental conditions. Limitations include dataset

bias, annotation quality, and incomplete evaluation under adverse scenarios (low light, occlusion, fog, rain),

which may affect generalizability. Open issues include scalability across large traffic networks, deployment

on low-power hardware, and privacy/ethical concerns in surveillance. Future work should investigate hybrid

pipelines that combine classical and deep approaches, explore lightweight YOLO variants or

model-compression techniques for edge deployment, and expand datasets to cover diverse weather and traffic

conditions.

FUNDING INFORMATION

This research did not receive any specific grant from funding agencies in the public, commercial, or

not-for-profit sectors.

AUTHOR CONTRIBUTIONS STATEMENT

This journal uses the Contributor Roles Taxonomy (CRediT) to recognize individual author

contributions, reduce authorship disputes, and facilitate collaboration.

Name of Author C M So Va Fo I R D O E Vi Su P Fu

Gagandeep Kaur ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Shital Pawar ✓ ✓ ✓ ✓ ✓ ✓ ✓

Rutuja Rajendra Patil ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Amol Vijay Patil ✓ ✓

Anuradha V. Yenkikar ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Nikita Bhandari ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Kalyani Dhananjay

Kadam

 ✓ ✓ ✓ ✓ ✓

C : Conceptualization

M : Methodology

So : Software

Va : Validation

Fo : Formal analysis

I : Investigation

R : Resources

D : Data Curation

O : Writing - Original Draft

E : Writing - Review & Editing

Vi : Visualization

Su : Supervision

P : Project administration

Fu : Funding acquisition

CONFLICT OF INTEREST STATEMENT

Authors state no conflict of interest.

DATA AVAILABILITY

The data that support the findings of this study are available from the corresponding author, [initials:

GK], upon reasonable request.

REFERENCES
[1] A. B. Amjoud and M. Amrouch, “Object Detection Using Deep Learning, CNNs and Vision Transformers: A Review,” IEEE

Access, vol. 11, pp. 35479–35516, 2023, doi: 10.1109/ACCESS.2023.3266093.

[2] B. Mahaur and K. K. Mishra, “Small-object detection based on YOLOv5 in autonomous driving systems,” Pattern Recognition

Letters, vol. 168, pp. 115–122, 2023, doi: 10.1016/j.patrec.2023.03.009.
[3] A. Rastogi and B. S. Ryuh, “Teat detection algorithm: YOLO vs. Haar-cascade,” Journal of Mechanical Science and Technology,

vol. 33, no. 4, pp. 1869–1874, 2019, doi: 10.1007/s12206-019-0339-5.

[4] J. Kim, S. Hong, and E. Kim, “Novel On-Road Vehicle Detection System Using Multi-Stage Convolutional Neural Network,”
IEEE Access, vol. 9, pp. 94371–94385, 2021, doi: 10.1109/ACCESS.2021.3093698.

[5] P. Azevedo and V. Santos, “Comparative analysis of multiple YOLO-based target detectors and trackers for ADAS in edge

devices,” Robotics and Autonomous Systems, vol. 171, pp. 1–9, 2024, doi: 10.1016/j.robot.2023.104558.

Bulletin of Electr Eng & Inf ISSN: 2302-9285 

Comparative analysis of Haar Cascade, OpenCV, and you only look once algorithms … (Gagandeep Kaur)

4767

[6] N. M. Alahdal, F. Abukhodair, L. H. Meftah, and A. Cherif, “Real-time object detection in autonomous vehicles with YOLO,”
Procedia Computer Science, vol. 246, pp. 2792–2801, 2024, doi: 10.1016/j.procs.2024.09.392

[7] X. Jia, Y. Tong, H. Qiao, M. Li, J. Tong, and B. Liang, “Fast and accurate object detector for autonomous driving based on

improved YOLOv5,” Scientific Reports, vol. 13, no. 1, pp. 1–13, 2023, doi: 10.1038/s41598-023-36868-w.
[8] D. Peng, W. Ding, and T. Zhen, “A novel low light object detection method based on the YOLOv5 fusion feature enhancement,”

Scientific Reports, vol. 14, no. 1, pp. 1–15, 2024, doi: 10.1038/s41598-024-54428-8.

[9] X. Dong, S. Yan, and C. Duan, “A lightweight vehicles detection network model based on YOLOv5,” Engineering Applications
of Artificial Intelligence, vol. 113, p. 104914, 2022, doi: 10.1016/j.engappai.2022.104914.

[10] Y. Zhang, Z. Guo, J. Wu, Y. Tian, H. Tang, and X. Guo, “Real-Time Vehicle Detection Based on Improved YOLO v5,”

Sustainability, vol. 14, no. 19, pp. 1–19, Sep. 2022, doi: 10.3390/su141912274.
[11] S. Wu et al., “Enhanced YOLOv5 Object Detection Algorithm for Accurate Detection of Adult Rhynchophorus ferrugineus,”

Insects, vol. 14, no. 8, pp. 1–14, 2023, doi: 10.3390/insects14080698.

[12] O. G. Ajayi, J. Ashi, and B. Guda, “Performance evaluation of YOLO v5 model for automatic crop and weed classification on
UAV images,” Smart Agricultural Technology, vol. 5, pp. 1–17, Oct. 2023, doi: 10.1016/j.atech.2023.100231.

[13] H. Chen, Z. Chen, and H. Yu, “Enhanced YOLOv5: An Efficient Road Object Detection Method,” Sensors, vol. 23, no. 20, pp. 1–

21, 2023, doi: 10.3390/s23208355.
[14] M. K. Kumar et al., “A Hybrid Model for Face Detection Using HAAR Cascade Classifier and Single Shot Multi-Box Detectors

Based on Open CV,” International Research Journal of Multidisciplinary Scope, vol. 5, no. 1, pp. 650–660, 2024, doi:

10.47857/irjms.2024.v05i01.0304.
[15] P. Singh, M. Kansal, R. Singh, S. Kumar, and C. Sen, “A Hybrid Approach based on Haar Cascade, Softmax, and CNN for

Human Face Recognition,” Journal of Scientific and Industrial Research, vol. 83, no. 4, pp. 414–423, 2024, doi:

10.56042/jsir.v83i4.3167.
[16] P. Wang, X. Wang, Y. Liu, and J. Song, “Research on Road Object Detection Model Based on YOLOv4 of Autonomous

Vehicle,” IEEE Access, vol. 12, pp. 8198–8206, 2024, doi: 10.1109/ACCESS.2024.3351771.

[17] L. Jiao et al., “A Survey of Deep Learning-Based Object Detection,” IEEE Access, vol. 7, pp. 128837–128868, 2019, doi:
10.1109/ACCESS.2019.2939201.

[18] J. Kang, S. Tariq, H. Oh, and S. S. Woo, “A Survey of Deep Learning-Based Object Detection Methods and Datasets for

Overhead Imagery,” IEEE Access, vol. 10, pp. 20118–20134, 2022, doi: 10.1109/ACCESS.2022.3149052.
[19] Z. Li, C. Pang, C. Dong, and X. Zeng, “R-YOLOv5: A Lightweight Rotational Object Detection Algorithm for Real-Time

Detection of Vehicles in Dense Scenes,” IEEE Access, vol. 11, pp. 61546–61559, 2023, doi: 10.1109/ACCESS.2023.3262601.

[20] S. Tak, J. D. Lee, J. Song, and S. Kim, “Development of AI-Based Vehicle Detection and Tracking System for C-ITS
Application,” Journal of Advanced Transportation, vol. 2021, pp. 78311–78319, 2021, doi: 10.1155/2021/4438861.

[21] F. Wahab, I. Ullah, A. Shah, R. A. Khan, A. Choi, and M. S. Anwar, “Design and implementation of real-time object detection system

based on single-shoot detector and OpenCV,” Frontiers in Psychology, vol. 13, pp. 1–17, 2022, doi: 10.3389/fpsyg.2022.1039645.
[22] X. Wang, Z. Sun, A. Chehri, G. Jeon, and Y. Song, “Deep learning and multi-modal fusion for real-time multi-object tracking:

Algorithms, challenges, datasets, and comparative study,” Information Fusion, vol. 105, p. 102247, 2024, doi:

10.1016/j.inffus.2024.102247.
[23] J. Song, X. Qin, J. Lei, J. Zhang, Y. Wang, and Y. Zeng, “A fault detection method for transmission line components based on

synthetic dataset and improved YOLOv5,” International Journal of Electrical Power and Energy Systems, vol. 157, pp. 1–19,

2024, doi: 10.1016/j.ijepes.2024.109852.
[24] H. Y. Lin, C. K. Chang, and V. L. Tran, “Lane detection networks based on deep neural networks and temporal information,”

Alexandria Engineering Journal, vol. 98, pp. 10–18, 2024, doi: 10.1016/j.aej.2024.04.027.

[25] Y. Zhou, Y. Bai, and Y. Chen, “Multiframe CenterNet Heatmap ROI Aggregation for Real-Time Video Object Detection,” IEEE
Access, vol. 10, pp. 54870–54877, 2022, doi: 10.1109/ACCESS.2022.3174195.

[26] M. Behnamfar, A. Stevenson, M. Tariq, and A. Sarwat, “Vehicle Position Detection Based on Machine Learning Algorithms in

Dynamic Wireless Charging,” Sensors, vol. 24, no. 7, pp. 1–19, 2024, doi: 10.3390/s24072346.
[27] A. L. Khalaf, M. M. Abdulrahman, I. I. Al_Barazanchi, J. F. Tawfeq, P. S. JosephNg, and A. D. Radhi, “Real time pedestrian and

objects detection using enhanced YOLO integrated with learning complexity-aware cascades,” TELKOMNIKA
(Telecommunication Computing Electronics and Control), vol. 22, no. 2, pp. 362–371, Apr. 2024, doi:

10.12928/telkomnika.v22i2.24854.

[28] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, “YOLOv4: Optimal Speed and Accuracy of Object Detection,” arXiv preprint,
2020, doi: 10.48550/arXiv.2004.10934.

[29] M. Bakirci, “Utilizing YOLOv8 for enhanced traffic monitoring in intelligent transportation systems (ITS) applications,” Digital

Signal Processing: A Review Journal, vol. 152, p. 104594, 2024, doi: 10.1016/j.dsp.2024.104594.

[30] J. Redmon and A. Farhadi, “YOLOv3: An Incremental Improvement,” arXiv preprint, 2018, doi: 10.48550/arXiv.1804.02767.

[31] C. Y. Wang, A. Bochkovskiy, and H. Y. M. Liao, “YOLOv7: Trainable Bag-of-Freebies Sets New State-of-the-Art for Real-Time

Object Detectors,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2023, pp.
7464–7475, doi: 10.1109/CVPR52729.2023.00721.

BIOGRAPHIES OF AUTHORS

Gagandeep Kaur obtained her Ph.D. degree in Computer Science and

Engineering from Lovely Professional University, Punjab, India in 2023. She has been

engaged in research and teaching for more than 13 years. At present she is working as

Assistant Professor in CSE Department at Symbiosis Institute of Technology Nagpur,

Symbiosis International (Deemed University) Pune, India. She has presented more than 55

papers in International Journals/Conferences and written some book chapters. Her research

interests include artificial intelligence, machine learning, data science, image processing, and

soft computing. She can be contacted at email: gagandeep.kaur@sitnagpur.siu.edu.in.

https://orcid.org/0000-0003-1480-1899
https://scholar.google.com/citations?user=YfsnRcQAAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=57215066617
https://www.webofscience.com/wos/author/record/HNC-1250-2023

  ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 14, No. 6, December 2025: 4758-4768

4768

Dr. Shital Pawar received the bachelor's degree as well as master's degree in

Computer Engineering from Bharati Vidyapeeth University College of Engineering, Pune, in

2010 and 2012 respectively. She has completed her Ph.D. degree with Bharati Vidyapeeth

(Deemed to be) University. Currently she is working as an Associate Professor at Computer

Engineering Department of Bharati Vidyapeeth's College of Engineering for Women, Pune,

Maharashtra, India. Her research interests include internet of things, deep learning, and

software engineering. She can be contacted at email: shital.pawar@bharatividyapeeth.edu.

Rutuja Rajendra Patil received her Bachelor’s and Master’s degrees in

Information Technology from Pune University, Pune, India, in 2006 and 2015, respectively.

She obtained her Ph.D. in Computer Science and Engineering from the Symbiosis Institute of

Technology, Symbiosis International (Deemed University), Pune. She is currently an

Associate Professor in the Department of Computer Science and Information Technology at

Symbiosis Skills and Professional University, Pune, Maharashtra, India. Her research interests

include machine learning, deep learning, and multimodal fusion. She can be contacted at

email: rutujapat@gmail.com.

Amol Vijay Patil received the bachelor’s degree as well as master’s degree in

Computer Science and Engineering department from SRTM University, Nanded, India, in

2009 and 2014 respectively. Currently, he is working as an Assistant Professor at Computer

Science Engineering - Artificial Intelligent, Department of Vishwakarma Institute of

Technology, Pune, Maharashtra, India. His research interests include computer vision,

machine learning, and algorithms. He can be contacted at email: amol321p@gmail.com.

Dr. Anuradha V. Yenkikar is Assistant Professor in CSE–AI at Vishwakarma

Institute of Technology, Pune. Her research spans artificial intelligence, deep learning,

generative AI, and GPU computing, with 40+ publications in Scopus and WoS indexed

journals and conferences, multiple Best Paper Awards, and 12+ national and international

patents. She has contributed significantly to AI applications in sentiment analysis, medical

diagnostics, surveillance, and cybersecurity, while also leading industry–academia

collaborations with IBM and NVIDIA. She can be contacted at email:

anuradha.yenkikar@vit.edu.

Nikita Bhandari received the bachelor’s degree in Information Technology from

Sant Gadge Baba University, Amravati, India (2009), and master’s degree in Computer

Science from NMIMS University, Mumbai, India, (2011). She has completed her Ph.D. in

year 2023 from Symbiosis Institute of Technology, Symbiosis International (Deemed

University), Pune. Currently, she is working as a Senior Assistant Professor at Balaji Institute

of Technology & Management. Her research interests include healthcare, genomics, machine

learning, deep learning, generative AI, and applications. She can be contacted at email:

nikita.bhandari@bitmpune.edu.in.

Kalyani Dhananjay Kadam received the Ph.D. degree from Symbiosis

International (Deemed University), Lavale, Pune, Maharashtra, India. She has been engaged in

research and teaching for more than 15 years. She is currently working as Assistant Professor

with Vishwakarma University, Pune. Her research interests include big data analytics,

machine learning, and deep learning. She can be contacted at email:

hulawalekalyani@gmail.com.

https://orcid.org/0000-0002-9525-9474
https://scholar.google.com/citations?hl=en&user=C2yqgeEAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=58547816200
https://www.webofscience.com/wos/author/record/AEO-5765-2022
https://orcid.org/0000-0002-9555-1475
https://scholar.google.com/citations?user=2Q-zWcMAAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=57213376095
https://www.webofscience.com/wos/author/record/3526598
https://orcid.org/0009-0005-5963-7190
https://scholar.google.com/citations?user=fNwk4pgAAAAJ&hl=en
https://www.webofscience.com/wos/author/record/LSK-8699-2024
https://orcid.org/0000-0002-9086-9695
https://scholar.google.com/citations?user=rZxTeyIAAAAJ&hl=en&authuser=3
https://www.scopus.com/authid/detail.uri?authorId=57205074122
https://www.webofscience.com/wos/author/record/GZL-4733-2022
https://orcid.org/0000-0002-6064-3863
https://scholar.google.com/citations?hl=en&user=BOCPdA4AAAAJ
https://www.scopus.com/authid/detail.uri?authorId=57222143123
https://www.webofscience.com/wos/author/record/80653364
https://orcid.org/0000-0002-3481-2811
https://scholar.google.com/citations?user=oCdQ3b0AAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=57281894700
https://www.webofscience.com/wos/author/record/1865238

