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 Object detection is one of the substantial tasks in computer vision and has a 

wide range of applications ranging from autonomous driving to monitoring 

systems. This study presents a comparative analysis of vehicle detection 

approaches, contrasting traditional methods (OpenCV contour analysis and 

Haar Cascade) with modern deep learning-based you only look once version 

8 (YOLOv8) and its variants. Vehicles were identified and localized within 

video frames using bounding boxes, with performance assessed through 

accuracy, F1-score, mean average precision (mAP), and inference speed. 

YOLOv8 consistently achieved superior accuracy (up to 98% in specific 

scenarios) and real-time processing speeds (155 FPS), confirming its 

suitability for safety-critical applications such as intelligent transport 

systems and autonomous navigation. However, its higher computational and 

memory demands highlight deployment trade-offs, where lighter variants 

like YOLOv8s remain feasible for embedded or low-power devices. In 

contrast, Haar Cascade and contour analysis offered faster execution and 

smaller memory footprints but lacked robustness under complex 

environmental conditions. The study also acknowledges limitations such as 

dataset bias, adverse weather effects, and scalability challenges, which may 

impact generalization in real-world deployments. By analyzing these trade-

offs, the work provides essential insights to guide practitioners in selecting 

suitable vehicle detection solutions across diverse application environments. 
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1. INTRODUCTION 

Over the years, object detection has advanced significantly and has contributed a lot to areas such as 

autonomous vehicles, industrial robotics, surveillance, and augmented reality among others [1]. Despite these 

advancements, real-time detection and localization remain challenging, particularly in vehicle detection, 

where both accuracy and efficiency are critical. Highly optimized models are needed for identifying and 

locating objects in dynamic environments [2]. To address these challenges, researchers have devised various 

detection models to improve accuracy, efficiency, and robustness. 

https://creativecommons.org/licenses/by-sa/4.0/


Bulletin of Electr Eng & Inf  ISSN: 2302-9285  

 

Comparative analysis of Haar Cascade, OpenCV, and you only look once algorithms … (Gagandeep Kaur) 

4759 

Object detection techniques based on the Haar Cascade classifier and OpenCV have been in practice 

for quite some time because of their simplicity and speed. OpenCV is a mainstream computer vision library 

that has efficient implementations of Haar Cascade and histograms of oriented gradients (HOG) and can be 

successfully applied in autonomous driving, robotics, and surveillance systems. Specifically, Haar Cascades 

make use of a series of simple rectangular features that employ a cascade of weak classifiers to speedily 

locate the objects of interest [3]. The another major class of algorithms for object detection-with the advent of 

deep learning-is you only look once (YOLO), which treats detection as one consolidated regression problem 

[4]. YOLO processes the whole image in one go, which allows for real-time detection with great accuracy 

and spatial coherence. All versions, particularly YOLOv5, YOLOv7, and YOLOv8 have shown enhanced 

detection precision, speed, and robustness as compared to classical algorithms [5], [6]. 

This study presents a comparative analysis of three approaches to vehicle detection: Haar Cascade, 

classical OpenCV-based methods, and the YOLOv8 algorithm. Empirical evaluations on benchmark datasets 

and real-time traffic footage have been used to highlight strengths and weaknesses, as well as some 

application considerations. The comparative performance against standard datasets and real-time traffic 

footage will be useful for researchers and practitioners who wish to develop deployment systems within real-

world applications of vehicle detection algorithms. For example, a resource-constrained setting may favor 

lightweight models, while safety-critical systems would prefer detection reliability and precision. 

The remainin paper is organized as follows: section 2 provides an overview of recent literature 

related to accident detection and details about the dataset. The description of the methodology and 

experimental setup is given in section 3. Section 4 presents results and discussion, highlighting key 

observations and limitations. Conclusions drawn from the findings along with future directions for improving 

the vehicle detection system are discussed in section 5. 

 

 

2. LITERATURE REVIEW 

Jia et al. [7] optimized the YOLOv5 model through neural architecture search (NAS) and structural 

re-parameterization (Rep) and attained a 96.1% accuracy rate at 202 frames per second (FPS). Peng et al. [8] 

suggested a fusion-based feature enhancement method in another research aiming to augment the accuracy of 

object detection. In autonomous vehicle detection, Dong et al. [9] combined C3Ghost and Ghost modules to 

alleviate computing burden; Zhang et al. [10] developed an improved YOLOv5 structure that enhanced real-

time performance in vehicle detection. 

Apart from vehicle detection, deep learning models have shown some amount of flexibility in 

agriculture, surveillance, and lane detection. YOLOv5-based pest detection system by Wu et al. [11] attained 

93.8% accuracy, which shows the flexibility of deep learning for different target detection tasks.  

Ajayi et al. [12] assessed YOLOv5s for automatic crop and weed classification, optimizing the results using 

UAV images. An enhanced YOLOv5 algorithm presented by Chen et al. [13] integrated with bidirectional 

feature pyramid network and convolutional block attention module improves real-time object detection 

significantly in road environments. 

Despite major advances in deep-learning object detection, traditional methods such as Haar Cascade 

remain useful for resource-constrained environments due to their computational efficiency [14]. Hybrid 

approaches combining classical and modern detectors have also been proposed (e.g., Haar Cascade+SSD) to 

boost accuracy [15], while optimized YOLO variants (e.g., MV2SYE) and reviews summarizing deep-learning 

detectors for surveillance and autonomous vehicles have been reported [16], [17]. AI systems for real-time 

traffic monitoring and flow prediction have likewise been developed to support congestion management [18]. 

Recent work has pushed real-time detection and recognition further: Li et al. [19] achieved 96% 

precision on HoloLens with YOLOv7, and the original YOLO framework reframes detection as a single-

stage regression of boxes and class probabilities for speed [20]. SSD-based systems using pre-trained models 

have been evaluated across common objects in context (COCO), PASCAL VOC, and KITTI for trade-offs 

between accuracy and speed, with attention to hardware optimization [21]. 

Multi-object tracking and defect/fault identification in transport networks have benefited from 

multimodal fusion, attention modules, and transfer-learning strategies (e.g., optimized YOLOv8 with CBAM 

and SimCSPSPPF) to improve detection under limited data conditions [22], [23]. 3D convolutional 

approaches for lane and road safety, and other deep-learning methods for tracking and fault detection, have 

also been proposed to enhance robustness in challenging environments [24]–[27]. 

 

 

3. METHOD 

This section describes the methodical approach as shown in Figure 1 to analyse object detection, 

including algorithm selection, data processing steps, and performance evaluation. The comparison between 
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contour-based detection, Haar Cascade-based detection, and YOLOv8-based detection is explained in detail 

in the subsequent subsections, highlighting their respective advantages, and disadvantages. 

 

 

 
 

Figure 1. Structured workflow for vehicle detection using Haar Cascade, OpenCV, and YOLO algorithms 

 

 

3.1.  Dataset description 

This study employed a combination of publicly available benchmark datasets and self-collected  

real-time video footage to ensure a fair and consistent evaluation of all three vehicle detection  

approaches-Haar Cascade, OpenCV contour analysis, and YOLOv8. 

YOLOv8: the large-scale annotated datasets used to train the YOLOv8 model include COCO, with 

around 118,000 images spread across 80 categories, and open images dataset V6 with more than 1.9 million 

images along with bounding box annotations for various objects, including vehicles. For evaluation purposes, 

a subset of images and frames with cars, trucks, and buses under varying lighting and background conditions 

was used. 

Haar Cascade: the Haar Cascade classifier used in this work was based on OpenCV's pre-trained 

vehicle detection XML model, which was initially trained with positive and negative image samples from 

publicly available datasets such as the UIUC car dataset and other vehicle images compiled from different 

sources. Such a pre-trained model is capable of detection without the need for further large-scale training, yet 

slight parameter adjustments were made according to our own test videos. 

OpenCV contour analysis: as a classical image processing approach, contour analysis does not 

require a labeled dataset for training. Instead, it operates directly on image frames extracted from both the 

benchmark datasets and our self-captured real-time traffic videos. Parameters such as threshold values, kernel 

sizes, and morphological operation settings were optimized through iterative testing on diverse frames 

containing varying lighting, occlusion, and background clutter. 

 

3.2.  Object detection using OpenCV 

The object detection system is created using the OpenCV Python module. The system takes a still 

shot from the live video stream of the device, searches for moving objects (like cars), and counts them as 

they cross a predetermined line in the frame. The whole system uses background subtraction in order to 

differentiate the static background and the dynamic moving objects. For this purpose, the system uses 

OpenCV's createBackgroundSubtractorMOG2() function, which is basically a Gaussian mixture model 

(GMM)-based method for separating the foreground from the background. It further processes frames of the 

videos in real time to give accurate object detection and tracking results. Each frame is converted into a 

grayscale image; after that the Gaussian blur is applied to remove noise imperfections. The blurred grey 

frame is then put in background subtraction to create a binary image that could effectively show moving 

objects. 

The proposed study employs the morphological operations like dilation and occlusion for image 

processing. Dilation expands the area of the remaining subtractions, and occlusion fills the gaps in the image 

to achieve smoother bordering of the object. The contours of the object are then detected using the 

findContours() function. A bounding rectangle is drawn around each contour found, and the center of the 
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bounding box is calculated. These bounding boxes represent objects detected in the frame. A predetermined 

line is drawn on the frame to delimit it, and the objects crossing this line are counted. The "setinfo()" function 

checks if the center of the detected object crosses the line and updates the count accordingly. The computed 

objects (in this case, cars) are displayed in the original video stream, and the processed detected frame shows 

the result. 

The system continues to process the video frames until the user exits the application by pressing the 

"Esc" key. Overall, this method introduces a basic application of object detection using background 

subtraction and describes analysis methods that provide a simple but powerful approach to counting moving 

objects or objects in the video stream. Figure 2 illustrates the conversion of frames into grayscale, a 

preprocessing step used to enhance object detection by reducing unnecessary details and improving contrast. 

Figure 3 demonstrates the working of OpenCV, starting from extraction of moving objects from the grayscale 

image, applying a bounding box around the detected vehicle, accompanied by the label "Vehicle Detected" to 

indicate successful identification. 

 

 

  
 

Figure 2. Grayscale conversion of the frame 

 

Figure 3. Vehicle detection using OpenCV for enhanced 

object detection 

 

 

3.3.  Vehicle detection using a pre-trained Haar Cascade classifier in OpenCV 

This method starts by processing a pre-trained Haar Cascade classifier of vehicle (in this case) 

detection. This classifier is stored in a file of extension XML named ‘vehicle.xml’. The cv.CascadeClassifier 

class is used form OpenCV library to load the pre-trained classifier. It is trained to classify and recognize 

patterns which resembles of vehicles. The detection() function acts as the base component which is 

responsible for detection vehicles within a given frame. It takes a single frame as input which is captured 

from the video. Using the pre-trained Haar Cascade classifier XML file loaded earlier, the function identifies 

parts within the frame that closely resemble vehicles. As shown in Figure 4, for each detected vehicle, the 

function draws a rectangular box around it using cv2.rectangle() and adds a text label showing the detection 

status using cv2.putText(). The capturescreen() function is the important entrance point helping to process the 

video file. It starts a video capture object using cv2.VideoCapture and opens the given video 

file(’video.mp4’). Within a loop, the function sequentially reads the frame from the video. For each of the 

frame, it calls the detection() function to detect vehicles and spot the vehicles with rectangular box and text 

labels. 
 

 

 
 

Figure 4. Vehicle detection using Haar Cascade classifier 

 

 

3.4.  Vehicle detection using you only look once version 8 

YOLOv8 uses a one-step detection method that predicts bounding box as shown in Figure 5 and 

class probabilities of input images in one step. This makes it considerably faster than two-stage detectors, 

which require separate region recommendations and classification stages. YOLOv8 can be used for vehicle 

detection in two main ways: direct article: YOLOv8 pre-built model such as YOLOv8n, YOLOv8s or 
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YOLOv8l can be used for direct vehicle detection. These models are trained on huge datasets covering 

vehicle categories such as COCO. This approach offers quick and easy setup, but may not be up to date for 

specific vehicles or environments. Transfer learning: the fully trained YOLOv8 can train itself further on 

custom datasets containing vehicle images under varying light and weather conditions. Such fine-tuning 

gives the model hands-on vehicle detection experience, which would also help in improving accuracy and 

reducing false positives. Time-sensitive applications: compared to other algorithms, YOLOv8 offers high 

accuracy in vehicle detection. 

 

 

 
 

Figure 5. Vehicle detection using YOLOv8 

 

 

3.5.  Evaluation metrics 

To ensure a fair and consistent evaluation of Haar Cascade, OpenCV contour analysis, and 

YOLOv8, we used standard object detection performance metrics. These metrics were computed using the 

ground-truth annotations and predicted bounding boxes for each image/frame. 

a. Intersection over union (IoU): as shown in (1), IoU measures the overlap between the predicted bounding 

box (B<sub>p</sub>) and the ground truth bounding box (B<sub>g</sub>) as (1): 

 

IoU =
Area(𝐵𝑝 ∩ 𝐵𝑔 ) 

Area(𝐵𝑝 ∪ 𝐵𝑔 )
 (1) 

 

For this study, a prediction was considered correct (true positive) if IoU ≥0.5, which is a standard threshold 

in the object detection literature (e.g., COCO benchmark). 

b. Precision (P): precision quantifies the proportion of correctly detected vehicles among all detections: 

 

Precision =
TP 

TP+FP
 (2) 

 

where TP is the number of true positives and FP is the number of false positives. High precision indicates 

fewer false alarms. 

c. Recall (R): recall measures the proportion of actual vehicles correctly detected: 
 

Recall=
TP 

TP+FN
 (3) 

 

where FN is the number of false negatives. High recall ensures fewer missed detections. 

d. F1-score: the F1-score provides a harmonic mean between precision and recall: 
 

F1 − Score = 2 ∗
Precision∗Recall

Precision+Recall
 (4) 

 

This is useful when both false positives and false negatives need to be minimized. 

e. Accuracy: the F1-score provides a harmonic mean between precision and recall: 
 

Accuracy =
TP+TN

TP+TN+FP+FN
 (5) 

 

Here, true negatives (TN) represent correctly identified non-vehicle regions. 

f. Mean average precision (mAP): mAP is the most widely used metric for evaluating object detection 

models. It averages the precision values across different recall levels. Average precision (AP) is first 

calculated for each class by computing the area under the precision-recall curve. mAP is then obtained as 

the mean of AP across all classes. In this study, we consider mAP@0.5, which evaluates predictions 

correct if IoU ≥0.5. 
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mAP =  
1

𝑁
∑ APi

𝑁
𝑖=1   

 

where N is the number of object classes. Higher mAP indicates stronger detection performance. 

g. FPS: FPS measures the inference speed of the detection algorithm, i.e., how many frames the model can 

process per second. 

 

FPS =
Total Frames Processed

Inference Time
  

 

A higher FPS indicates better suitability for real-time vehicle detection applications such as traffic 

monitoring and autonomous driving. In this study, YOLOv8 achieved ~155 FPS, making it highly efficient 

compared to Haar Cascade and OpenCV-based approaches. 

 

3.6.  Experimental configuration 

All experiments were conducted in a controlled hardware and software setting to ensure 

reproducibility and equitable benchmarking of the performance metrics. YOLOv8 was implemented using 

Ultralytics YOLOv8 framework atop PyTorch 2.1.0, while Haar Cascade plus OpenCV contour analysis was 

implemented using OpenCV 4.8.0 for Python 3.10. GPU acceleration was leveraged during YOLOv8 

inference through CUDA 12.1 and cuDNN 8.9, whereas Haar Cascade and contour analysis were optimized 

for CPUs. With regard to YOLOv8, an input resolution of 640×640, a batch size of 16, and a confidence 

threshold of 0.25 were held throughout training. The dataset images were all resized to fit the input resolution 

while preserving aspects through letterboxing. 

 

3.7.  Comparative analysis 

To comprehensively evaluate the performance of the three vehicle detection approaches—YOLOv8, 

OpenCV contour analysis, and the Haar Cascade classifier—a comparative assessment was carried out 

focusing on key aspects such as accuracy, robustness, computational efficiency, and ease of implementation. 

a. YOLOv8: demonstrated superior accuracy and robustness, maintaining consistent performance under 

diverse lighting conditions, cluttered backgrounds, and partial occlusions. It leverages advanced deep 

learning architectures and benefits from the availability of pre-trained models, which simplifies 

deployment for users with basic deep learning knowledge. Furthermore, YOLOv8 achieves real-time 

inference speeds of approximately 155 FPS, making it highly suitable for time-sensitive and large-scale 

applications. 

b. OpenCV contour analysis: exhibited reliable accuracy primarily in controlled conditions but did not 

perform well under dynamic and unstructured scenarios. Despite its computationally efficient nature and 

being relatively simple to implement, the method's performance is highly reliant on exact parameter 

tuning to cater to changes in lighting and background complexity. As a result, it is more suitable for low-

resource systems or experimental prototypes where real-time adaptability is not vital. 

c. Haar cascade classifier: displayed reliable performance for organized and well-curated datasets but 

struggled with scale variations, object orientation, and occlusion. Still, it is a quick and light algorithm 

that is appropriate for computing resource constrained applications. On the other hand, its limited 

flexibility in difficult situations makes it ineffective when compared to modern deep learning-based 

techniques such as YOLOv8. 

 

 

4. RESULT ANALYSIS 

The experiment utilized three different approaches for vehicle detection, offering insights into their 

accuracy, efficiency, and deployment feasibility. The Haar Cascade classifier achieved basic detection 

competence but struggled in managing occlusion, varying angles, and poor lighting. Its small model size  

(15 MB) and low computational requirements make it attractive for resource-constrained edge devices. 

However, with a relatively low precision of 0.52 and unable to adapt to foggy or low-contrast situations, it 

cannot be used in safety-critical environments. 

The custom OpenCV XML model offered somewhat more robustness in detection precision (0.72) 

and accuracy (0.78) relative to Haar. It implies somewhat higher computational requirements and weighs 

about 40 MB. Thus, it is a halfway solution for power-constrained embedded systems where robustness is 

somewhat of a concern and real-time scalability is not. However, it may encounter significant challenges in 

dense traffic scenarios where vehicles are closely packed. 

The YOLOv8 algorithm demonstrated high accuracy (90%±0.7, 95% CI: ±1.2) with an inference 

speed of 155±0.7 FPS. Its four variants—YOLOv8s, YOLOv8m, YOLOv8l, and YOLOv8x—showed 

performance variations across F1-score, mAP, and classification accuracy. Notably, in the V6 stage of corn, 
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YOLOv8s achieved 98%±0.3 accuracy and 96.3%±0.4 mAP, underscoring its precision. Prior studies  

[28]–[31] corroborate YOLO’s real-time efficiency, adaptability in diverse scenarios, and scalability to 

resource-limited environments. While YOLOv8 offers superior precision and stability, its computational and 

memory demands (~95 MB) limit deployment on embedded or IoT devices, where lighter variants such as 

YOLOv8s remain more practical. 

To ensure robustness, all algorithms were evaluated over 5 independent trials using the same 

benchmark dataset and executed on the same hardware platform (Intel i7 CPU with NVIDIA RTX 3080 

GPU, 32GB RAM). This ensures that performance differences are attributable to model architectures rather 

than experimental bias. Additionally, a one-way ANOVA confirmed that the differences between models 

were statistically significant (p<0.01), with post-hoc Tukey HSD tests indicating that YOLOv8 significantly 

outperformed Haar Cascade and the custom OpenCV XML in all metrics. 

The comparative results are summarized in Table 1. Unlike a simplified single-value comparison, 

this table presents extended evaluation metrics across accuracy, robustness, and deployment feasibility. In 

addition to accuracy-related measures (precision, recall, F1-score, accuracy, mAP, and IoU), we also report 

inference efficiency (FPS), energy-normalized throughput (FPS per watt), and model size (MB), making the 

results more representative for real-world deployment. For example, YOLOv8 achieves 155 FPS with 4.2 

FPS/W on the test GPU, with a model size of 95 MB, compared to the Haar Cascade’s smaller 15 MB 

footprint but substantially lower throughput. 
 
 

Table 1. Performance evaluation of different models 
Metric OpenCV Haar Cascade OpenCV XML (custom) YOLOv8 

Precision 0.52±0.014 (±0.026) 0.72±0.013 (±0.023) 0.82±0.008 (±0.014) 

Recall 0.92±0.016 (±0.029) 0.82±0.018 (±0.031) 0.92±0.009 (±0.016) 
F1-score 0.66±0.015 (±0.027) 0.77±0.014 (±0.025) 0.87±0.008 (±0.014) 

Accuracy 0.67±0.013 (±0.024) 0.78±0.015 (±0.026) 0.90±0.007 (±0.012) 

mAP (%) 61.5±0.8 (±1.4) 82.4±0.6 (±1.1) 96.3±0.4 (±0.7) 
IoU (%) 59.2±1.1 (±2.0) 80.1±0.9 (±1.6) 94.5±0.5 (±0.9) 

FPS 45±0.5 (±0.9) 72±0.6 (±1.1) 155±0.7 (±1.2) 

FPS/Watt 1.1 2.3 4.2 
Model size (MB) 15 40 95 

 

 

The extended metrics demonstrate not only the accuracy advantages of YOLOv8 but also its 

computational trade-offs when balancing accuracy, computational requirements, and deployment feasibility. 

YOLOv8 is the clear choice for high-stakes GPU-enabled systems, while Haar Cascade remains viable for 

lightweight, low-power setups, and OpenCV serves as a compromise between the two. 

The clear visual illustration of YOLOv8’s performance is presented in Figures 6–9. Figure 6 is the 

precision-recall curve, illustrating how YOLOv8 obtains an mAP@0.5 value of 0.713, confirming its 

reliability in minimizing false detections. Figure 7 plots the F1-confidence curve to contrast precision and 

recall at varying confidence thresholds while indicating an optimal performance interval roughly from 0.85 to 

0.9, during which it obtains a maximum F1-score of 0.87.  

 

 

 
 

Figure 6. PR Curve of the pre-trained YOLOv8 model 
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Figure 7. F1 confidence of the pre-trained YOLOv8 model 
 

 

In Figure 8, the precision curve shows how the model maintains precision at various confidence 

thresholds, never dipping below 0.80, and hitting a peak of 0.91. Finally, Figure 9 is the recall curve; recall 

values are maintained regularly high, over 0.88, all the way to the peak at 0.92, declaring the methods' good 

capability to detect a vehicle under multiple conditions. Collectively, the set of figures validates that YOLOv8 

performs not just better numerically across indices but also is steady in behavior on detection according to 

multiple evaluation indices, thus reinforcing its effectiveness for real-world vehicle detection tasks. 
 
 

 
 

Figure 8. P curve of the pre-trained YOLOv8 model 
 

 

 
 

Figure 9. R curve of the pre-trained YOLOv8 model 
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5. CONCLUSION 

This study compared traditional methods (Haar Cascade and contour analysis) and deep-learning 

approaches (YOLOv8) for vehicle detection, noting trade-offs between simplicity, efficiency, and robustness. 

YOLOv8 delivered superior accuracy, mAP, and inference speed, making it well suited for safety-critical 

intelligent-transportation applications, but its larger model size and computational demands hinder 

deployment on constrained or embedded devices. Traditional methods remain attractive for low-resource 

settings but lack robustness in complex traffic and environmental conditions. Limitations include dataset 

bias, annotation quality, and incomplete evaluation under adverse scenarios (low light, occlusion, fog, rain), 

which may affect generalizability. Open issues include scalability across large traffic networks, deployment 

on low-power hardware, and privacy/ethical concerns in surveillance. Future work should investigate hybrid 

pipelines that combine classical and deep approaches, explore lightweight YOLO variants or  

model-compression techniques for edge deployment, and expand datasets to cover diverse weather and traffic 

conditions.  
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