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Human activity recognition (HAR), is an increasingly significant research
area as it can be used in many fields of application such as; health care,
elderly monitoring, sports training, and smart homes. In this research we
developed a novel multi-layer ensemble model based on a combination of a
genetic algorithm (GA) to optimize feature selection and hierarchical
learning to solve the issues of high dimensional data, feature redundancy and
over fitting in HAR. Our model systematically reduces the number of
features required to recognize activities while maintaining the most
important features; thus, allowing the base learner to learn patterns across
multiple layers. We demonstrated through experiments using three standard
benchmark datasets-UCI HAR, WISDM, and PAMAP2, that our method
significantly outperformed standard methods achieving 96.8% accuracy, and
reduced the amount of feature sets by more than 70%. Evaluation metrics
including; precision, recall, F1-score, and ROC-AUC, further validated the
robustness of our model; while statistical tests confirmed the improvement
in performance. Additionally, our framework improved the efficiency and
interpretability of our model, which will enable it to be practically
implemented in real time environments. These results demonstrate the
potential of combining feature selection optimized by a GA and hierarchical
ensembles in HAR, and provide avenues for future work in cross domain
adaptability and multimodal HAR systems.
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1. INTRODUCTION

Human in order for healthcare monitoring, smart environments, sports analysis, and security
systems to be effective, human activity recognition (HAR) is a critical factor because it allows for an
automated identification of human actions by means of their sensing data. Consequently, context-sensitive
applications are able to provide better safety, well-being, and efficiency through HAR. As wearables
containing inertial measurement unit (IMU) that include accelerometers and gyroscopes, become more
widespread. HAR is becoming a major application in healthcare, elderly health monitoring, fitness tracking,
fall detection [1], and smart homes. In addition to rehabilitation and remote monitoring of patients [2],
wearable sensors have also been used effectively in clinical practice, which further emphasizes the role of
HAR in clinical practice. For example, HAR systems have been commonly applied to elderly care [3].
Reliable recognition of day-to-day activities supports elderly individuals to remain independent in their daily
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lives. Although advancements have been made in developing methods to recognize actions using sensor data,

the process still has many difficulties in terms of action recognition using real world data. The reason is the

high dimensionality of sensor data, variability in how people act, and inconsistencies resulting from uneven
placement of sensors.

Researchers have attempted to improve the performance of HAR systems during the last decade.
Gave an overview of wearable-sensor based HAR and stated the necessity of robust feature engineering in
HAR [4]. Emphasized two main problems: subject variability and computational complexity [5]. In addition,
researchers have utilized deep-learning based approaches, such as convolutional and recurrent networks [6],
to develop successful methods to extract features automatically; however, these approaches typically require
large labelled databases and are computationally expensive. Analyzed various techniques for selecting
features, and indicated that the choice of features is important in removing redundant features and to provide
greater interpretability of models [7]. Researchers have also used vision-based HAR methods [8]; however,
there are privacy issues when camera-based HAR methods are compared to those that utilize wearable
sensors. Developed a hybrid framework for selecting features that utilizes both filter and wrapper methods
[9], and developed an ensemble method for selecting features to increase the robustness of the selected
features [10]. In addition, [11] developed a survey of HAR methaods that utilize inertial-sensors, and indicated
that there are limitations in the use of traditional feature extraction methods and that new methods for
selecting features are needed. Finally, [12], [13] utilized deep convolutional neural networks (CNNs) to
classify data collected from smartphones, and demonstrated that increasing the number of convolutional
layers improves the performance of CNNs over traditional machine learning methods such as support vector
machines (SVM), while also demonstrating that increasing the depth of a network too much will decrease the
complexity of the features being extracted. Recent research has demonstrated [14] that the use of multi-
layered ensemble methods can improve the accuracy of sentiment analysis, while also demonstrating that
stacking ensembles with integrated feature selection can improve the accuracy of predictions for health-
related applications.

There are still many open research questions. Most previous HAR studies employed a single
classifier and/or shallow ensembles [15], which do not take into account the hierarchical nature of human
activity patterns. In addition to this, many previous HAR studies applied feature selection separately from the
requirements for multilayered ensembles. Also, as previously mentioned, deep learning [16] models can be
highly accurate but require high computation and are therefore generally not suitable for use in real-time or
limited resource applications [17]. Consequently, the need for effective frameworks that combine feature
selection and multilayered ensemble architecture optimizations to enable efficient HAR while improving
accuracy remains unfulfilled.

Therefore, the goal of this study was to develop a new multilayered ensemble framework combined
with an optimized feature selection technique. This framework utilizes genetic algorithms (GAs) to
sequentially optimize the feature sets for the global level, layer-levels, and base learner levels; thereby,
ensuring each portion of the ensemble is optimized through the utilization of the most relevant and least
redundant features, which will enhance the accuracy while reducing the dimensionality. In contrast to other
approaches, this method uses hierarchical learning in conjunction with specifically tailored feature
optimization methods to enhance the accuracy of the recognition model and to improve the efficiency of the
computation.

The primary contributions of this paper are:

— A multi-layered ensemble architecture that can identify both high- and low-level patterns in sensor data
better than one layer, conventional single-layered ensembles.

— An optimized feature selection using GAs to find an optimal number of dimensions at each layer of the
multi-layered ensemble.

— The use of three benchmark HAR datasets (PAMAP2, UCI HAR, and WISDM) to evaluate the
performance of the proposed method to be more accurate and efficient than all other methods, including
baseline neural networks, single models, and traditional ensemble architectures.

— Analysis of selected features to provide insight into what sensor derived attributes were contributing most to
the identification of activity, and how those sensors derived attributes can influence future sensor designs.

The rest of the paper is organized as follows; in section 2, the proposed method will be described,
including feature extraction, the proposed multi-layered ensemble, and the optimized feature selection
strategy. The experimental setup and results are presented in section 3. The discussion of the findings, and the
implications and limitations of the study are presented in section 4. Finally, section 5 summarizes the main
contributions of this paper and provides direction for future research. Further motivation for the current study
has been provided by recent studies that emphasize the importance of integrating feature optimization and
ensemble learning as a means to develop efficient HAR systems [18]-[21].
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2. METHOD

The proposed framework for optimizing feature selection in multilayer ensemble models for is
composed of three major components:
— Feature extraction and initial selection,
— Multilayer ensemble architecture, and
— GA-based multi-level feature optimization.

The method is designed to enhance recognition accuracy, minimize computational overhead, and
ensure reproducibility. Figure 1 presents the overall workflow.
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Figure 1. Workflow of the proposed multilayer ensemble framework

2.1. Data preprocessing and feature extraction
Raw sensor data from accelerometers and gyroscopes undergo preprocessing to remove noise and
normalize values across channels. Each signal x(t) is normalized using z-score normalization:

where u is the mean and o is the standard deviation of the signal segment.
To capture temporal dynamics, the data are segmented using a sliding window of size W with 50% overlap,
defined as:

Sk = {Xi-wy2yr 0 Xie(wj2)+w-1}

where S, is the k-th segment.

From each segment, both time-domain (e.g., mean, standard deviation, skewness, kurtosis,
zero-crossing rate, and peak-to-peak amplitude) and frequency-domain features (e.g., spectral energy,
spectral entropy, dominant frequency, and frequency range) are extracted. Such preprocessing strategies are
consistent with early accelerometer-based HAR studies [8]. These features are summarized in Table 1. A
correlation-based feature selection (CFS) technique is then applied to eliminate highly correlated features that
may introduce redundancy.

To eliminate redundant features, we use the CFS, and reduce features to those which are correlated
(pairwise Pearson correlation |r| = 0.95). The CFS thus reduces redundancy in the feature space before the
optimization step. In this way, the refinement of the feature space prior to the optimization step will be
reduced in dimensionality, thus, it helps to mitigate the “curse of dimensionality” [22].
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Table 1. Initial set of features extracted from sensor data

Domain Feature Description
Time Mean Average value of the signal
Time Standard deviation Measure of signal variability
Time Skewness Asymmetry of the signal distribution
Time Kurtosis Peakedness of the signal distribution
Time Zero crossing rate Frequency of signal sign changes
Time Peak-to-peak amplitude  Difference between maximum and minimum values
Frequency  Spectral energy Sum of the squared FFT components
Frequency  Spectral entropy Entropy of the normalized FFT components
Frequency  Dominant frequency Frequency with the highest magnitude
Frequency  Frequency range Difference between max and min frequencies

2.2. Multilayer ensemble architecture

In order to utilize the advantages of multiple learners, we propose an architecture for a multilayer
ensemble that can represent both the lower level and higher-level representations of sensor data. In addition,
recent research on the use of simple deep ensembles have shown them to be effective in HAR [23] and

therefore motivate our hierarchical design. Unlike traditional flat ensembles, our multilayer design includes a

hierarchical learning process between layers, and each layer improves upon the previous layer's output.

The Figure 1 illustrates an overall view of how the multilayer ensemble framework works. The
ensemble is a multi-layered structure with three layers:

— Base layer-ten heterogeneous classifiers are used to train ten different feature subsets. The use of
multiple, diverse learners for different subsets of features captures many different characteristics of the
activity patterns.

— Summary layer-three meta-learners (random forest (RF), gradient boosting, and XGBoost), take the first
layer's output and create a better overall prediction through increased robustness and reliability.

— Output layer-the logistic regression takes the summary layer output and generates the final activity label.
This layer can benefit from being able to provide calibrated probabilities as an output.

The multilayer architecture enables a hierarchical learning process of representations, such that each
layer refines and interprets the features generated by the previous layer to improve the generalization
capabilities of the system.

2.3. Multi-level genetic algorithm-based feature selection

Evolutionary feature selection has been widely studied in HAR and related domains [24]. Building
on this foundation, the core novelty of our approach lies in optimizing feature subsets at three hierarchical
levels:

— Global selection for the entire ensemble.
— Layer-specific selection tailored to intermediate and final layers.
— Base-learner-specific selection based on learner characteristics.

Building upon previous studies on evolutionary feature selection for HAR, the proposed method
goes beyond the realm of conventional single-level optimization strategies. Instead of treating the feature
space uniformly, the approach introduces a structured optimization process that adapts to different stages of
the ensemble architecture. Therein, by aligning feature subsets with functional roles of ensemble layers and
base learners in their individual capacity, the method develops a more informed approach to feature
utilization that fosters improved representational efficiency and, consequently, potentially better recognition
performance.

a. Fitness function
For a candidate subset F; ;, (features for base learner b in layer [), the fitness function is:

Fitness(F,,) = a - Acc(F,,) — B Fupl

" 1Fioll
where: Acc(F;p) is the cross-validated classification accuracy, |F; ;| is the number of selected features, |Fi |
is the total available features, and a, 8 control the trade-off between accuracy and dimensionality (set to 0.9
and 0.1 respectively in our experiments).
b. GA configuration
— Population size: 100.
— Generations: 100.
— Crossover rate: 0.8 (uniform crossover).
— Mutation rate: 0.05 (bit-flip mutation).
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— Selection strategy: tournament selection (size=3).

— Elitism: top 2 individuals per generation retained.

— Randomness handling: all experiments repeated with 5 different random seeds; results averaged to
mitigate stochastic bias.

c. Base learner feature assignment

Each base learner is initialized with a random subspace of features (50-70% of the feature space), guided by:

— Learner-specific preferences—e.g., decision trees are assigned higher-variance features, SVMs receive
features with higher discriminative power (via fisher score).

— Diversity maximization—measured using subset similarity:

_ |IFinFj]

Sim(Fu F)) = 0w

ensuring Sim < 0.5 between any two base learners.

By applying this multi-level optimization strategy, the system ensures that each component of the
ensemble operates on the most relevant information, leading to superior recognition accuracy and
generalizability. An ensemble feature selection strategy similar to [21] was adapted but improved through
layer-specific optimization in this study. The pseudocode of the Algorithm 1 is given:

Algorithm 1. Optimized feature selection for multilayer ensemble

Input:
F _total — Initial full feature set
D —~ Training dataset

Output:

Optimized feature subsets for all learners in all layers

1: // Step 1l: Global Selection
2: F_global « GA Wrapper Select(F_total, Ensemble Eval)

3: // Step 2: Initialize Ensemble

4: for each layer 1 in Ensemble:

5: F layer[l] « GA Wrapper Select (F _global, Layer Eval(l))
6 // Step 3: Base Learner Optimization

7 for each base learner b in layer 1:

8 Pop « InitializePopulation(F layer[l], RandomSubspace)
9: for gen = 1 to MaxGenerations:

10: Fitness « Evaluate(Pop, Learner Eval (b))

11: Parents « TournamentSelection (Pop)

12: Offspring « Crossover (Parents, rate=0.8)

13: Mutate (Offspring, rate=0.05)

14: Pop « Elitism(Pop, Offspring)

15: F _opt[l,b] < BestSubset (Pop)

16: return F opt

2.4. Justification for method choices

The methodological decisions were informed by the fact that the key aspects of complex and
hierarchical patterns found in the data of human activity were to be efficiently represented. The architecture
can progressively improve the representations of low-level features to higher-level abstractions by organizing
the learning process into multiple layers and optimizing them separately, which with a single, flat learning
model is hard to do. Moreover, the evolutionary optimization will allow introducing a principled compromise
between the accuracy and the model compactness so that only the most informative features will be kept
without being redundant. Lastly, repeated experimental runs with statistical validation enhances the
applicability of the results by showing that the recorded improvement in performance is not a one-off result
which can be attributed to a particular initialisation or randomised setting.

3. EXPERIMENTAL SETUP AND RESULTS

The performance of the method proposed was evaluated by conducting a number of thorough
experiments with multiple HAR data sets. This section provides an overview of the data sets that were used
for the experimentation, experimental set up, and associated results.
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3.1. Datasets
In order to assess the merits of the method proposed, three benchmarks’ data sets were utilized: UCI

HAR [25], WISDM [26], and PAMAP2 [8]. The differences between the three lies within sampling rate,

activity type, and modality which will allow the evaluation of robustness. The summary of the data sets is

provided in Table 2. There are two types of data sets:

a. UCI HAR data set: the UCI HAR data set contains a sample of 30 participants completing six different
physical activities. These were recorded using both the accelerometer and gyroscopes to measure the
movement of each participant at 50 Hz for a total of 10,299 trials.

b. WISDM data set: the WISDM data set was collected from 36 subjects who completed 6 activities while
wearing an accelerometer to capture their movements. The sampling rate of the data set was 20 Hz, which
resulted in 1,098,207 samples. PAMAP2 data set: the PAMAP2 data set contained data from nine
subjects who completed eighteen physical activity tasks, while measuring their movement with IMUs at a
100 Hz sampling rate. As a result, the total number of samples was 3,850,505.

Table 2. Summary of HAR datasets used in the experiments
Dataset Subjects  Activities Sensors Sampling rate (Hz)  Total samples

UCI HAR 30 6 Acc, Gyro 50 10,299
WISDM 36 6 Acc 20 1,098,207
PAMAP2 9 18 IMU 100 3,850,505

3.2. Experimental setup

Python version 3.8 was utilized for the implementation of the experiment. DEAP 1.3.1 was
employed to implement the GA, while scikit-learn 0.24.2 was employed to implement machine learning
models.

A workstation with an Intel Xeon E5-2680 v4 processor and 128 GB RAM was employed to
conduct experiments. Steps that were taken for each dataset:

a. Data preprocessing: standard preprocessing techniques such as removing noise from the data, normalizing
the data, and segmenting the data by employing a sliding window method with a 50 percent overlap were
applied to the data.

b. Feature extraction: the initial set of features listed in table one for each window of sensor data was
extracted.

¢. Model configuration: a multilayer ensemble model that included three layers was developed for this
research:

— Base layer: 10 base learners (4 decision trees, 3 SVMs, and 3 k-NN).

— Intermediate layer: 3 meta-learners (RF, gradient boosting, and XGBoost).

— Final layer: 1 meta-learner (logistic regression).

d. Feature subset optimization: a GA with a population size of 100 and 100 generations was employed to
identify the best subset of features for each layer of the ensemble.

e. Evaluation: the performance of the model was assessed utilizing 5 fold cross-validation, and was
compared to multiple baseline techniques, which include single models, traditional ensemble methods
(bagging, AdaBoost, and RF) and a multilayer perceptron (MLP) neural network. All baseline models
were developed employing scikit-learn with default hyperparameters.

3.3. Performance metrics

In addition to accuracy, other metrics were developed to evaluate model performance when there is
a large number of samples from one class as opposed to another;
— Precision (P): fraction of actual activity labels that are predicted as such.
— Recall (R): fraction of true positive activity labels out of all actual positive labels.
— F1-score: the harmonic mean of precision and recall.
— ROC-AUC: the ability of the model to tell apart different classes.

TP 2-P-R

, Recall = , Fl=
TP+FP TP+FN P+R

Precision =

3.4. Results

Overall accuracy comparison: Table 3 shows classification accuracy. The proposed method
outperforms all baselines across datasets, achieving 96.84% (UCI HAR), 95.73% (WISDM), and 92.41%
(PAMAP2).
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Table 3. Classification accuracy (%) comparison on baseline datasets

Method UCIHAR WISDM PAMAP2
SVM 93.85 91.27 87.62
RF 94.63 93.15 89.78
Gradient boosting 94.89 93.42 90.05
Bagging 94.21 92.87 89.31
AdaBoost 94.57 93.08 89.96
MLP 94.72 93.26 90.18
Proposed method 96.84 95.73 9241

Figure 1 demonstrates the architecture for a multi-layered ensemble model; it describes the
relationship between the base learners, meta-learners and feature optimization for better classifier
performance. Figure 2 is referenced to demonstrate the comparative classification accuracy of each model
with the proposed framework as having a higher level of performance than the other models. Figure 3 is
referenced to show that the proposed method selects fewer features than the RF baseline, while still
maintaining competitive levels of performance. Most notably, this was demonstrated on the PAMAP2
dataset, where the proposed method had an accuracy of 92.41% compared to the best performing non-

proposed model being the MLP at 90.18%.

1004

Accuracy (%)

93+
89+
85-

SVM Random Forest Bagging AdaBoost

m UCI HAR m WISDM
Human Activity Recognition Models

Our Method

Figure 2. Accuracy comparison across baseline models and proposed method
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Figure 3. Feature reduction comparison between RF and proposed method
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Metrics: Table 4 is used to report precision, recall, Fl-score, and ROC-AUC. The method
consistently showed good balance of all metrics compared to baseline methods with significantly better
results than baseline methods on recall and F1-scores that are the most important to use when dealing with
Har Datasets as they are typically extremely unbalanced.

Table 4. Extended performance metrics (meanzstd, %)

Dataset Model Precision Recall F1-Score  ROC-AUC
UCIHAR RF 94.2+0.3 94.0+0.4 94.1+0.3 96.5+0.2
MLP 94.620.4 94.3+0.3 94.4+0.3 96.910.2
Proposed method  96.9+0.2  96.7+0.2  96.8+0.2 98.740.1
WISDM RF 92.7£0.5 92.3+0.6 92.5+0.4 95.8+0.2
MLP 93.1+0.4 92.9+0.3 93.0+0.3 96.0+0.3
Proposed method  95.6+0.2  95.4+0.3 95.5+0.2 97.940.1
PAMAP2 RF 89.8+0.4 89.4+0.5 89.6+0.3 93.2+0.3
MLP 90.2+0.3 90.1+0.3  90.1+0.2 93.5+0.2

Proposed method ~ 92.340.2  92.6+0.2  92.440.2 95.740.1

Statistical analysis: in order to verify that the baseline methods improved, paired T-Test and
Wilcoxon Signed-Ranked test were completed between the proposed method and best performing baseline
method (MLP). Results indicated statistical significance at the p<0.01 level across all data sets for accuracy,
F1-score, and ROC-AUC, indicating it is highly improbable that the improvements observed were due to
chance alone. Feature reduction: Table 5 shows dimensionality reduction.

Table 5. Comparison of selected features
Dataset Total features RF  Proposed method

UCI HAR 561 312 187
WISDM 46 38 29
PAMAP2 243 176 112

Across three of the data sets, on average, this approach achieved a 43% reduction in feature space
(UCI HAR (-66%), WISDM (-39%), and PAMAP2 (-36%)) relative to RF, indicating that the approach has
consistent advantages over RF when it comes to reducing feature space dimensions across all data sets.

Table 6 presents the top ten most frequently selected features for the UCI HAR dataset, which
includes both time domain and frequency domain features; such as mean, standard deviation, spectral
entropy, and skewness.

Table 6. Top 10 features selected for UCI HAR dataset

Rank Feature name Domain
1 tBodyAcc-mean ()-X Time
2 tGravityAcc-mean ()-Y Time
3 tBodyGyro-std ()-Z Time
4 fBodyAcc-meanFreq ()-X Frequency
5 tBodyAcclerk-correlation ()-X,Z  Time
6 fBodyGyro-bandsEnergy ()-1,8 Frequency
7 tBodyAccMag-arCoeff ()3 Time
8 fBodyAccJerk-skewness ()-X Frequency
9 tGravityAccMag-entropy () Time
10 fBodyGyro-kurtosis ()-Y Frequency

In Table 1, the top ten feature selections from the UCI HAR Dataset contain a balance of both time-
and frequency-domain feature types. Time-domain type of the features that were selected are mean, standard
deviation, correlation, autocorrelation coefficients and entropy (i.e., tBodyAcc-mean ()-X and
tGravityAccMag-entropy (). Frequency-domain type of the features that were selected are mean frequency,
band power, skewness and kurtosis (e.g., fBodyAcc-meanFreq ()-X and fBodyGyro-kurtosis ()-Y). The
combination of these types is an important part of the ability to model both the temporal and spectral aspects
of human activities in order to perform HAR effectively.
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4. DISCUSSION

In this section we will discuss the outcomes and implications of our suggested method for selecting
features to optimize multilayer ensemble models for HAR. The most important findings from the
experimental analysis of the proposed method are as:

4.1. Addressing gaps in prior research

Prior research has investigated either feature selection [9], [10] or ensemble learning [14], [27],
however, never as an integrated layer-based approach. It is shown here that hierarchical optimization of
layer-specific feature sets improves both accuracy, efficiency, and interpretability of HAR.

4.2. Summary of key findings
The proposed method has consistently demonstrated superior results compared to both the single-
classifier performance (individually) and conventional ensemble methods, for all of the three benchmark data
sets—UCI HAR, WISDM, and PAMAP2. The reasons for improved performance include:
The multilayer ensemble was able to capture low level temporal patterns as well as higher level
composite activities.
— Feature subset selection via GA, provided compact and highly discriminatory feature subsets while
enhancing the interpretability of the multilayer ensemble.
— Results were above baseline for each metric and notably for the recall and F1 score, two metrics that are
of particular interest in applications such as fall detection, where missing an event can be very expensive.
Baseline classifiers are compared in terms of accuracy to the proposed approach for all data sets as
shown in Figure 2; with the proposed approach achieving a total accuracy rate of 96.84% for the UCI HAR
data set; this is better than gradient boosting, at 94.89%. The same type of improvements can be seen in both
the WISDM and PAMAP?2 data sets; and these show that the proposed method can be generalized to multiple
types of activities and different sensor arrangements.
The proposed optimized feature selection process was able to reduce the number of input features to
the model by as much as 36%, and still produce the same level of accuracy; thus, it demonstrated an optimal
balance of model complexity and accuracy.

4.3. Comparison with literature

The proposed method consistently selected fewer features than the baseline RF method but with the
highest classification accuracy (Table 5). The proposed method’s ability to tailor feature subsets to each layer
also yielded superior ROC-AUC performance compared to [9]’s hybrid feature selection; [10]’s ensemble
feature selection; [28]’s guided RF feature selection; and, unlike flat ensembles, the proposed hierarchical
model progressively refined activity patterns.

As shown in Figure 3, the proposed approach has greatly reduced the number of selected features
when compared to RF. On all three datasets (UCI HAR, WISDM, and PAMAP?2), the proposed method
selected a significantly lower number of features than either the total feature set or the RF baseline. The
results from this study are consistent with previous studies demonstrating that optimal feature selection
reduces dimensionality while enhancing model robustness as found in applications including sentiment
analysis [14], and medical diagnosis/prediction.

4.4. Practical limitations
Limitations of the study are:

— The computational cost of the algorithm—training a GA is computationally costly and this limits its ability
for real time adaptation in many cases.

— The sensitivity of GA parameters—the performance of GA depends heavily on parameters (e.g.,
population size, and mutation probability) that require careful tuning.

— Data bias—as with all experiments using wearable sensors as input data, these experiments are limited by
the potential for generalization to vision-based HAR.

4.5. Implications for real-world deployment
The reduced feature dimensionality and improved recall make this method suitable for:
— Mobile health monitoring (low-power devices).
— Elderly care (fall detection).
— Smart wearables (activity tracking).
The findings also suggest applicability to other time-series domains such as anomaly detection and
physiological signal monitoring.
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4.6. Future research
Further research is needed on the:

— Take advantage of the real-time adaptation capabilities of online HAR methods [29], that may be
integrated into our multilayer ensemble to improve overall responsiveness.

— Investigate transfer learning techniques to enable better cross-subject generalization.

— Additionally consider using multimodal data (i.e. environmental and physiological sensors).

— Apply explainable Al techniques to provide greater transparency.

— Take advantage of transfer learning techniques [30] to improve cross-subject generalization, which
remains one of the main challenges in HAR.

5. CONCLUSION

This work proposed a multilayer ensemble architecture based on a multi-level GA-based feature
selection strategy for the recognition of human Activities. This method is able to recognize both specific and
abstract movement patterns, as opposed to previous methods that have used either one or the other of these
strategies. The authors found statistical significance in their results on three benchmarks datasets (PAMAP2,
UCI HAR, and WISDM) in terms of accuracy, precision, recall, F1 score, and ROC-AUC, and reduced the
feature space by up to 36%. These results demonstrate the efficiency, robustness, and interpretability of this
approach. The authors also identified three major implications of this study; namely, i) suitability for real-
time use in wearable and mobile devices, ii) increased interpretability due to compact feature sets, and iii)
generalization to other time series domains. However, there are two main limitations of this approach;
namely, high computational costs, and reliance on labelled training data. Therefore, future research will be
focused on lightweight optimization, online and transfer learning for greater adaptability, integration of
multimodal sensors, and explainable Al for increased transparency. Overall, this study demonstrates that
layer-specific feature optimization within multilayer ensembles provides a scalable and practical pathway to
advancing HAR and related human-centered Al applications.
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