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1. INTRODUCTION

Strict filtering requirements apply to wireless communications in the millimeter wave (mmWave)
band, especially in 5G technologies, the internet of things (1oT), and high-speed applications. To guarantee
the best radio frequency (RF) performance, compactness, low insertion loss, wide stopband, and signal
integrity preservation are crucial. Because they enable interference rejection while still being integrable in
small architectures, band-stop filters (BSFs) are essential in this context [1]-[4].

A number of recent methods demonstrate attempts to enhance BSF performance. In order to
reconfigure two stopbands with exact geometric control and maintained planarity, Li and colleagues
proposed filters that use glide symmetry within substrate-integrated coaxial lines (SICLs) [1], [5], [6]. The
structural complexity and lack of adaptability for simultaneous rejection at several frequencies are the
approach's drawbacks, though. In order to absorb undesired signals, another line of inquiry investigates so-
called quasi-reflectionless filters, which combine coupled lines and resistive elements: an extended stopband
was demonstrated by Shao and Lin [3], but the integration of resistors makes this difficult to achieve at high
frequencies [7]-[9]. Transverse signal interference (TSI) is the basis for the filters that Garcia and Alonso
[10] proposed, and they showed that this principle works well for a variety of filtering functions, including
BSF [11]-[14]. In the mmWave band, this method frequently lacks full experimental validation. Additionally,
with an isolation of better than 31 dB [3], Moscato and colleagues investigated the direct integration of a
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second-order BSF filter into a wideband magnetoelectric dipole antenna for the 24-29.5 GHz and 37-43.5
GHz ranges. This was a convincing solution, but it was less suitable for standalone filter modules.

Although there are still a number of gaps, these works show tremendous progress. Few architectures
are able to combine wide stopband, compactness, high selectivity, and straightforward design. For the
mmWave band, TSI filters are still not well studied, and experimental validations are frequently not rigorous
[10]-[14]. It is frequently challenging to adapt complex structures like glide symmetry or integration into
antennas to standard RF modules [1], [5], [6].

In this regard, the current work suggests a novel TSI- BSF filter with a center frequency of 28 GHz
that is implemented in microstrip on the ROGERS RT/Duroid 5880 substrate. Excellent agreement between
simulations (advanced design system (ADS), momentum, and finite integration technique (FIT) solver) and
experimental measurements (PM5 station) is achieved by this architecture, which also achieves a wide
fractional stopband (~42.8%) and a high rejection depth. Its simplicity-the lack of intricate resonant
structures, ease of fabrication, and compatibility with current RF circuits-defines the approach. This is one of
the few mmWave band realizations that we are aware of that combines robust experimental validation,
rejection performance, and miniaturization in a TSI architecture [2], [3], [10], [11], [13].

The article's structure is as follows a methodology introduces the filter theory, parameter definition,
simulations, manufacturing processes, and measurement protocol; a summary describes the simulated and
measured results; a comparison with the state of the art is suggested; tolerances and practical implications are
examined; the article concludes with the main contributions, discusses the limitations, and offers ideas for
future development toward tunable filters or integration into mmWave RF modules.

2. THEORY AND METHODS

Figure 1 shows the configuration of transversal filtering section with two transmission lines
connected in parallel. Each line is characterized by its own impedances (Z; and Z,) as well as electrical
lengths (6, and 6,). This arrangement works by summing the two signal paths in a feedforward manner.
While the input signal is divided and sent through each transmission route, the resultant interaction among
them creates the desired signal filtering.

Zz. Bz
Input _— Output
— —
Z,,0,

Figure 1. BSF using transversal resonator signal-interference transmission line configuration [10]

Proper tuning of the transversal filtering section comprising the transmission line segments is crucial
to maintain the required level of amplitude and phase merging of the signals. One of the main undertakings is
to achieve the condition of complete constructive interference at the predefined center frequency. The power
transmission and reflection characteristics of this filtering structure, which are referenced to standard
impedance Z,, can be calculated using the admittance parameters of the individual line segments [15].

In order to satisfy the design needs, particular limits must be imposed on the parameters of the
transversal section. Foremost among these is the attainment of maximum signal feeding through at the center
frequency f,. Moreover, a balance between the upper and lower sides of the frequency spectrum should be
preserved so that a symmetric pass band response about the center frequency f, is realized. These design
ideas and calculations form the basis of specifying these parameter values to make sure the transversal
section achieves the required filtering performance [10].

Z,> 7y 7, = Zzll_Z;O (69)
0.(f) =5, 6:(fo) = @n+ D )

Where 6,>0, is assumed without a loss of generality.
The design parameters were chosen after their effects on the frequency response of the resonator and
the viability of physical implementation were examined. The number and location of the transmission zeros,
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the stopband bandwidth, and the attenuation level are all determined by the values of 6,,6,, and the
impedance ratio R=Z,/Z,. According to earlier research [16], some combinations, like 8,=m and 6,=2x for
R>0.5, offer three transmission zeros but necessitate long lines, which makes compactness more difficult.
Others, like 6;=n/2 and 8,=37/2 for R>1, produce two zeros with good separation but only optimal
attenuation within a small range of R. We chose m=1 and n=1/2 for this work, which led to 8,=90° and
6,=270° with R=1 (Z,=Z,=100 Q). This selection ensures a straightforward and reliable implementation
while providing the best possible balance between stopband depth (attenuation greater than 40 dB),
bandwidth, and compactness.

The BSF normalized frequency response for various configurations is displayed in Figure 2. The
response when the impedance ratio R is set to 1 and when R>1 is compared in Figure 2(a). It has been found
that raising R causes an extra transmission zero to appear, improving the stop band's selectivity while
keeping the bandwidth constant. The impact of altering the absolute line impedance for R=1 is shown in
Figure 2(b). In this instance, raising the line impedance results in a slight expansion of the rejection
bandwidth and an increase in the attenuation depth. A comparison of the two subfigures reveals that the line
impedance affects the stop band’s width and depth, while the ratio R primarily determines the quantity and
location of transmission zeros.
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Figure 2. The transversal resonator frequency response (6,=n/2, 8,=37n/2); (a) comparison for R>1 and R=1
and (b) comparison for different impedances when R=1

3. RESULTS

In this study presents the validation of a BSF designed with a center frequency of 28 GHz. The
configuration of the proposed filter is illustrated in Figure 3. The design exhibits a stopband ranging from
22 GHz to 30 GHz.
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Figure 3. Design of proposed filter simulated by ADS
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To assess the accuracy of the theoretical design, simulations were carried out using ADS software.
For practical implementation, the filter was fabricated on a ROGERS RT/Duroid 5880 substrate,
characterized by a dielectric constant &,=2.2, a thickness h=0.13 mm, a loss tangent tan (6)=0.0009, and a
metal thickness of t=17.5 um. This substrate was selected for its excellent electrical stability at high
frequencies, exceptionally low dielectric losses, and consistent performance in the millimeter-wave range,
making it ideal for achieving the targeted sharp rejection and maintaining minimal signal degradation in
compact RF designs.

The frequency response derived from schematic simulation under ADS is shown in Figure 3. The
frequency (GHz) is represented by the abscissa axis, while the transmission parameter (dB) is represented by
the ordinate axis. The theoretical model is validated by the simulation, which shows a noticeable dip in the
stop band around the desired central frequency.

The simulation results in Figure 4 show the proposed bandstop filter works well with high signal
suppression and a broad stopband. As already mentioned, the rejection of the signal is high. The transmission
coefficient is reported to be as low as -100 dB which further shows substantial attenuation in the rejection band.
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Figure 4. S-parameters versus frequency of the proposed BSF

After the prototype validation of the aforementioned proposed filter, however, it was found that the first
transmission line was much broader than the second, which brought an asymmetric layout, and this may have an
adverse effect on the electrical performance and compactness of the design. To compensate for this imbalance
and reinstate the structural symmetry, the wider line was reconstructed by splitting it into more narrower lines.
The alignment of the transmission paths had not only the desired result of sig-nificantly enhancing the physical
uniformity of the circuit, but also of allowing a more equal signal distribution per transmission path. The new
layout was highly tuned by employing the ‘“Tuning’ feature in the ADS so that the dimensions of the lines could
be minutely tuned to maintain the filter performance in desired bands and stopband.

Following the miniaturization step in the ADS schematic environment, the filter structure is displayed
in Figure 5. This arrangement demonstrates the geometrical changes made to minimize the circuit footprint
while preserving the anticipated stopband and selectivity performance. It is a crucial design step that enables
confirmation that the physical dimension reduction is still in line with the theoretical design requirements.
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Figure 5. Design of proposed filter simulated by ADS
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While maintaining low insertion loss and good matching outside the rejection band, the simulated
S-parameters in the Figure 6 display a stopband centered at roughly 28 GHz with strong attenuation
(S21<-50dB) and high reflection (S11=0 dB).

dB(S(1,2))
dB(S(1.1))

freq, GHz

Figure 6. S-parameters versus frequency of ADS

Subsequently, the filter was simulated using the ADS momentum full-wave electromagnetic solver,
which enables accurate modeling of distributed effects, coupling, and parasitic phenomena. The results
obtained from these simulations were then analyzed to evaluate and validate the filter’s performance.
Figure 7 illustrates the prototype design using the momentum electromagnetic simulator. The filter displays
in Figure 8 a secondary low-frequency rejection near 5-7 GHz in addition to a primary stopband around
28 GHz with deep attenuation (S21<—40 dB) and high reflection (S11~0 dB). It maintains good matching and
low loss outside of these bands.

Figure 7. Design of proposed filter simulated by ADS (momentum)

freq, GHz

Figure 8. S-parameters versus frequency of ADS (momentum)
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The pattern in the response of the filter is clearly observed as a function of the structure simulated in
the Figure 9. These differences in the curves can be primarily due to variation in the physical design and
boundary conditions used in the simulation. For example, at the level of circuit schematics, parasitic
phenomena such as capacitive or inductive crosstalk, or radiation losses can be disregarded, although they
can be evaluated with an electromagnetic simulation at higher level. It was observed that the modified
structure exhibited performance nearly identical to that of the initial design. To reinforce the reliability of the
simulation results obtained in ADS, the analysis was also conducted using an alternative electromagnetic
solver based on FIT for cross-validation [17] as shown in Figure 10.

40

-60

S-parameters (dB)

-80
o S 10 15 20 25 30 35 40 45 50

freq. GHz

Figure 9. S-parameters versus frequency of ADS (momentum)

Figure 10. Design of proposed filter simulated by electromagnetic solver

The BSF response in the Figure 11 has a single, distinct attenuation notch at about 28 GHz, where
521 falls below -30 dB, signifying a strong rejection of the signal. Good impedance matching outside the
stopband is confirmed by the return loss S11 staying low close to the notch frequency. This behavior
demonstrates how well the filter isolates undesirable frequencies while preserving high transmission in the
passbands. The outcomes confirm the anticipated BSF behavior in results with little discrepancies due to the
differences in numerical methods used by the electromagnetic solvers.
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Figure 11. S-parameters versus frequency of electromagnetic solver
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4. FABRICATION AND MEASUREMENT

The BSF in Figure 12(a) was fabricated on a ROGERS RT/Duroid 5880 substrate, known for its
excellent stability and low dielectric loss at millimeter-wave frequencies. The circuitry was first designed and
optimized on ADS and later implemented on the substrate using photolithography and etching methods [18].
Because of the compact and high frequency nature of the design, standard SMA connectors could not provide
accuracy for measurement. Instead, the layout was adapted to include CPW probe pads [19], allowing for on-
wafer testing using the PM5 probe station shown Figure 12(b) [20], [21]. With this probing technique,
accurate and direct signal injection at the test ports as well as evaluation of the filter’s performance was made
possible. The design accuracy was checked against measured results and simulated data to validate the design

accuracy [22].

(@) (b)

Figure 12. Validation step; (a) prototype of the filter manufactured on Rogers RT/Duroid 5880 substrate and
(b) PM5 probe station used for millimeter band characterization

Figure 13 presents a comparison between the simulated and measured S-parameters of the proposed
bandstop filter. The results show strong agreement across the frequency range, particularly within the
stopband centered around 28 GHz. Minor deviations are attributed to fabrication tolerances and measurement
conditions, yet the overall consistency confirms the validity of the design.
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Figure 13. Comparison between simulated and measured results

Figure 13 shows the remaining differences between measurements of the filter and its simulation. It
may be very well that these differences are due in the first place to the practical limitations of the
measurements. An important contributor is most likely the accuracy of the probe positioning system. If the
probe can be attached to the circuit in a non-moving fashion, the perfect connection at richer millimeter-wave
frequencies brings another set of problems. Some level of variation also results from the attachment of CPW
probe-fed ports rather than standard connectors, the impedance environments of which have their own
influence on the system. Together they all go some way to explain the discrep-ancy with the theoretical
efficiency. A comparison is made between the performance of the current BSF and the previously published
BSF, and the results are summarized in Table 1.
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Table 1. Performance comparison with recently published
References  Center frequency (GHz)  Fractional bandwidth (%) Insertion loss (dB) Technology Filter size (mm?)

[23] 60 21 - 0.18 pm CMOS 0.52x0.77
[24] 60 16.66 18 0.18 um CMOS -
[25] 32 10 - GaAs 2.5%2
[15] 60 91.6 4 0.18 um CMOS 0.78x0.77
55 90.9 25 1.51x0.32
This work 28 42.85 552 MICROSTRIP 5.9x3

With a fractional bandwidth of 42.85%, the suggested 28 GHz filter is noticeably more expansive
than earlier designs. Although it has a higher insertion loss (5.52 dB) than some CMOS or GaAs designs, it is
still manageable given the bandwidth attained and the microstrip technology. The ease of integration on RF
substrate and ease of manufacturing make up for the larger dimensions (5.9x3 mm?) compared to integrated
circuits. Loss reduction, miniaturization through defected ground structure (DGS) or multilayer structures,
and expansion to multi-band versions could all be improvements.

5. CONCLUSION

This work has revealed the reliability of design, simulation, and fabrication on a compact millimeter—
wave bandstop filter based on the transversal signal interference principle. The filter has been optimised for
sharp rejection at around 28 GHz by es-tablishing precise modelling in ADS and electromagnetic solver with
FIT. The fabricated prototype on ROGERS RT/Duroid 5880 substrate vali-dates the proposed method in terms
of electrical performance and physical integration. Manufacturing tolerances, limitations on coplanar probe
measurement, and the fixed stop band’s nature, which restricts the device’s reconfigurability, are the primary
causes of the observed deviations. Opportunities for improvement include creating tunable versions,
integrating them into small RF modules, and optimizing them for different frequency ranges. Targeted
interference suppression is essential for enhancing signal quality and guaranteeing effective spectral
coexistence in millimeter-wave 5G and loT systems, where this kind of design holds great promise.

This work can be expanded upon in a number of ways in future studies. Multi-band operation and
dynamic frequency adaptation may be made possible by the incorporation of tunable or reconfigurable components
into SRR. Manufacturability would be improved by further optimizing the layout to increase tolerance robustness
and decrease sensitivity to fabrication errors. Furthermore, the suggested filter may offer small and versatile
solutions for new wireless technologies when combined with antenna systems or front-end modules.
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