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Accurate classification of electrocardiogram (ECG) signals is essential for
early arrhythmia detection. This study compares the performance of
unidirectional and bidirectional recurrent neural networks (RNN), specifically
gated recurrent unit (GRU)-based architectures, for classifying ECG beats as
normal or arrhythmic. ECG data were sourced from the MIT-BIH Arrhythmia
Database using the WFDB toolkit. Each beat was segmented into a 128-
sample window centered on the R-peak and labeled into two classes. To
address severe class imbalance (6,279 normal vs. 43 arrhythmic beats), data
augmentation techniques—jittering and scaling—were applied, resulting in a
balanced dataset. Both models were trained under identical conditions, with
evaluation based on accuracy, precision, recall, F1-score, and other statistical
metrics. The unidirectional RNN achieved poor recall (9.0%) despite high
precision, yielding an overall accuracy of 54.0%. In contrast, the bidirectional
RNN significantly outperformed, achieving 98.17% accuracy, 98.39%
precision, 97.92% recall, and a 98.16% F1-score. The results demonstrate that
bidirectional temporal modeling provides substantial improvements in ECG
classification, especially for detecting minority class arrhythmias. This study

highlights the importance of both data augmentation and model architecture
in developing effective deep learning solutions for real-time ECG analysis and
clinical diagnostics.
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1. INTRODUCTION

Cardiovascular diseases (CVDs) remain the foremost cause of global mortality, accounting for
approximately 17.9 million deaths each year, according to the World Health Organization [1]. Among CVDs,
cardiac arrhythmias constitute a major contributor to sudden cardiac arrest, long-term morbidity, and reduced
quality of life. Early and reliable detection of arrhythmias is therefore crucial for effective clinical intervention
and patient management. The electrocardiogram (ECG) is the primary diagnostic tool for identifying cardiac
rhythm abnormalities; however, conventional manual ECG interpretation is labor-intensive, time-consuming,
and prone to both intra- and inter-observer variability, even among experienced cardiologists [2], [3]. These
limitations have motivated the development of automated ECG analysis systems aimed at improving diagnostic
accuracy, consistency, and efficiency. A comprehensive systematic review of deep learning techniques applied
to ECG-based arrhythmia classification was done [4]. The study analyzes various neural network architectures,
datasets, and performance metrics, highlighting the superiority of deep learning models over traditional
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methods in detecting complex cardiac abnormalities. The authors also discuss existing challenges such as data

imbalance, model interpretability, and the need for clinically validated datasets for real-world deployment.

Early automated arrhythmia detection approaches predominantly relied on handcrafted feature
extraction combined with classical machine learning classifiers such as support vector machines (SVMs) [5],
k-nearest neighbors (k-NN) [6], and decision tree-based models [7]. Although these techniques demonstrated
reasonable performance in controlled settings, their effectiveness is constrained by the quality of manually
engineered features and their limited ability to capture complex morphological variations and nonlinear
temporal dynamics present in ECG signals [8]. Consequently, their generalization to diverse patient
populations and real-world clinical data remains challenging.

Recent advances in deep learning have significantly transformed ECG signal analysis by enabling
end-to-end learning directly from raw or minimally processed signals. Ferretti et al. [9] demonstrated the
effectiveness of a 1D convolutional neural networks (CNN) model for arrhythmia classification, achieving
high accuracy by learning spatial features from ECG signals without manual feature engineering. CNNSs, in
particular, have been widely adopted due to their strong capability to automatically learn discriminative spatial
and morphological features from ECG waveforms [10], [11]. Ribeiro et al. [12] demonstrated cardiologist-
level performance using deep neural networks for automatic ECG diagnosis, highlighting the clinical potential
of CNN-based approaches. Nevertheless, CNNs primarily focus on local receptive fields and are inherently
limited in modeling long-range temporal dependencies, which are essential for capturing rhythm-level patterns
and beat-to-beat variability in ECG recordings [13]. To address temporal modeling limitations, recurrent neural
networks (RNNSs) have been extensively explored for ECG classification tasks. Architectures such as long short-
term memory (LSTM) networks and gated recurrent units (GRUSs) are specifically designed to learn sequential
dependencies in time-series data, making them well-suited for ECG analysis [14]-[16]. Recent studies have
reported improved classification performance using LSTM- and GRU-based models, including micro-class and
multi-task learning strategies that enhance sensitivity to subtle arrhythmic patterns [17]-[19]. However,
conventional unidirectional RNNs process signals only in the forward temporal direction, which may limit
contextual understanding of cardiac cycles.

Bidirectional recurrent neural networks (Bi-RNNs) overcome this limitation by processing sequences
in both forward and backward directions, thereby leveraging past and future contextual information
simultaneously [20]. Such architectures have achieved remarkable success in speech recognition and sequence
modeling tasks [21]. To address this limitation, RNNs, particularly long short-term memory (LSTM)
architectures, have been explored for modeling ECG sequences. A bidirectional LSTM (Bi-LSTM) model that
processes ECG signals in both forward and backward directions, allowing the network to capture richer
temporal context and improve classification performance was proposed [22]. Building on this idea, a hybrid
CNN-BIiLSTM framework that combines spatial feature extraction with bidirectional temporal modeling,
achieving enhanced diagnostic accuracy for arrhythmia detection was introduced [23]. Despite these
improvements, class imbalance remains a major challenge in ECG datasets, where abnormal beats are often
underrepresented. The issue using a micro-class approach that improves sensitivity to rare arrhythmia types
was addressed [24]. Their results highlight the importance of designing models and training strategies that can
effectively detect minority-class events, which are clinically critical for early diagnosis and intervention. This
imbalance often biases learning algorithms toward majority classes, reducing sensitivity to clinically critical but
infrequent arrhythmias. To mitigate this issue, various data augmentation and resampling techniques have been
proposed, including the synthetic minority over-sampling technique (SMOTE) [25], generative adversarial
networks (GANS) [26], and domain-specific signal transformations such as jittering, scaling, and amplitude
modulation [27], [28]. While GAN-based approaches can generate highly realistic synthetic ECG signals, simpler
augmentation methods remain computationally efficient and effective for enhancing model robustness, especially
when combined with hybrid deep learning architectures [29].

Despite advances in deep learning for ECG classification, three critical gaps remain:

— Limited comparative studies on unidirectional vs. Bi-RNN under class-balanced conditions achieved
through simple yet effective augmentation strategies.

— Under exploration of augmentation techniques specifically optimized for temporal deep learning models in
ECG analysis.

— Lack of comprehensive evaluation metrics—such as receiver operating characteristic —area under the curve
(ROC-AUC), Matthews correlation coefficient (MCC), and Cohen’s Kappa—beyond accuracy,
particularly for minority-class performance.

This study addresses these gaps by conducting a systematic comparison of GRU-based unidirectional
and bidirectional architectures on an augmented MIT-BIH dataset. Jittering and scaling are applied to balance
the dataset, and models are evaluated using an extensive set of performance metrics, including accuracy,
precision, recall, F1-score, ROC-AUC, MCC, and Cohen’s Kappa. The contributions of this work are as follows:
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— Demonstrating the superiority of bidirectional temporal modeling for arrhythmia detection under balanced
data conditions.

— Validating computationally efficient augmentation strategies for ECG classification.

— Providing a comprehensive benchmark against recent state-of-the-art methods.

The rest of the paper is organized as follows: section 2 details the materials and method, section 3 presents the

results and discussion, and section 4 concludes with implications and future research directions.

2. MATERIALS AND METHOD

The methodology framework was designed to systematically evaluate the efficacy of unidirectional
and bidirectional GRU models for ECG arrhythmia classification, leveraging the MIT-BIH Arrhythmia
Database as the primary data source. ECG beats were extracted using the WFDB toolkit, with each heartbeat
segmented into a 128-sample window centered on the R-peak, following established preprocessing protocols
[24]. To address the severe class imbalance (6,279 normal vs. 43 arrhythmic beats), two computationally
efficient augmentation techniques—jittering (addition of Gaussian noise) and scaling (amplitude
modulation)—were applied to the minority class, balancing the dataset to 6,279 samples per class, as validated
in recent works ([27], [28]). Both GRU architectures were constructed with identical hyperparameters (two
layers, 64 hidden units, and Adam optimizer) and trained on 80% of the augmented data, while 20% was
reserved for testing. Performance metrics, including accuracy, precision, recall, and F1-score, were computed
to ensure comprehensive evaluation, with emphasis on minority-class detection. The bidirectional GRU
processed sequences in forward and backward directions to capture contextual dependencies, contrasting with
the unidirectional model’s restricted temporal scope ([28], [29]). This experimental design ensures a fair
comparison, isolating the impact of bidirectional temporal modeling while maintaining uniformity in data
handling, training protocols, and evaluation criteria.

2.1. Dataset and preprocessing

The dataset used in this study is derived from the MIT-BIH Arrhythmia Database, a widely utilized
and benchmarked resource for ECG signal analysis. Access to the dataset was facilitated through the WFDB
Python toolkit, which enables efficient reading and manipulation of ECG recordings and annotations.

This study uses the publicly available MIT-BIH Arrhythmia Database [24], a benchmark dataset
extensively utilized in ECG classification research. It contains 48 half-hour two-channel ambulatory ECG
recordings from 47 subjects, sampled at 360 Hz with 11-bit resolution over a 10 mV range. The dataset includes
expert-annotated R-peak locations and beat-type labels.

For this study, only Lead Il signals were used, as it is the most commonly employed lead for
arrhythmia detection and provides clinically relevant morphological information. Annotation symbols were
grouped into two classes:

— Class 0 (Normal beats): N, L, and R labels

— Class 1 (Arrhythmic beats): V (ventricular ectopic), A (atrial ectopic), and F (fusion)

The original dataset exhibits severe class imbalance, with 6,279 normal beats and only 43 arrhythmic
beats (Class 1).

Preprocessing was performed using the WFDB Python Toolkit [24], which enables direct access to
signal waveforms and annotations. The following steps were applied:

a. Beat segmentation — each heartbeat was extracted into a 128-sample fixed-length window centered on the
R-peak. This window length captures both pre- and post-R-peak morphology while keeping computational
complexity manageable.

b. Z-score normalization — each segment was normalized individually by subtracting the mean and dividing
by the standard deviation:

This ensures uniform amplitude scaling across beats and improves convergence during training.

c. Artifact removal — beats with incomplete annotations or excessive baseline drift (>15% of signal range)
were excluded. This quality control step reduced noise-related misclassifications.

Each heartbeat was segmented into fixed-length windows comprising 128 samples, centered precisely
at the R-peak to capture the most relevant part of the cardiac cycle for classification. For labeling purposes, the
beats were grouped into two classes based on the annotation symbols. Class O included normal beats
represented by N, L, and R annotations, while Class 1 consisted of arrhythmic beats categorized under V
(ventricular ectopic), A (atrial ectopic), and F (fusion) types. To ensure consistency across samples and mitigate
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the effects of amplitude variation and baseline drift, each beat underwent z-score normalization. This
normalization technique involved subtracting the mean and dividing by the standard deviation for each
individual beat, thus standardizing the input distribution and improving model convergence during training.

2.2. Data augmentation

To address the extreme class imbalance and improve model generalization, two lightweight yet
effective augmentation techniques were applied exclusively to Class 1 beats:

— Jittering — Gaussian white noise N(0,6%) with o in the range [0.005, 0.02] was added to the signal. This
simulates physiological and acquisition-related variations in ECG morphology.

— Scaling — amplitude scaling factors between 0.9 and 1.1 were applied to mimic patient-specific variations
in ECG voltage.

Augmentation was repeated iteratively until Class 1 contained the same number of beats as Class 0
(6,279 samples each), resulting in a balanced dataset of 12,558 beats. This choice of augmentation over more
complex methods such as GANs or SMOTE was motivated by computational efficiency and the low risk of
generating unrealistic beats.

A critical challenge encountered in the dataset was the severe class imbalance, with only 43
arrhythmic beats available compared to 6,279 normal beats. Such imbalance can severely bias the model
towards the majority class, reducing its sensitivity to minority-class events. To address this, data augmentation
techniques were applied exclusively to Class 1 samples. Two primary augmentation strategies were employed:
jittering and scaling. Jittering involved adding small amounts of random noise to the ECG signal to simulate
variability commonly observed in real-world recordings. Scaling, on the other hand, entailed amplifying the
ECG beat signal to mimic variations in signal amplitude due to physiological or acquisition-related factors.
These augmented samples were iteratively generated until the number of Class 1 samples matched that of Class
0, resulting in a balanced dataset with 6279 samples in each class. This augmentation process not only
addressed class imbalance but also introduced variability that contributed to the generalization capability of
the deep learning model.

2.3. Model architecture
Two GRU-based deep learning architectures were implemented:

2.3.1. Unidirectional recurrent neural network

In medical image segmentation tasks, particularly in areas such as tumor boundary identification or
lesion segmentation, U-Net has emerged as a powerful deep learning architecture due to its encoder-decoder
structure and high localization accuracy. The Figure 1 illustrates a step-by-step workflow typically used to

implement a U-Net-based segmentation model.

‘ Load images and masks |

v

| Resize, Normalize (128 x 128 grayscale) |

v

| Train/Test split (80/20) |

¥

| Build U-Net (Encode-Decoder Net) |

¥

‘ Compile Model (Adam, BCE, Accuracy) ‘

Train Model

‘ Evaluate on Test Set ‘

l

‘ Predict on Test Images ‘

l

Visualize
Input, GT Mask and predicted output

Figure 1. Workflow for training and evaluating a U-Net model for medical image segmentation
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The unidirectional RNN model shown in Figure 1 employed in this study is based on the GRU, a
variant of RNN known for its efficiency in capturing temporal dependencies in sequential data. The model
begins with a GRU layer comprising 64 units, which processes the ECG signal in a forward direction—from
the earliest to the latest time step—allowing it to learn the sequential structure of heartbeats. To prevent
overfitting and improve the generalization ability of the model, a dropout layer with a rate of 0.3 is applied
immediately after the GRU layer. This is followed by a dense (fully connected) layer containing 32 neurons,
which transforms the temporal features into a higher-level representation. The final layer is a dense output node
with a sigmoid activation function, which outputs a probability value indicating whether the input beat is
normal or arrhythmic. This straightforward architecture is lightweight and effective for modeling temporal
sequences, but its limitation lies in processing information in only one temporal direction.

The flowchart begins with the loading of input images and their corresponding ground truth (GT)
masks, which are essential for supervised learning. These images are then resized and normalized—typically
to a resolution of 128x128 in grayscale format—to ensure uniformity and reduce computational complexity.
The dataset is split into training and testing subsets, commonly in an 80/20 ratio, to allow both learning and
evaluation. A U-Net architecture, which consists of an encoder (for context capture) and a decoder (for precise
localization), is constructed. The model is compiled using the Adam optimizer, binary cross-entropy loss
(BCE), and accuracy as the evaluation metric. Training is carried out on the prepared dataset. Once training
concludes, the model’s performance is assessed on the test set, followed by predictions on unseen test images.
Finally, results are visualized by comparing input images, GT masks, and the model’s predicted outputs,
enabling qualitative assessment of segmentation accuracy.

2.3.2. Bidirectional recurrent neural network

Accurate classification of ECG beats is vital in automated cardiac monitoring systems. Leveraging
deep learning, particularly RNN like GRU, offers a robust approach for modeling temporal patterns in ECG
signals. The Figure 2 illustrates a complete pipeline for classifying ECG beats using a GRU-based deep
learning model trained on the MIT-BIH dataset.

TLoad MIT-BIH data and extract beat segments

v

Resize, Normalize (zero mean & unit

variance)

v

Data Augmentation — Add Jitter & scaling

v

Combine, normalize & shuffle - Merge class 0+
class 1 +Augment

v
| Train/Test split |
v
Build GRU Model — GRU-> Dropout—>Dense
v
Callbacks — Early stopping, LR Reduce
v
Train Model -Use training and validation data
v
Evaluate Predications
v
Visualize

Confusion matrix, plot training accuracy

Figure 2. Workflow for ECG beat classification using a GRU-based deep learning model
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The Bi-RNN model shown in Figure 2 extends the unidirectional architecture by incorporating a
bidirectional GRU layer with 64 units. Unlike the unidirectional GRU, which only considers past inputs, the
bidirectional GRU processes the sequence in both forward and backward directions, enabling the model to
learn from both past and future contexts of each time step. This dual-pass mechanism significantly enhances
the model’s ability to capture complex temporal dependencies in ECG signals, which often include features
that span both sides of the R-peak. Similar to the unidirectional model, a dropout layer with a 0.3 rate is used
after the Bi-GRU layer to reduce overfitting. This is followed by a dense layer with 32 units that consolidates
the bidirectional features, and finally, a sigmoid-activated dense output layer that classifies the beat as either
normal or arrhythmic. By leveraging information from the entire sequence, the bidirectional GRU model
typically offers improved accuracy and robustness in sequence classification tasks. The process begins with
loading ECG recordings from the MIT-BIH dataset and extracting individual beat segments around annotated
peaks.

These segments are then normalized to have zero mean and unit variance, ensuring uniformity across
samples. To address class imbalance, data augmentation techniques such as jittering and amplitude scaling are
applied to underrepresented classes. All beat segments—original and augmented—are merged, normalized
again, and shuffled to ensure randomization. The dataset is then split into training and testing sets. A GRU-
based neural network is constructed, featuring a sequence of GRU, dropout, and dense layers, optimized for
temporal signal processing. Training utilizes callbacks like early stopping and learning rate reduction to prevent
overfitting and stabilize learning. The model is trained using the training set and validated on the validation
split. Post-training, predictions are evaluated for performance, and results are visualized using a confusion
matrix and training accuracy plots to analyze classification effectiveness and training progression.

2.4. Training configuration

The training of the GRU-based ECG beat classification model was configured using the Adam
optimizer, known for its efficiency and adaptive learning rate capabilities. The loss function employed was
binary crossentropy, appropriate for the binary classification task. Training was conducted using a batch size
of 32 samples, with the number of epochs set to a maximum of 30. However, to prevent overfitting and optimize
learning, early stopping and learning rate reduction callbacks were incorporated. The dataset was partitioned
into 80% for training and 20% for testing, ensuring a sufficient amount of data for both model learning and
performance evaluation.

3. RESULTS AND DISCUSSION
3.1. Introduction to results

This study aimed to evaluate the effect of bidirectional temporal modeling on ECG arrhythmia
detection by comparing unidirectional and bidirectional GRU architectures under balanced data conditions
achieved through jittering and scaling augmentation. While both models were trained under identical
conditions, the results show a substantial performance advantage for the bidirectional model, particularly in
minority-class detection. This addresses a key limitation of many prior ECG classification models, which often
report high overall accuracy but fail to maintain balanced sensitivity across classes

The results shown in Table 1 clearly demonstrate the superiority of the Bi-RNN over the traditional
RNN across all evaluated metrics. The RNN achieved an overall accuracy of just 54.0%, with extremely poor
recall (9.0%) and F1-score (17.0%) for Class 1 (typically the minority or abnormal class), indicating severe
limitations in detecting critical beat types. In stark contrast, the Bi-RNN achieved an outstanding 98.17%
accuracy, with high precision (98.39%), recall (97.92%), and F1-score (98.16%) for Class 1, showcasing its
ability to reliably classify both normal and abnormal ECG beats.

Table 1. Performance comparison of standard RNN vs. Bi-RNN on ECG beat classification

Metric RNN  Bi-RNN
Accuracy 54.0% 98.17%
Precision (Class 1) 95.0%  98.39%
Recall (Class 1) 9.0% 97.92%
F1-score (Class 1) 17.0%  98.16%
ROC AUC - 0.9968
Matthews Corrcoef - 0.9634
Cohen's Kappa - 0.9634
log loss 0.0628

Balanced accuracy  54.0%  98.17%
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3.2. Summary of key findings

ECG beat classification relies heavily on the ability of machine learning models to interpret sequential
patterns in biomedical signals. RNN and Bi-RNNs are both designed for such time-series data, but Bi-RNNs
offer the distinct advantage of processing inputs in both forward and backward directions. This enables better
temporal context comprehension, which is crucial for detecting subtle abnormalities in ECG waveforms. The
table below presents a comparative performance analysis of standard RNN and Bi-RNN models for ECG beat
classification.

The unidirectional GRU achieved an overall accuracy of 54.0%, with precision of 95.0% but recall of
only 9.0% for arrhythmic beats, resulting in an F1-score of 17.0% for Class 1. These results indicate severe
under-detection of arrhythmic beats despite the model’s ability to correctly classify the majority class. In
contrast, the bidirectional GRU attained 98.17% accuracy, 98.39% precision, 97.92% recall, and a 98.16% F1-
score for Class 1, demonstrating a well-balanced ability to detect both normal and arrhythmic beats.

Advanced metrics further highlight the robustness of the Bi-RNN model. It recorded a near-perfect
ROC AUC of 0.9968, reflecting excellent discrimination between classes. The Matthews Correlation
Coefficient (0.9634) and Cohen’s Kappa (0.9634) indicate a strong agreement between predictions and true
labels, even in the presence of class imbalance. A low log loss (0.0628) confirms the model’s confident and
accurate probability estimates.

The 3D horizontal bar plot shown in Figure 3 provides a comparative visualization of key performance
metrics for two neural network architectures—RNN and Bi-RNN—in the context of ECG beat classification.
Each metric, including accuracy, precision, recall, F1-score, and balanced accuracy, is represented along the
horizontal axis, while the vertical axis distinguishes between the two models. The depth and height of the bars
encode the corresponding performance values, offering a clear visual comparison. The color gradient, scaled
from 1 to 5, represents the index of metrics for enhanced interpretability. The plot reveals that Bi-RNN
significantly outperforms RNN across all evaluated metrics, especially in recall and F1-score, emphasizing its
superior ability to capture both past and future contextual dependencies in sequential ECG data.

Comparison of RNN vs Bi-RNN (bar3h) mE
14.5
14
3.5
2
< 3
o
Q
(.(b’ 2.5
1
Balanci guracy
F1 Score
Bi-RNN Recall 15
Precision
Accuracy Metrics
Model 1

Figure 3. 3D horizontal bar plot (bar3h) comparing RNN and Bi-RNN performance metrics for ECG beat
classification

3.3. Interpretation of results

The results confirm that bidirectional sequence modeling substantially enhances ECG classification
performance. By processing input sequences in both forward and backward directions, the Bi-GRU model
effectively leverages post-R-peak waveform information, which can be critical for detecting subtle
morphological variations associated with arrhythmias. This advantage was particularly evident in the recall
metric for the arrhythmic class, which improved from 9.0% in the unidirectional model to 97.92% in the
bidirectional model.

This bubble chart shown in Figure 4 visually compares the performance of RNN and Bi-RNN models
across five critical metrics: accuracy, precision, recall, F1-score, and balanced accuracy in ECG beat
classification. Each bubble represents the score of a model for a specific metric, with its size proportional to
the value. Blue bubbles indicate RNN scores, while red bubbles represent Bi-RNN scores. The chart clearly
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illustrates Bi-RNN's superior performance, with significantly larger bubbles across all metrics, especially in
recall (97.92% vs. 9%) and F1-score (98.16% vs. 17%). The stark contrast highlights the advantage of using a
bidirectional architecture, which captures both past and future sequence information more effectively than a
traditional RNN. The stark performance disparity highlights the importance of capturing future context in ECG
signals for effective arrhythmia detection. Unidirectional RNNs may underperform due to their limited access
to contextual information that follows the R-peak, a limitation not present in Bi-RNNs. Data augmentation
significantly improved the model's sensitivity to minority class features, enabling the Bi-RNN to learn robust
patterns. In summary, while the standard RNN struggles with poor generalization and fails to capture temporal
dependencies effectively, the Bi-RNN leverages bidirectional context to deliver highly accurate and balanced
classification performance, making it the clearly superior choice for ECG beat classification tasks. These
findings are consistent with Sarankumar et al. [23], who reported superior minority-class detection when
applying Bi-GRU architectures to atrial fibrillation detection, and Lv et al. [22], who achieved a 4% recall
improvement in Bi-LSTMs over unidirectional LSTMs for ECG classification. However, the magnitude of
improvement in the present study is greater, likely due to the combination of bidirectional modeling and
targeted augmentation strategies that ensured balanced exposure to minority-class examples during training.

Bubble Chart: RNN vs Bi-RNN

sRan @ L i L J L

Models

RNN - 5“0 9‘0 990 17.00 5“0

oM
o) &0 I%
N\ N @e
9 o
PO \

Metrics

Figure 4. Bubble chart comparison of RNN and Bi-RNN models based on key performance metrics

3.4. Comparison with previous works

When compared to earlier CNN-based ECG classification models, such as Ribeiro et al. [12] (97%
accuracy) and Ferretti et al. [9] (96.5% accuracy), the proposed Bi-GRU model achieves competitive or
superior performance while offering better temporal feature modeling. Unlike purely convolutional
approaches, which primarily capture spatial features, the Bi-GRU captures sequential dependencies that are
crucial for rhythm classification. Similarly, hybrid CNN-RNN approaches like Islam et al. [29] achieved 98.2%
accuracy, closely matching the results of this work, but often at higher computational cost due to more complex
feature extraction stages.

3.5. Limitations and implications

Despite these encouraging results, it is important to note that the model was trained and evaluated on
a single benchmark dataset (MIT-BIH). While the balanced augmentation strategy improved generalization
within the dataset, performance on real-world clinical ECG data with different patient demographics or
acquisition hardware remains to be validated. Additionally, while jittering and scaling are effective for
simulating variability, they may not capture the full range of morphological patterns seen in rare arrhythmias.

The clinical implications of these findings are significant. A reduction in false negatives — as
evidenced by the high recall of the Bi-GRU — directly translates to improved detection of potentially life-
threatening arrhythmic events in real-time monitoring systems. The computational efficiency of the model,
combined with its high accuracy, makes it a viable candidate for deployment in portable ECG devices and
continuous cardiac monitoring systems.
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3.6. Directions for future work

Building on these results, future research could explore integrating attention mechanisms into the Bi-
GRU framework to improve interpretability, enabling clinicians to visualize which parts of the ECG sequence
most influence classification decisions. Testing the model across multiple datasets, including multi-lead ECG
signals, would provide stronger evidence of its generalizability. Furthermore, incorporating more advanced
augmentation techniques, such as GAN-based synthetic beat generation, or combining augmentation with real
beats from complementary datasets like INCART or AHA DB, could further enhance performance on rare
arrhythmia classes.

4. CONCLUSION

This study presented a comprehensive comparative analysis of unidirectional and bidirectional GRU
architectures for ECG arrhythmia classification using the MIT-BIH Arrhythmia Database, enhanced with
jittering and scaling to address extreme class imbalance. The results demonstrated that the bidirectional GRU
significantly outperformed its unidirectional counterpart across all performance metrics, achieving 98.17%
accuracy, 98.39% precision, 97.92% recall, and a 98.16% F1-score. In contrast, the unidirectional GRU
struggled to detect minority-class arrhythmic beats, with a recall of only 9%, highlighting the critical advantage
of bidirectional temporal modeling in capturing both past and future contextual dependencies within ECG
sequences. The superior performance of the Bi-GRU was further validated by advanced metrics, including an
ROC-AUC of 0.9968, MCC of 0.9634, and low log loss of 0.0628, indicating high robustness and reliability
even under balanced data conditions achieved via augmentation. The findings emphasize that computationally
lightweight augmentation techniques, when combined with bidirectional sequence modeling, can yield highly
accurate and generalizable models for clinical arrhythmia detection. Importantly, the notable reduction in false
negatives suggests a tangible clinical benefit, as missed arrhythmic events can have serious implications for
patient outcomes. Despite these promising results, several limitations should be acknowledged.

The study used data from a single benchmark dataset (MIT-BIH), which may not fully capture the
diversity of ECG patterns across different populations, acquisition devices, or pathological conditions.
Additionally, the augmentation strategies, while effective, were limited to jittering and scaling; more diverse
transformations or multi-database fusion could further improve generalization. Future research could extend
this work in several directions. First, evaluating the proposed approach on multiple large-scale, multi-lead ECG
datasets would validate its generalizability. Second, incorporating advanced augmentation strategies such as
GAN-based synthetic beat generation or hybrid oversampling methods could enhance robustness against rare
arrhythmia types. Third, exploring lightweight model compression techniques, including quantization and
pruning, would facilitate real-time deployment on wearable or portable ECG monitoring devices. Finally,
integrating attention mechanisms into bidirectional architectures could improve interpretability, enabling
clinicians to better understand the temporal features influencing model predictions. Overall, the findings of this
study strongly support the use of bidirectional GRU architectures, coupled with efficient data augmentation,
as a practical and high-performing solution for automated ECG arrhythmia detection, with clear potential for
deployment in real-world clinical monitoring systems.
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