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Wildfire forecasting is a critical challenge in environmental signal
processing and disaster response planning. The ability to interpret
multimodal spatiotemporal signals is essential for early warning systems and
resource deployment. This study addresses these limitations by proposing a
unified prediction-to-action framework. We utilized four open-access
datasets—wildland fire emissions database (WFED), fire information for
resource management system (FIRMS), Sentinel Hub, and a custom
moderate resolution imaging spectroradiometer+shuttle radar topography
mission (ERA5+MODIS+SRTM) fusion—covering fire occurrences,
vegetation indices, meteorological parameters, and topographic features.
These heterogeneous signals were preprocessed, aligned, and transformed
into structured tensors for model training and evaluation. We use a
transformer-based system to understand long-term patterns in space and
time, enhanced by a belief-desire—intention (BDI) reasoning module that
connects our predictions to flexible wildfire response plans. The novelty lies
in the integration of signal-aware attention mechanisms with symbolic
decision modeling. Model performance was evaluated using F1-score,
intersection over union (loU), mean absolute error (MAE), and directional
accuracy. The suggested framework did better than the basic convolutional
neural network (CNN) models, reaching an F1-score of 0.74, a directional
accuracy of 84.3%, and lowering the MAE to 7.6 km?, while also providing
clear and relevant action suggestions.
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1. INTRODUCTION

Wildfires are emerging as major natural disasters, characterized by their higher frequency, larger
scale, and greater unpredictability due primarily to the progress of climate change and human activity [1],
[2]. These disruptions have implications for both ecological systems and human infrastructure and for
environmental signal interpretation and emergency response [3]. The existing models, e.g., Canadian forest
fire behavior prediction system (CFFBPS) and fire area simulator (FARSITE), are all based on deterministic
simulation rules and empirical look-up tables, which makes them less efficient and general to varying land-
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use and environment settings and real-time applications. With the availability of high-resolution geospatial

data and Earth observation systems, deep learning and signal processing frameworks can be leveraged for

spatiotemporal modeling of wildfire [4], [5].

Recent literature has studied convolutional neural networks (CNN) and recurrent algorithms for fire
detection and short-term prediction [6], [7]. However, these approaches face challenges when attempting to
model long-range dependence structure accurately, as well as how to integrate multi-modal signals (e.g.,
altitude, vegetation indices, wind fields, and humidity) into a global but regionally adaptable way to predict
[8]. With a self-attention module and the ability to encode temporal and spatial structures, transformers have
become a potential approach to dealing with the structured environmental signals. Current transformer-based
models such as automatic spatio-temporal network (AutoST-Net) and position-enhanced transformer
(PETFormer) are very good at predicting weather and fire, but they mainly focus on predicting features and
do not provide practical results. Besides, sparse attempts have combined transformer outputs with symbolic
reasoning tools for decision-making [9]-[11].

The volume and frequency of wildfire are increasing due to climate change and human intervention,
posing severe threats to ecosystems, infrastructure, and human societies. Classical models such as FARSITE
and CFFBPS are based on deterministic rules and empirical tables, which reduce its versatility in a variety of
matched landscapes and real-time operations [12], [13]. The latest development of deep learning, specifically
CNNs and recurrent models [14]-[16], make it possible to achieve the short-term fire detection and
prediction, however, suffers from challenging for long-range spatiotemporal dependencies estimation as well
as addressing multi-modal signal fusion. With their self-attention mechanism, Transformers have become
powerful tools for encoding structured environment signals. Models such as AutoST-Net and PETFormer
show promise for weather or fire forecasting, but they focus mostly on feature-level predictions and do not
necessarily inform decision making. There have been some efforts to reconcile the prediction and decision
process by predictive modelling and decision support via symbol reasoning or policy-driven framework
[17], [18].

This paper introduces a new type of transformer model that uses a belief-desire—intention (BDI)
reasoning system to predict how wildfires will spread over several days and to help plan responses. The
model takes in different types of environmental information, like satellite images, weather data, and land
features, and turns them into organized data structures that include position information that can be learned.
We input these to a multi-head attention transformer and produce two prediction streams: predicted burned
area and directional spread vectors [19], [20]. The aggregate outputs are then fed into a BDI-based agent
framework, which simulates fire-extinguish decision, evacuation plan and resource allocation to generate
more detailed predictions (basic prediction results become useful actions). To the best of our knowledge, the
contributions of this research to signal processing, deep learning and environmental modelling are:

— Spatiotemporal signal encoding: a transformer architecture is designed to encode long-range
dependencies in multimodal geospatial signals for wildfire spread prediction.

— Directional attention mechanism: the model introduces directional loss to estimate fire propagation
vectors, enhancing interpretability in spatiotemporal forecasts.

— BDI-based decision logic: for the first time, transformer outputs are integrated with symbolic BDI agents,
aligning environmental signal interpretation with domain-specific response protocols.

— Cross-dataset evaluation: model robustness is demonstrated across four diverse wildfire datasets with
different resolutions and ecological contexts, using metrics including Fl-score, mean absolute error
(MAE), and accuracy.

A proper consideration of predictive and decision side in wildfire management, has been a
contribution of this work to the field advancement of environmental signal processing and disaster planning.
Despite the advanced progress for wildfire behavior models, such methods have two drawbacks: i) deep
learning models suffer from poor generalization across space and time due to finite receptive fields and the
lacking of effective mechanisms for signal fusion and ii) direct usage of predicted outputs at times of
emergency is infeasible. This integration of this transformer-based spatiotemporal signaling modeling system
with decision-aware symbolic reasoning is addressed in this work.

2. DATASET DESCRIPTION

Three data set available to the public are utilized, comprised of fire events, vegetation conditions
and a meteorological data set specific to foster a multi-day forecast and response for wildfire. These available
datasets offer multi modal input at various spatial and temporal resolutions that allows stable spatiotemporal
signal processing across a variety of environments. A short overview of the multimodal datasets used for
wildfire prediction is given in Table 1, which shows their characteristics and sources.
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Table 1. Summary of datasets used for wildfire forecasting

Fire  Vegetation Meteorological Topographic

Dataset masks indices data data Resolution Source
WFED (WRI/NASA) [21] X X X 375-500m  WRI and MODIS/VIIRS
Sentinel Hub [22] X X X 10-20 m Copernicus EO Browser
FIRMS (MODIS/VIIRS) X X X 375 m-1 NASA FIRMS
23 km
[ER,]A5+MODIS+SRTM (Temp, (Slope 500 m-1 ECMWF, MODIS, and
(Custom) wind, and RH) and km NASA SRTM

elevation)

3.

PROPOSED METHOD
The design contains a transformer spatiotemporal model combined with a symbolic BDI reasoning

layer not only to predict the wildfire but make decisions of several days. A schematic representation of the
complete pipeline for the envisaged system from multimodal signal processing to BDI-driven fire response
planning is illustrated in Figure 1. The method consists of four main steps:

a.

Multimodal signal preprocessing: static (e.g., elevation and slope), dynamic meteorological (e.g.,
temperature and wind), and vegetation indices (e.g., NDVI) are aligned to a unified spatial grid
(128x128). Min—max normalization and spatial masking are applied to handle resolution mismatches and
missing values.
Spatiotemporal tensor construction: preprocessed signals are encoded as multimodal tensors across a
time window. Learnable spatial and temporal position embeddings are added to preserve structure in the
environmental signal flow.
Transformer-based prediction module: a multi-head self-attention transformer processes the encoded
tensors to predict binary fire masks and directional spread vectors. A composite loss function—
combining cross-entropy, Dice loss, and directional loss—guides optimization.
BDI reasoning and action mapping: the transformer outputs are used to build agent beliefs. Based on
prioritized desires (e.g., minimize damage and protect infrastructure), the system maps intentions to
response actions, enabling simulation of role-specific emergency strategies such as firebreak deployment
or evacuation alerts.

Such a pipeline forms a complete loop from input of environmental signals to interpretable, goal-

oriented response planning. The general pipeline of the proposed method is shown in Figure 2, which
emphasizes the training transformer framework, spatial-temporal embedding and two-head (burn probability
and spread direction) outputs learned by a combined loss function.
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Figure 1. End-to-end architecture of the proposed transformer+BDI framework for wildfire prediction and

response
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Figure 2. Transformer-based wildfire prediction framework with dual outputs (binary fire mask and
directional spread map)

Algorithm 1. Wildfire spread forecasting and response using transformer+BDI framework
Input:
e Static features SeRCHW
e Vegetation indices V;eR®H*W
Dynamic meteorological data DyeRC>H*W
Ground truth fire masks {Y;}7_; and direction vectors {v;} I_;
Critical zone map C (infrastructure, population zones)
e Forecast window T (e.g., 3 or 5 days)
Output:
e  Predicted fire masks M,, directional vectors D,
e Contextual action plan A
Step 1: Multimodal Tensor Construction
1. Normalize all input features to [—1,1]
2. Align spatial resolution to a unified grid (e.g., 128 x 128)
3. Foreachdayt=1toT:
Construct input tensor X, = [S; V;; D;]
Step 2: Positional Encoding and Flattening
4. Apply trainable spatial and temporal encodings Pspatiai » Premporat

5. Flatten X;.r into a sequence of tokens Z
Step 3: Transformer-Based Fire Prediction
6. Pass Z through Transformer encoder—decoder:
a. Multi-head self-attention over token sequence
b. Feedforward layers per Transformer block
7. Output:
M,: predicted fire mask
D,: directional fire spread vectors (N/S/E/W)
Step 4: Loss Computation and Optimization
8. Compute total loss
Leotar = MLpce + A12Lgice + A31Lair
9. Optimize using AdamW with early stopping based on validation F1-score
Step 5: BDI-Based Decision Reasoning

10. Construct belief state B, « {Mt, ﬁt,Xt, C}

11. Generate role-specific desire set D, = {d,,d, ...d,,}
e.g., minimize area, protect population, safeguard infrastructure
12. Evaluate desires using utility functions U(d;, B;)
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13. Select intention I, = arg max U(d,B,)

14. Map intention to action plan using policy function A = w(I)
Step 6: Execute or Recommend Action
15. Output fire response strategy A:
(e.g., firebreak creation, evacuation alert, drone deployment)

4. EXPERIMENTAL SETUP

The introduced wildfire prediction model was developed by assuming uniform processing, training,
and testing settings with high-performance computing (HPC) infrastructure support. All experiments were
conducted on aligned multiday multimodal data with matching spatial resolutions (128x128) and temporal
resolutions over a day for 3-day and 5-day forecasts. Model training was carried out by-basederten optimizing
using AdamW, cosine learning rate scheduling, and early stopping. To benchmark the model performance,
we compare with baseline models: multi-attention network (MA-Net), U-shaped network (U-Net),
convolutional long short-term memory (ConvLSTM), and vanilla vision transformer (ViT). Performance
metrics were F1-score, intersection over union (loU), MAE, directional accuracy, and inference latency. The
configuration details of the experiment with hardware, software, parameters, and baseline comparisons are
presented in Table 2. We trained each model with five random seeds and report results as mean * standard
deviation. Statistical significance was assessed using paired t-tests against baselines (p<0.05).

Table 2. Experimental setup for model training and evaluation

Component Description
Hardware NVIDIA Tesla V100 (16 GB), Intel Xeon Gold CPU, 128 GB RAM, and Ubuntu 20.04
Software Python 3.10, PyTorch 2.1, HuggingFace, PyTorch Lightning, and Scikit-learn
Input resolution 128x128 pixels (=21x21 km area)
Forecast Window 3-day and 5-day temporal frames
Batch size 8
Optimizer AdamW with cosine annealing learning rate (start: 1e—4)
Regularization Dropout (0.3), gradient clipping (1.0), and L2 weight decay (1e—5)
Loss functions Binary cross-entropy, dice loss, and directional cosine loss
Evaluation metrics F1-score, loU, MAE, MAPE, directional accuracy, inference time, and FLOPs
Baselines MA-Net, UNet, ConvLSTM, and ViT

5. RESULTS AND DISCUSSION

The Transformer+BDI model was tested on four wildfire-related datasets where predictive accuracy,
spatial consistency, and decision promptness were evaluated. Experimental results demonstrated that the
proposed method consistently achieved better performance of fire-discipline prediction, direction-spread
estimation, and inference latency than the baseline models. The cross-dataset benchmarking results,
summarized in Table 3, demonstrate that the proposed model consistently outperforms CNN, recurrent neural
network (RNN), and transformer-based baselines across all four datasets in terms of F1-score, loU, MAE,
and directional accuracy, while maintaining competitive inference time. Table 3 presents the detailed
performance of different models across all four datasets, comparing F1-score, loU, MAE, directional
accuracy, and inference time. Key findings include:

— High predictive accuracy on the ERA5+MODIS+SRTM composite dataset with an F1-score of 0.75 and
lowest MAE of 7.4 km2,

— Directional accuracy exceeded 85%, reflecting the model’s effectiveness in estimating fire spread
vectors—a critical parameter for early warning systems.

— BDI agents demonstrated operational relevance by converting predictions into context-specific action
plans with high action consistency and low latency.

The BDI based wildfire intervention system was tested for 5 operational criteria and are false
suppression, decision distribution, response delay, alert compliance with intervention and missed predictions.
Experimental results show that the BDI integration can reduce false suppressions, speed up agents' response
and balance action distribution [24], [25]. Adherence to the alerts improved with time and fewer missed
predictions were observed in high-risk areas. These improvements are shown in Figure 3 over evaluation
measures.

Furthermore, the ablation study supports the effectiveness of each component in our model. The
complete Transformer+BDI model achieved the best accuracy (97.1%) and removal of the BDI layer,
direction head or attention led to a drop on accuracy. It received the lowest scores by the MA-Net baseline
(89.9%). The ablation results are shown in Table 4, where we illustrate the performance degradation upon
removing the key components of proposed model.
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Table 3. Cross-dataset performance of different models (mean = SD over 5 runs)
Model Dataset Fl1-score 1 IoU 1 MAE (km?) | Dir. acc. (%) 1 tilr?]feeEf:;e |
U-Net WFED 0.65£0.02  0.50+0.01 12.4+0.5 72.1£13 10215
Sentinel Hub (NDVI) 0.63:0.03  0.47+0.02 13.2+0.6 70.8+1.2 105+1.7
FIRMS (MODIS/VIIRS) ~ 0.66£0.02  0.51#0.01 11.8+0.4 745£1.1 99+1.4
ERA5+MODIS+SRTM 0.68£0.02  0.52+0.01 11.2¢0.5 75.6+1.2 97+1.6
MA-Net WFED 0.66£0.02  0.51+0.01 11.9+0.5 73.0£1.2 10115
Sentinel Hub (NDVI) 0.64£0.03  0.48+0.01 12.6+0.6 717413 104+1.6
FIRMS (MODIS/VIIRS) ~ 0.67£0.02  0.52+0.01 11.4+0.4 75.2+1.2 98+1.5
ERA5+MODIS+SRTM 0.69£0.02  0.53+0.01 10.8+0.5 76.1£1.1 96£1.5
ConvLSTM  WFED 0.67£0.02  0.52+0.01 11.3+0.5 74.0£1.2 103+1.6
Sentinel Hub (NDVI) 0.65£0.02  0.49+0.01 12.1+0.6 72.6£1.3 106+1.6
FIRMS (MODIS/VIIRS) ~ 0.69£0.02  0.54+0.01 10.7+0.4 76.3+1.2 98+1.5
ERA5+MODIS+SRTM 0.71#0.02  0.55%0.01 10.1+0.5 77.2%1.2 95+1.4
Transformer WFED 0.68£0.02  0.53+0.01 10.5¢0.5 76.5£1.2 10415
(ViT) Sentinel Hub (NDVI) 0.66£0.02  0.50+0.01 11.7+0.6 74.0£1.2 10717
FIRMS (MODIS/VIIRS) ~ 0.70£0.02  0.55%0.01 10.0£0.4 78.0£1.1 10015
ERA5+MODIS+SRTM 0.72£0.02  0.56+0.01 9.540.4 79.3£1.2 96£1.5
Proposed WFED 0.70£0.02  0.55%0.01 9.6£0.4 79.8+1.2 98+1.5
(ours) Sentinel Hub (NDVI) 0.68£0.03  0.52+0.02 10.3+0.5 77.6£1.3 101+1.8
FIRMS (MODIS/VIIRS) ~ 0.72£0.02  0.57+0.01 8.740.3 82.4+1.1 95+1.4
ERA5+MODIS+SRTM 0.75£0.02  0.59+0.02 7.4+03 85.1+1.0 92+1.2
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Figure 3. BDI-based wildfire response evaluation with refined operational parameters

Table 4. Ablation study of proposed model

Variant F1 (%)t IoU (%)t MAE (km? | Dir.acc. (%) 1
Full model (ours) 740+10 663+12 76+05 843111
— Directional loss 718+11 645+10 89+06 794+13
— Positional encoding 712+10 639+11 91+07 788+14
— Meteorological features 70509 631+12 98+06 772112
— Vegetation features 697+12 624+11 102+07 765+13
— BDI reasoning (no action map)  735+10 658+10 7806 821+12
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In order to investigate robustness and as they are described by many authors [26]-[28], we change
the main parameters and analyse their impact on predictive accuracy. First, a ¢ (standard deviation of ERAS
estimates) increment in wind input uncertainty induced fluctuations of £2-3% directional accuracy indicating
on moderate sensitivity of the model to meteorological noise. Second, rescaling the grid size from 64x64 to
256x256 showed a trade-off whereby higher-resolution grids increased the loU by 1.5% but also boosted
inference time by 20%. Lastly, displacement of the decision threshold for burned-cell classification (0.4-0.6)
resulted in £2% shifts in F1-scores, suggesting that threshold tuning offers users much opportunity to trade
off between false positives and false negatives according to operational needs.

6. CONCLUSION

This paper presented a method for predicting wildfires using a transformer model along with a BDI
reasoning layer to help plan flexible responses. By analyzing various environmental signals, the model
performs well in predicting wildfires and creating action plans, which enhances its clarity and focus on
achieving goals. The model outperforms other baseline methods in terms of accuracy, efficiency, and
generalizability across various benchmark datasets. In future work, we will investigate real-time data
integration using unmanned aerial vehicles (UAVS) and IoT devices and the optimization of our model for
edge deployment, and we will further develop BDI agents with dynamic learning to address complex,
unfolding fire situations.
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