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 Wildfire forecasting is a critical challenge in environmental signal 

processing and disaster response planning. The ability to interpret 

multimodal spatiotemporal signals is essential for early warning systems and 

resource deployment. This study addresses these limitations by proposing a 

unified prediction-to-action framework. We utilized four open-access 

datasets—wildland fire emissions database (WFED), fire information for 

resource management system (FIRMS), Sentinel Hub, and a custom 

moderate resolution imaging spectroradiometer+shuttle radar topography 

mission (ERA5+MODIS+SRTM) fusion—covering fire occurrences, 

vegetation indices, meteorological parameters, and topographic features. 

These heterogeneous signals were preprocessed, aligned, and transformed 

into structured tensors for model training and evaluation. We use a 

transformer-based system to understand long-term patterns in space and 

time, enhanced by a belief–desire–intention (BDI) reasoning module that 

connects our predictions to flexible wildfire response plans. The novelty lies 

in the integration of signal-aware attention mechanisms with symbolic 

decision modeling. Model performance was evaluated using F1-score, 

intersection over union (IoU), mean absolute error (MAE), and directional 

accuracy. The suggested framework did better than the basic convolutional 

neural network (CNN) models, reaching an F1-score of 0.74, a directional 

accuracy of 84.3%, and lowering the MAE to 7.6 km², while also providing 

clear and relevant action suggestions. 
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1. INTRODUCTION 

Wildfires are emerging as major natural disasters, characterized by their higher frequency, larger 

scale, and greater unpredictability due primarily to the progress of climate change and human activity [1], 

[2]. These disruptions have implications for both ecological systems and human infrastructure and for 

environmental signal interpretation and emergency response [3]. The existing models, e.g., Canadian forest 

fire behavior prediction system (CFFBPS) and fire area simulator (FARSITE), are all based on deterministic 

simulation rules and empirical look-up tables, which makes them less efficient and general to varying land-
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use and environment settings and real-time applications. With the availability of high-resolution geospatial 

data and Earth observation systems, deep learning and signal processing frameworks can be leveraged for 

spatiotemporal modeling of wildfire [4], [5]. 

Recent literature has studied convolutional neural networks (CNN) and recurrent algorithms for fire 

detection and short-term prediction [6], [7]. However, these approaches face challenges when attempting to 

model long-range dependence structure accurately, as well as how to integrate multi-modal signals (e.g., 

altitude, vegetation indices, wind fields, and humidity) into a global but regionally adaptable way to predict 

[8]. With a self-attention module and the ability to encode temporal and spatial structures, transformers have 

become a potential approach to dealing with the structured environmental signals. Current transformer-based 

models such as automatic spatio-temporal network (AutoST-Net) and position-enhanced transformer 

(PETFormer) are very good at predicting weather and fire, but they mainly focus on predicting features and 

do not provide practical results. Besides, sparse attempts have combined transformer outputs with symbolic 

reasoning tools for decision-making [9]-[11]. 

The volume and frequency of wildfire are increasing due to climate change and human intervention, 

posing severe threats to ecosystems, infrastructure, and human societies. Classical models such as FARSITE 

and CFFBPS are based on deterministic rules and empirical tables, which reduce its versatility in a variety of 

matched landscapes and real-time operations [12], [13]. The latest development of deep learning, specifically 

CNNs and recurrent models [14]-[16], make it possible to achieve the short-term fire detection and 

prediction, however, suffers from challenging for long-range spatiotemporal dependencies estimation as well 

as addressing multi-modal signal fusion. With their self-attention mechanism, Transformers have become 

powerful tools for encoding structured environment signals. Models such as AutoST-Net and PETFormer 

show promise for weather or fire forecasting, but they focus mostly on feature-level predictions and do not 

necessarily inform decision making. There have been some efforts to reconcile the prediction and decision 

process by predictive modelling and decision support via symbol reasoning or policy-driven framework  

[17], [18]. 

This paper introduces a new type of transformer model that uses a belief–desire–intention (BDI) 

reasoning system to predict how wildfires will spread over several days and to help plan responses. The 

model takes in different types of environmental information, like satellite images, weather data, and land 

features, and turns them into organized data structures that include position information that can be learned. 

We input these to a multi-head attention transformer and produce two prediction streams: predicted burned 

area and directional spread vectors [19], [20]. The aggregate outputs are then fed into a BDI-based agent 

framework, which simulates fire-extinguish decision, evacuation plan and resource allocation to generate 

more detailed predictions (basic prediction results become useful actions). To the best of our knowledge, the 

contributions of this research to signal processing, deep learning and environmental modelling are: 

− Spatiotemporal signal encoding: a transformer architecture is designed to encode long-range 

dependencies in multimodal geospatial signals for wildfire spread prediction. 

− Directional attention mechanism: the model introduces directional loss to estimate fire propagation 

vectors, enhancing interpretability in spatiotemporal forecasts. 

− BDI-based decision logic: for the first time, transformer outputs are integrated with symbolic BDI agents, 

aligning environmental signal interpretation with domain-specific response protocols. 

− Cross-dataset evaluation: model robustness is demonstrated across four diverse wildfire datasets with 

different resolutions and ecological contexts, using metrics including F1-score, mean absolute error 

(MAE), and accuracy.  

A proper consideration of predictive and decision side in wildfire management, has been a 

contribution of this work to the field advancement of environmental signal processing and disaster planning. 

Despite the advanced progress for wildfire behavior models, such methods have two drawbacks: i) deep 

learning models suffer from poor generalization across space and time due to finite receptive fields and the 

lacking of effective mechanisms for signal fusion and ii) direct usage of predicted outputs at times of 

emergency is infeasible. This integration of this transformer-based spatiotemporal signaling modeling system 

with decision-aware symbolic reasoning is addressed in this work. 

 

 

2. DATASET DESCRIPTION 

Three data set available to the public are utilized, comprised of fire events, vegetation conditions 

and a meteorological data set specific to foster a multi-day forecast and response for wildfire. These available 

datasets offer multi modal input at various spatial and temporal resolutions that allows stable spatiotemporal 

signal processing across a variety of environments. A short overview of the multimodal datasets used for 

wildfire prediction is given in Table 1, which shows their characteristics and sources. 
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Table 1. Summary of datasets used for wildfire forecasting 

Dataset 
Fire 

masks 
Vegetation 

indices 
Meteorological 

data 
Topographic 

data 
Resolution Source 

WFED (WRI/NASA) [21] ✅ ✗ ✗ ✗ 375–500 m WRI and MODIS/VIIRS 

Sentinel Hub [22] ✗ ✅ ✗ ✗ 10–20 m Copernicus EO Browser 

FIRMS (MODIS/VIIRS) 
[23] 

✅ ✗ ✗ ✗ 375 m–1 
km 

NASA FIRMS 

ERA5+MODIS+SRTM 

(Custom) 
✅ ✅ ✅ (Temp, 

wind, and RH) 

✅ (Slope 

and 
elevation) 

500 m–1 

km 

ECMWF, MODIS, and 

NASA SRTM 

 

 

3. PROPOSED METHOD 

The design contains a transformer spatiotemporal model combined with a symbolic BDI reasoning 

layer not only to predict the wildfire but make decisions of several days. A schematic representation of the 

complete pipeline for the envisaged system from multimodal signal processing to BDI-driven fire response 

planning is illustrated in Figure 1. The method consists of four main steps: 

a. Multimodal signal preprocessing: static (e.g., elevation and slope), dynamic meteorological (e.g., 

temperature and wind), and vegetation indices (e.g., NDVI) are aligned to a unified spatial grid 

(128×128). Min–max normalization and spatial masking are applied to handle resolution mismatches and 

missing values. 

b. Spatiotemporal tensor construction: preprocessed signals are encoded as multimodal tensors across a 

time window. Learnable spatial and temporal position embeddings are added to preserve structure in the 

environmental signal flow. 

c. Transformer-based prediction module: a multi-head self-attention transformer processes the encoded 

tensors to predict binary fire masks and directional spread vectors. A composite loss function—

combining cross-entropy, Dice loss, and directional loss—guides optimization. 

d. BDI reasoning and action mapping: the transformer outputs are used to build agent beliefs. Based on 

prioritized desires (e.g., minimize damage and protect infrastructure), the system maps intentions to 

response actions, enabling simulation of role-specific emergency strategies such as firebreak deployment 

or evacuation alerts. 

Such a pipeline forms a complete loop from input of environmental signals to interpretable, goal-

oriented response planning. The general pipeline of the proposed method is shown in Figure 2, which 

emphasizes the training transformer framework, spatial–temporal embedding and two-head (burn probability 

and spread direction) outputs learned by a combined loss function. 
 
 

 
 

Figure 1. End-to-end architecture of the proposed transformer+BDI framework for wildfire prediction and 

response 
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Figure 2. Transformer-based wildfire prediction framework with dual outputs (binary fire mask and 

directional spread map) 
 
 

Algorithm 1. Wildfire spread forecasting and response using transformer+BDI framework 

Input: 

• Static features S∈RCs×H×W 

• Vegetation indices Vt∈RCv×H×W 

• Dynamic meteorological data Dt∈RCd×H×W 

• Ground truth fire masks {𝑌𝑡}𝑡=1
𝑇  and direction vectors {𝑣𝑡⃗⃗  ⃗} 𝑡=1

𝑇  

• Critical zone map C (infrastructure, population zones) 

• Forecast window T (e.g., 3 or 5 days) 

Output: 

• Predicted fire masks 𝑀̂𝑡 , directional vectors 𝐷̂𝑡 

• Contextual action plan A 

Step 1: Multimodal Tensor Construction 

1. Normalize all input features to [−1,1] 

2. Align spatial resolution to a unified grid (e.g., 128 × 128) 

3. For each day t=1 to T: 

  Construct input tensor 𝑋𝑡 = [𝑆; 𝑉𝑡; 𝐷𝑡] 
Step 2: Positional Encoding and Flattening 

4. Apply trainable spatial and temporal encodings 𝑃𝑠𝑝𝑎𝑡𝑖𝑎𝑙 , 𝑃𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙   

5. Flatten 𝑋1:𝑇 into a sequence of tokens Z 

Step 3: Transformer-Based Fire Prediction 

6. Pass Z through Transformer encoder–decoder: 

a. Multi-head self-attention over token sequence 

b. Feedforward layers per Transformer block 

7. Output:  

𝑀̂𝑡: predicted fire mask 

𝐷̂𝑡: directional fire spread vectors (N/S/E/W) 

Step 4: Loss Computation and Optimization 

8. Compute total loss 
𝐿𝑡𝑜𝑡𝑎𝑙 = 𝜆1𝐿𝑏𝑐𝑒 + 𝜆12𝐿𝑑𝑖𝑐𝑒 + 𝜆31𝐿𝑑𝑖𝑟  

9. Optimize using AdamW with early stopping based on validation F1-score 

Step 5: BDI-Based Decision Reasoning 

10. Construct belief state 𝐵𝑡 ← {𝑀̂𝑡 , 𝐷⃗⃗ ̂𝑡 , 𝑋𝑡 , 𝐶} 

11. Generate role-specific desire set 𝐷𝑟 = {𝑑1, 𝑑2, … 𝑑𝑛} 
e.g., minimize area, protect population, safeguard infrastructure 

12. Evaluate desires using utility functions U(𝑑𝑖 , 𝐵𝑡) 
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13. Select intention 𝐼𝑡 = 𝑎𝑟𝑔 max
𝑑

𝑈(𝑑, 𝐵𝑡) 

14. Map intention to action plan using policy function 𝐴 = 𝜋(𝐼) 

Step 6: Execute or Recommend Action 

15. Output fire response strategy A: 

(e.g., firebreak creation, evacuation alert, drone deployment) 

 

 

4. EXPERIMENTAL SETUP 

The introduced wildfire prediction model was developed by assuming uniform processing, training, 

and testing settings with high-performance computing (HPC) infrastructure support. All experiments were 

conducted on aligned multiday multimodal data with matching spatial resolutions (128×128) and temporal 

resolutions over a day for 3-day and 5-day forecasts. Model training was carried out by-basederten optimizing 

using AdamW, cosine learning rate scheduling, and early stopping. To benchmark the model performance, 

we compare with baseline models: multi-attention network (MA-Net), U-shaped network (U-Net), 

convolutional long short-term memory (ConvLSTM), and vanilla vision transformer (ViT). Performance 

metrics were F1-score, intersection over union (IoU), MAE, directional accuracy, and inference latency. The 

configuration details of the experiment with hardware, software, parameters, and baseline comparisons are 

presented in Table 2. We trained each model with five random seeds and report results as mean ± standard 

deviation. Statistical significance was assessed using paired t-tests against baselines (p<0.05).  
 

 

Table 2. Experimental setup for model training and evaluation 
Component Description 

Hardware NVIDIA Tesla V100 (16 GB), Intel Xeon Gold CPU, 128 GB RAM, and Ubuntu 20.04 

Software Python 3.10, PyTorch 2.1, HuggingFace, PyTorch Lightning, and Scikit-learn 

Input resolution 128×128 pixels (≈21×21 km area) 
Forecast Window 3-day and 5-day temporal frames 

Batch size 8 

Optimizer AdamW with cosine annealing learning rate (start: 1e−4) 
Regularization Dropout (0.3), gradient clipping (1.0), and L2 weight decay (1e−5) 

Loss functions Binary cross-entropy, dice loss, and directional cosine loss  

Evaluation metrics F1-score, IoU, MAE, MAPE, directional accuracy, inference time, and FLOPs 
Baselines MA-Net, UNet, ConvLSTM, and ViT 

 

 

5. RESULTS AND DISCUSSION  

The Transformer+BDI model was tested on four wildfire-related datasets where predictive accuracy, 

spatial consistency, and decision promptness were evaluated. Experimental results demonstrated that the 

proposed method consistently achieved better performance of fire-discipline prediction, direction-spread 

estimation, and inference latency than the baseline models. The cross-dataset benchmarking results, 

summarized in Table 3, demonstrate that the proposed model consistently outperforms CNN, recurrent neural 

network (RNN), and transformer-based baselines across all four datasets in terms of F1-score, IoU, MAE, 

and directional accuracy, while maintaining competitive inference time. Table 3 presents the detailed 

performance of different models across all four datasets, comparing F1-score, IoU, MAE, directional 

accuracy, and inference time. Key findings include: 

− High predictive accuracy on the ERA5+MODIS+SRTM composite dataset with an F1-score of 0.75 and 

lowest MAE of 7.4 km². 

− Directional accuracy exceeded 85%, reflecting the model’s effectiveness in estimating fire spread 

vectors—a critical parameter for early warning systems. 

− BDI agents demonstrated operational relevance by converting predictions into context-specific action 

plans with high action consistency and low latency. 

The BDI based wildfire intervention system was tested for 5 operational criteria and are false 

suppression, decision distribution, response delay, alert compliance with intervention and missed predictions. 

Experimental results show that the BDI integration can reduce false suppressions, speed up agents' response 

and balance action distribution [24], [25]. Adherence to the alerts improved with time and fewer missed 

predictions were observed in high-risk areas. These improvements are shown in Figure 3 over evaluation 

measures. 

Furthermore, the ablation study supports the effectiveness of each component in our model. The 

complete Transformer+BDI model achieved the best accuracy (97.1%) and removal of the BDI layer, 

direction head or attention led to a drop on accuracy. It received the lowest scores by the MA-Net baseline 

(89.9%). The ablation results are shown in Table 4, where we illustrate the performance degradation upon 

removing the key components of proposed model. 



                ISSN: 2302-9285 

Bulletin of Electr Eng & Inf, Vol. 15, No. 1, February 2026: 731-739 

736 

Table 3. Cross-dataset performance of different models (mean ± SD over 5 runs) 

Model Dataset F1-score ↑ IoU ↑ MAE (km²) ↓ Dir. acc. (%) ↑ 
Inference 

time (ms) ↓ 

U-Net WFED 0.65±0.02 0.50±0.01 12.4±0.5 72.1±1.3 102±1.5 

Sentinel Hub (NDVI) 0.63±0.03 0.47±0.02 13.2±0.6 70.8±1.2 105±1.7 

FIRMS (MODIS/VIIRS) 0.66±0.02 0.51±0.01 11.8±0.4 74.5±1.1 99±1.4 
ERA5+MODIS+SRTM 0.68±0.02 0.52±0.01 11.2±0.5 75.6±1.2 97±1.6 

MA-Net WFED 0.66±0.02 0.51±0.01 11.9±0.5 73.0±1.2 101±1.5 

Sentinel Hub (NDVI) 0.64±0.03 0.48±0.01 12.6±0.6 71.7±1.3 104±1.6 
FIRMS (MODIS/VIIRS) 0.67±0.02 0.52±0.01 11.4±0.4 75.2±1.2 98±1.5 

ERA5+MODIS+SRTM 0.69±0.02 0.53±0.01 10.8±0.5 76.1±1.1 96±1.5 

ConvLSTM WFED 0.67±0.02 0.52±0.01 11.3±0.5 74.0±1.2 103±1.6 
Sentinel Hub (NDVI) 0.65±0.02 0.49±0.01 12.1±0.6 72.6±1.3 106±1.6 

FIRMS (MODIS/VIIRS) 0.69±0.02 0.54±0.01 10.7±0.4 76.3±1.2 98±1.5 

ERA5+MODIS+SRTM 0.71±0.02 0.55±0.01 10.1±0.5 77.2±1.2 95±1.4 
Transformer 

(ViT) 

WFED 0.68±0.02 0.53±0.01 10.5±0.5 76.5±1.2 104±1.5 

Sentinel Hub (NDVI) 0.66±0.02 0.50±0.01 11.7±0.6 74.0±1.2 107±1.7 

FIRMS (MODIS/VIIRS) 0.70±0.02 0.55±0.01 10.0±0.4 78.0±1.1 100±1.5 
ERA5+MODIS+SRTM 0.72±0.02 0.56±0.01 9.5±0.4 79.3±1.2 96±1.5 

Proposed 

(ours) 

WFED 0.70±0.02 0.55±0.01 9.6±0.4 79.8±1.2 98±1.5 

Sentinel Hub (NDVI) 0.68±0.03 0.52±0.02 10.3±0.5 77.6±1.3 101±1.8 
FIRMS (MODIS/VIIRS) 0.72±0.02 0.57±0.01 8.7±0.3 82.4±1.1 95±1.4 

ERA5+MODIS+SRTM 0.75±0.02 0.59±0.02 7.4±0.3 85.1±1.0 92±1.2 

  

 

 
 

Figure 3. BDI-based wildfire response evaluation with refined operational parameters 

 

 

Table 4. Ablation study of proposed model 
Variant F1 (%) ↑ IoU (%) ↑ MAE (km²) ↓ Dir. acc. (%) ↑ 

Full model (ours) 740±10 663±12 76±05 843±11 

– Directional loss 718±11 645±10 89±06 794±13 
– Positional encoding 712±10 639±11 91±07 788±14 

– Meteorological features 705±09 631±12 98±06 772±12 

– Vegetation features 697±12 624±11 102±07 765±13 

– BDI reasoning (no action map) 735±10 658±10 78±06 821±12 
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In order to investigate robustness and as they are described by many authors [26]-[28], we change 

the main parameters and analyse their impact on predictive accuracy. First, a ±σ (standard deviation of ERA5 

estimates) increment in wind input uncertainty induced fluctuations of ±2–3% directional accuracy indicating 

on moderate sensitivity of the model to meteorological noise. Second, rescaling the grid size from 64×64 to 

256×256 showed a trade-off whereby higher-resolution grids increased the IoU by 1.5% but also boosted 

inference time by 20%. Lastly, displacement of the decision threshold for burned-cell classification (0.4–0.6) 

resulted in ±2% shifts in F1-scores, suggesting that threshold tuning offers users much opportunity to trade 

off between false positives and false negatives according to operational needs. 

 

 

6. CONCLUSION 

This paper presented a method for predicting wildfires using a transformer model along with a BDI 

reasoning layer to help plan flexible responses. By analyzing various environmental signals, the model 

performs well in predicting wildfires and creating action plans, which enhances its clarity and focus on 

achieving goals. The model outperforms other baseline methods in terms of accuracy, efficiency, and 

generalizability across various benchmark datasets. In future work, we will investigate real-time data 

integration using unmanned aerial vehicles (UAVs) and IoT devices and the optimization of our model for 

edge deployment, and we will further develop BDI agents with dynamic learning to address complex, 

unfolding fire situations. 

 

 

FUNDING INFORMATION 

This research received no external funding. 

 

 

AUTHOR CONTRIBUTIONS STATEMENT 

This journal uses the Contributor Roles Taxonomy (CRediT) to recognize individual author 

contributions, reduce authorship disputes, and facilitate collaboration.  

 

Name of Author C M So Va Fo I R D O E Vi Su P Fu 

Parul Dubey  ✓ ✓ ✓ ✓ ✓ ✓  ✓ ✓ ✓   ✓ ✓ 

Gaurav Vishnu ✓ ✓  ✓ ✓  ✓  ✓  ✓   ✓ 

Vinay Keswani  ✓ ✓  ✓   ✓  ✓  ✓   

Akshita Chanchlani  ✓   ✓  ✓  ✓   ✓ ✓  

Murtuza ✓  ✓ ✓  ✓  ✓  ✓  ✓  ✓ 

Pushkar Dubey ✓  ✓ ✓  ✓ ✓  ✓  ✓  ✓ ✓ 

 

C :  Conceptualization 

M :  Methodology 

So :  Software 

Va :  Validation 

Fo :  Formal analysis 

I :  Investigation 

R :  Resources 

D : Data Curation 

O : Writing - Original Draft 

E : Writing - Review & Editing 

Vi :  Visualization 

Su :  Supervision 

P :  Project administration 

Fu :  Funding acquisition 

 

 

 

CONFLICT OF INTEREST STATEMENT 

The authors declare no conflict of interest. 

 

 

DATA AVAILABILITY 

All data supporting the findings of this study are included in the references. 

 

 

REFERENCES 
[1] Q. E. Barber et al., “The Canadian Fire Spread Dataset,” Scientific Data, vol. 11, no. 1, p. 764, Jul. 2024, doi: 10.1038/s41597-

024-03436-4. 
[2] J. Deng, B. Hong, W. Wang, and G. Gu, “Daily Wildfire Risk Prediction by Mining Global and local spatio-temporal 

dependency,” Earth Science Informatics, vol. 18, no. 3, Mar. 2025, doi: 10.1007/s12145-024-01652-5. 

[3] Y. Cao et al., “Forest fire prediction based on time series networks and remote sensing images,” Forests, vol. 15, no. 7, p. 1221, 
Jul. 2024, doi: 10.3390/f15071221.  

[4] Y.-G. Ham, S.-H. Nam, G.-H. Kang, and J.-S. Kim, “Regionally optimized fire parameterizations using feed-forward neural 

networks,” Environmental Research Letters, vol. 10, no. 1, Nov. 2024, doi: 10.1088/1748-9326/ad984a. 



                ISSN: 2302-9285 

Bulletin of Electr Eng & Inf, Vol. 15, No. 1, February 2026: 731-739 

738 

[5] S. Yoo, W.-H. Kang, and J. Song, “Wildfire spread prediction using geostationary satellite observation data and directional ROS 

adjustment factor,” Journal of Environmental Management, vol. 372, p. 123358, 2024, doi: 10.1016/j.jenvman.2024.123358. 
[6] Q. Zhang, J. Zhu, Y. Dong, E. Zhao, M. Song, and Q. Yuan, “10-Minute forest early wildfire detection: Fusing multi-type and 

multi-source information via recursive transformer,” Neurocomputing, p. 128963, 2024, doi: 10.1016/j.neucom.2024.128963. 

[7] M. C. A. Leite et al., “Activated ZnCl2 biochar and humic acid as additives in monoammonium phosphate fertilizer: 
Physicochemical characterization and agronomic effectiveness,” Environmental Research, vol. 232, p. 115927, 2023, doi: 

10.1016/j.envres.2023.115927. 

[8] D. Shadrin et al., “Wildfire spreading prediction using multimodal data and deep neural network approach,” Scientific Reports, 
vol. 14, no. 1, Jan. 2024, doi: 10.1038/s41598-024-52821-x. 

[9] S. Lin, W. Lin, W. Wu, S. Wang, and Y. Wang, “PETFormer: Long-Term Time Series Forecasting via Placeholder-Enhanced 

Transformer,” IEEE Transactions on Emerging Topics in Computational Intelligence, pp. 1–13, Jan. 2024, doi: 
10.1109/tetci.2024.3502437. 

[10] R. U. Shaik et al., “Wildfire fuels mapping through artificial intelligence-based methods: A review,” Earth-Science Reviews, p. 

105064, Feb. 2025, doi: 10.1016/j.earscirev.2025.105064. 
[11] H. Dastour and Q. K. Hassan, “Utilizing MODIS remote sensing and integrated data for forest fire spread modeling in the 

southwest region of Canada,” Environmental Research Communications, vol. 6, no. 2, p. 025007, Jan. 2024, doi: 10.1088/2515-

7620/ad248f. 
[12] R. Y. Zakari, O. A. Malik, and O. Wee-Hong, “An enhanced wildfire spread prediction using multimodal satellite imagery and 

deep learning models,” Remote Sensing Applications Society and Environment, p. 101632, 2025, doi: 

10.1016/j.rsase.2025.101632. 
[13] G. G. Owen, “A statistical investigation of how slope affects a wildfire’s rate of spread,” PhD Thesis/Dissertation, University of 

British Columbia, 2020, doi: 10.14288/1.0402582. 

[14] S. Buriboev, K. Rakhmanov, T. Soqiyev, and A. J. Choi, “Improving Fire Detection Accuracy through Enhanced Convolutional 
Neural Networks and Contour Techniques,” Sensors, vol. 24, no. 16, p. 5184, Aug. 2024, doi: 10.3390/s24165184. 

[15] M. Cheknane, T. Bendouma, and S. S. Boudouh, “Advancing fire detection: two-stage deep learning with hybrid feature 
extraction using faster R-CNN approach,” Signal Image and Video Processing, vol. 18, no. 6–7, pp. 5503–5510, May 2024, doi: 

10.1007/s11760-024-03250-w. 

[16] B. Özel, M. S. Alam, and M. U. Khan, “Review of Modern Forest Fire Detection Techniques: Innovations in image processing 
and Deep Learning,” Information, vol. 15, no. 9, p. 538, Sep. 2024, doi: 10.3390/info15090538. 

[17] R. N. Vasconcelos et al., “Fire Detection with Deep Learning: A Comprehensive Review,” Land, vol. 13, no. 10, p. 1696, Oct. 

2024, doi: 10.3390/land13101696. 
[18] A. Ahajjam, M. Allgaier, R. Chance, E. Chukwuemeka, J. Putkonen, and T. Pasch, “Enhancing prediction of wildfire occurrence 

and behavior in Alaska using spatio-temporal clustering and ensemble machine learning,” Ecological Informatics, p. 102963, 

Dec. 2024, doi: 10.1016/j.ecoinf.2024.102963. 
[19] A. Cardil et al., “Performance of operational fire spread models in California,” International Journal of Wildland Fire, vol. 32, 

no. 11, pp. 1492–1502, Jul. 2023, doi: 10.1071/wf22128. 

[20] B. A. Aparício, A. Benali, J. M. C. Pereira, and A. C. L. Sá, “MTTFireCAL Package for R—An innovative, comprehensive, and 
fast procedure to calibrate the MTT Fire spread modelling system,” Fire, vol. 6, no. 6, p. 219, May 2023, doi: 

10.3390/fire6060219. 

[21] “Data - Global Fire Emissions Database (GFED).” https://www.globalfiredata.org/data.html. 
[22] “Data.” https://www.sentinel-hub.com/explore/data/. 

[23] “NASA-FIRMS,” NASA-FIRMS. https://firms.modaps.eosdis.nasa.gov/download/. 

[24] X. Sun et al., “A Forest Fire Prediction Model Based on Cellular Automata and Machine Learning,” in IEEE Access, vol. 12, pp. 
55389-55403, 2024, doi: 10.1109/ACCESS.2024.3389035. 

[25] D. D. B. Perrakis et al., “Improved logistic models of crown fire probability in Canadian conifer forests,” International Journal of 

Wildland Fire, vol. 32, no. 10, pp. 1455–1473, Aug. 2023, doi: 10.1071/wf23074. 
[26] U. Oliveira et al., “A near real-time web-system for predicting fire spread across the Cerrado biome,” Scientific Reports, vol. 13, 

no. 1, Mar. 2023, doi: 10.1038/s41598-023-30560-9. 

[27] M. R. Mohebbi, E. W. Sena, M. Döller, and J. Klinger, “Wildfire Spread Prediction Through Remote Sensing and UAV Imagery-
Driven Machine Learning Models,” in 2024 18th International Conference on Control, Automation, Robotics and Vision 

(ICARCV), Dubai, United Arab Emirates, 2024, pp. 827-834, doi: 10.1109/ICARCV63323.2024.10821545. 

[28] S. Sultania, R. Sonawane, and P. Kanikar, “Machine Learning based Wildfire Area Estimation Leveraging Weather Forecast 
Data,” International Journal of Information Technology and Computer Science, vol. 17, no. 1, pp. 1–15, Feb. 2025, doi: 

10.5815/ijitcs.2025.01.01. 

 

 

BIOGRAPHIES OF AUTHORS  

 

 

Dr. Mrs. Parul Dubey     is currently working as an Assistant Professor in 

Department of Computer Science and Engineering, Symbiosis Institute of Technology, 

Nagpur Campus, Symbiosis International (Deemed University), Pune, India. She has 19 Indian 

published patents and 1 Indian Granted patent. She holds around 67 publications which are 

part of conferences, Scopus, and other journals as well. She is an AWS Certified Cloud 

Practitioner badge holder, which is a proof for the expertise in AWS. Currently guiding many 

Engineering students to learn the AWS platform and complete their projects. She is currently 

working in four edited book approved proposals from international publishers. She can be 

contacted at email: parul.dubey@sitnagpur.siu.edu.in. 

  

mailto:parul.dubey@sitnagpur.siu.edu.in
https://orcid.org/0000-0001-8903-6664
https://scholar.google.com/citations?user=y9kR6UoAAAAJ&hl=id&oi=ao
https://www.scopus.com/authid/detail.uri?authorId=58337674500
https://www.webofscience.com/wos/author/record/37302917


Bulletin of Electr Eng & Inf  ISSN: 2302-9285  

 

Deep spatiotemporal signal learning with transformers for multi-day wildfire forecasting (Parul Dubey) 

739 

 

Dr. Gaurav Vishnu Londhe     has completed the Bachelor of Engineering in 

Information Technology and Master of Engineering in Computer Engineering from University 

of Mumbai, and Doctorate in 2020, with research domain of wireless sensor networks. 

Working on cloud using IoT based devices and analysis of data received through it. He has 

around 20 years of teaching, administration in technology, management courses, and industry 

experience as well. He can be contacted at email: gauravlondhe@gmail.com.  

  

 

Dr. Vinay Keswani     completed his B.E. in Electrical Engineering from Nagpur 

University in the year 2001. He went to United States in the year 2001 to pursue his Masters 

Degree from Rochester Institute of Technology, Rochester, NY, USA. He completed his M.S. 

in Microelectronics Manufacturing Engineering from RIT, USA in the year 2003. He also has 

a Ph.D. degree in Electronics Engineering with the topic being power quality improvement in 

distributed generation using DSTATCOM and photovoltaic power controller which he 

completed in the year 2022. He has published over 30 technical papers in National and 

International Journals. He can be contacted at email: vinaykeswani2022@gmail.com. 

  

 

Dr. Akshita Chanchlani     holds a Ph.D. in Computer Science and Engineering 

from Sant Gadge Baba Amravati University, Amravati, India. She contributes to the 

educational team at MITWPU Pune. With over 15 years of experience, she has a robust 

professional background spanning both academia and the technical industry. Her roles have 

included associate head technical trainer, corporate trainer, and assistant professor, 

accumulating extensive experience in teaching and delivering industrial and technical 

corporate training. She can be contacted at email: akshita.s.chanchlani@gmail.com. 

  

 

Dr. Murtuza     holds Ph.D. in Computer Engineering with 16 years of rich 

experience mostly in technical industry and some in academia. He started with junior 

developer and went till senior technical manager with a strong background in React JS, low-

code platforms and Python development. His work spans full-stack development, application 

design, and process automation, leveraging both traditional coding and low-code solutions to 

deliver efficient and scalable outcomes. He can be contacted at email: 

imgeminite@gmail.com. 

  

 

Dr. Pushkar Dubey     is currently working as Assistant Professor and Head in 

Department of Management at Pandit Sundarlal Sharma (Open) University Chhattisgarh 

Bilaspur. He is a Gold Medalist in Master of Business Administration (MBA) and Ph.D. in 

Human Resource Management. He has published more than 70 research papers in reputed 

journals such as Emerald, Taylor and Francis, Springer, etc. He has also accomplished 05 

research projects including 03 sponsored by Indian Council of Social Science Research 

(ICSSR) New Delhi. Having specialized in statistical softwares for data analysis, he has 

delivered several lectures on SPSS, AMOS, and others. His highest academic degree is Doctor 

of Letters in the area of application of Shrimad Bhagwad Geeta into management practices. He 

can be contacted at email: drdubeypkag@gmail.com. 

 

 

mailto:gauravlondhe@gmail.com
mailto:vinaykeswani2022@gmail.com
mailto:akshita.s.chanchlani@gmail.com
mailto:imgeminite@gmail.com
mailto:drdubeypkag@gmail.com
https://orcid.org/0000-0001-9084-5733
https://scholar.google.com/citations?hl=id&user=Pw6yguIAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=57212492961
https://orcid.org/0009-0006-2107-2320
https://scholar.google.com/citations?hl=id&user=jrU-SnIAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=58653673400
https://www.webofscience.com/wos/author/record/72403103
https://orcid.org/0000-0002-9447-0040
https://scholar.google.com/citations?hl=id&user=YgRlqqEAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=57310686000
https://orcid.org/0000-0001-5168-7891
https://scholar.google.com/citations?hl=en&view_op=list_works&gmla=AKzYXQ2ybaVIjgAKP__LgoVWQZbZlLuK7NWdn31qq2i1BwQQMya-DRegf-IsICE0YQJ3U2T_rbL2MQZ1p8EAdQ&user=W73Y5XMAAAAJ
https://www.webofscience.com/wos/author/record/OJT-5356-2025
https://orcid.org/0000-0002-9929-6002
https://scholar.google.com/citations?hl=id&user=ficH9LwAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=57205366050
https://www.webofscience.com/wos/author/record/927254

