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 Internet of things (IoT) systems are often inherently heterogeneous and the 

constantly evolving cyber threat presents a variety of attack vectors that can 

expose sensitive data across multiple mission-critical applications. The 

existing intrusion detection methods are often prone to zero-day attacks and 

specific to limited known intrusions. This paper designs a hybrid and multi-

level cyber-threat detection framework based on the robust data 

preprocessing scheme, correlation-based optimal feature selection and 

integrated anomaly and intrusion detection using a supervised learning 

approach. In the first stage, a random forest (RF)-based binary anomaly 

detector is designed as a fast primary threat filter against zero-day threats by 

detecting traffic anomalies without any prior attack signal. In the second 

stage, an adaptive, time-aware long short-term memory (LSTM) model 

performs multi-class intrusion classification using time-lag analysis in traffic 

flows to accurately identify and classify known attack types with high 

precision. The proposed framework is evaluated on the network flow–

telemetry of network–internet of things–version 2 (NF-ToN-IoT-V2) dataset 

and achieved 99% accuracy in both binary and multiclass settings, with a 

lower response time of 7.8 ms. 
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1. INTRODUCTION 

The internet of things (IoT) links billions of physical devices, sensors, actuators, and smart things 

that communicate data over the Internet. IoT is being utilized across the globe in real-world applications and 

has a dramatic rate of adoption in industrial systems and agricultural systems, enabling real-time monitoring, 

automated decisions, and overall improvements in efficiency [1]. However, the IoT is vulnerable to security 

concerns because it is highly distributed, has lower computation power, has various communication 

protocols, and has little-to-no authentication [2]. Cyber-attacks that include denial-of-service (DoS), man-in-

the-middle (MITM), botnets, ransomware, and data leaks have demonstrated how perimeter security fails [3]. 

In addition, there are two major concerns, i.e., zero-day attacks, which exploit unknown vulnerabilities, and 

multi-stage intrusions that escalate over time [4]. The conventional signature-based detection methods often 

fail to identify such threats, as they are highly dependent on the predefined patterns [5], but with the 
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advancement in machine learning (ML) and deep learning (DL), there is an increasing trend towards 

developing intelligent anomaly detection and intrusion classification [6]. However, designing an effective 

artificial intelligence (AI-based) security system for IoT is not a straightforward process, as it is associated 

with various challenges such as imbalanced datasets, limited edge-device resources, difficulty in generalizing 

to new attacks, and a lack of model interpretability. Furthermore, achieving the best balance between 

predictions with low false-positives and model complexity also presents challenges when adopted in real-

world scenarios. 

In the recent literature, various research works have been presented towards developing an 

intrusion-detection-system (IDS) for IoT applications using different ML and DL models as well as their 

hybridized versions. The usage of k-nearest neighbour (KNN) is seen in the work of Babbar et al. [7] for 

detecting Android malware in IoT environments, which is effective in identifying known threats but may face 

difficulty with evolving cyber-attacks. Agbedanu et al. [8] introduced an adaptive KNN model for detecting 

zero-day attacks in industrial IoT, but this model may be a bit difficult to handle high-dimensional data.  

Nuha et al. [9] introduced a modified distance metric in KNN using third-order distance to classify flooding 

attacks in optical burst switching networks. Kaushik et al. [10] used a multinomial Naive Bayes (NB) 

classifier to analyze intrusions from traffic generated from smart IoT devices. Similarly, Prakash et al. [11] 

developed an NB-based IDS framework for anomaly detection, but it is not very adaptive and may result in 

high false-positive rates when subjected to different network datasets. Majeed et al. [12] suggested an NB-

powered cybersecurity model for drone networks, but it lacked robustness against dynamic attack scenarios. 

In the work of Deshmukh and Ravulakollu [13], researchers designed a convolutional network-based IoT-

IDS due to its automated feature learning, but this approach is sensitive to overfitting due to the use of fixed 

filters. Alabsi et al. [14] introduced a dual convolutional network architecture to improve feature learning, 

but its computational cost increases. Hairab et al. [15] applied convolutional operations with regularization to 

detect zero-day attacks. Okey et al. [16] explored transfer learning with convolutional neural networks 

(CNNs) for IoT-based IDS, but it lacks scalability for real-time deployment scenarios where continuous 

training on new features is required.  

The studies towards applying deep recurrent models such as the gated recurrent unit (GRU) for 

modelling sequential dependencies in network traffic are seen in the work of Sagu et al. [17], where GRU is 

combined with convolutional networks to improve prediction accuracy on known attacks. Alshdadi et al. [18] 

developed a GRU integrated ResNet split-attention mechanism to detect distributed denial of service (DDoS) 

attacks, which provided better detection rate but with extensive computational resources. Bi et al. [19] 

introduced a temporal-convolutional network with bi-directional GRUs for attack prediction to capture 

temporal behaviours in the network traffic. Similarly, ALMahadin et al. [20] used GRU for detecting 

anomalies in vehicular ad hoc network (VANET) traffic, which demonstrated robust performance but may be 

prone to adversarial attacks. The work carried out by Gueriani et al. [21] explored an advanced recurrent 

model, i.e., long short-term memory (LSTM) networks, which is combined with convolutional layers to build 

a hybrid-IDS for detecting complex intrusion patterns. In a similar direction, development of the hybrid IDS 

based on the joint approach of CNN–LSTM is also found in the work of Altunay and Albayrak [22] and 

Sinha et al. [23] towards enhanced feature learning and classification of complex network intrusions in 

Industrial IoT. However, these models are not validated against zero-day or un-seen attacks, which is 

important for real-world deployment. However, the literature is diverse, but most of them highlight 

individual strengths without addressing trade-offs such as accuracy versus scalability or temporal modelling 

versus interpretability.  

The identified research problem after reviewing existing system are as follows: i) the existing ML 

classifiers are only effective for known malware patterns [7]–[12], but have been found to be ineffective 

against emerging threats and zero-day attacks; ii) the existing DL-based IDSs [13]–[20] provide better 

accuracy, but suffer from overfitting, high resource demand, and poor scalability for edge deployments;  

iii) LSTM-based systems [21]–[23] show robust temporal modeling for stealth attacks, but often lack 

interpretability and have high latency, making them unsuitable for real-time IoT use; iv) the current 

approaches struggle with stateless and evolving attacks such as single-packet flooding or timing-based 

intrusions, which require both timing and behavioral analysis for effective detection; and v) also, in many 

real-world IoT scenarios, traffic patterns are not uniformly sampled and there are variable delays between 

events. The existing approaches often ignore this temporal gap that can distort the sequence modelling, which 

may limit performance when applied to real, noisy network data. 

The proposed study presents an effective and hybridized cyber-threat countermeasure framework 

that integrates multiple AI-driven components for robust IoT security. Specifically, the proposed model is a 

multi-level security architecture: i) it applies data analytics techniques for feature correlation and optimal 

selection; ii) introduces anomaly detection using ML where a random forest (RF)-classifier is used for 

preliminary anomaly detection; and iii) implements intrusion classification via DL LSTM classifier enhanced 
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with adaptive temporal (AT) network traffic pattern analysis. The unique contribution of the proposed work 

is the inclusion of elapsed time between traffic events in the sequential classification that enables the model 

to adaptively discount outdated information and prioritize recent observations. As a result, the proposed 

system achieves high accuracy in classifying both known and previously unseen (zero-day) attacks.  

 

 

2. METHOD 

The schematic outline of the proposed multi-layer security framework is illustrated in Figure 1, 

which integrates data analytics, supervised-learning-based anomaly detection and intrusion classification in 

IoT environments. The system modelling is carried out in four distinct stages, such as: i) data preprocessing, 

ii) feature selection, iii) binary anomaly detection, and iv) multi-class intrusion classification. Unlike 

conventional models that attempt to address all tasks within a single implementation strategy, the proposed 

approach separates anomaly detection and threat classification into distinct yet interconnected stages. The 

input module of the proposed system incorporates a lightweight correlation-guided feature selection 

mechanism for reducing the dimensionality of the data and selecting optimal features without compromising 

detection capability. At the first stage of cyber-threat detection, the system employs an RF-based anomaly 

detector, which is trained on optimized features that allow the system to quickly flag abnormal traffic 

patterns. At this stage, the proposed model contributes to the early threat interception by acting as a first-

layer security filter. 

 

 

 
 

Figure 1. The schematic architecture of the proposed multi-level IoT security framework 

 

 

Upon detection of anomalies, the framework activates a second-layer threat analysis via an AT-

LSTM network, which is designed for sequence learning and is capable of modelling the temporal and 

contextual patterns of network traffic. It enables multi-class classification of threats of various IoT attack 

categories, i.e., from DoS and DDoS to cross-site scripting (XSS), injection, and ransomware, ensuring 

comprehensive threat labelling and future traceability. Finally, the framework is evaluated on a large-scale 

modern IoT dataset, towards justifying and validating its effectiveness against zero-day attacks and known 

cyber-threats. The development of the proposed IoT security solution is carried out in such a manner that it 

enhances both the speed of response and classification depth, thereby optimising performance for real-time 

and resource-constrained IoT environments. 

 

2.1.  Dataset description 

This study utilises the network flow–telemetry of network–internet of things–version 2 (NF-ToN-

IoT-V2) dataset [24], a recent benchmark from the ToN-IoT series, which is the Netflow version of the 

UNSW-ToN-IoT dataset. This dataset consists of the telemetry network traffic data obtained from the diverse 

IoT devices and industrial control systems, which consists of more than 13 million labelled data samples. 

This dataset comes with both normal traffic and nine different attack classes, where each samples are 
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associated with numerical and statistical features related to network sessions, packet count, flow duration, 

and header flags. For model development, the dataset is used in two tasks, viz; i) binary classification 

(anomaly detection), i.e., benign vs. attack, with an 80:20 train-test split and ii) multi-class classification 

(intrusion type classification) with an 80:10:10 train-validation-test split considering all ten classes. The 

detailed class-wise distribution is summarized in Table 1. 

 

 

Table 1. Dataset distribution 
Attack type Train (80%) Validation (10%) Test (10%) Total 

Scanning 2,401,735 300,217 300,217 3,002,169 
XSS 1,959,964 244,996 244,996 2,449,955 

DDOS 1,397,272 174,659 174,659 1,746,590 

Password 794,974 99,372 99,372 993,718 
Injection 528,374 66,047 66,047 660,467 

DOS 523,487 65,436 65,436 654,359 

Backdoor 13,007 1,626 1,626 16,259 

MITM 6,178 773 772 7,723 

Ransomware 2,686 336 335 3,357 

Benign 2,880,997 360,128 360,159 3,601,284 
Total 10,508,674 1,313,590 1,313,619 13,135,881 

 

 

2.2.  Preprocessing and feature selection  

The exploratory analysis of the adopted dataset reveals that the dataset has a total of 43 numerical 

and categorical attributes and 9,534,597 samples. Further investigation using descriptive statistics reveals that 

the dataset is not associated with any missing or zero values. However, it is found that the dataset is 

associated with class imbalance issues with different attack classes, which are handled using an upsampling 

approach on the training set using synthetic-minority-over-sampling-technique (SMOTE). The next process 

leads to data encoding, where categorical attributes are encoded to numerical representations, which are then 

standardised using the Z-score normalization approach by removing each feature's mean and scaling it to unit 

variance. Further steps are subjected to correlation analysis and feature selection to identify the most relevant 

and task-associated features for the target label. Figure 2 shows the top-15 selected features using the Pearson 

coefficient method. 

 

 

 
 

Figure 2. The top-15 features selected based on their relevance to the target class 
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The Figure 2 shows the correlation matrix of the top-15 features identified and most relevant to the 

target class. It can be seen that the features such as MIN_IP_PKT_LEN, TCP_WIN_MAX_IN, and 

CLIENT_TCP_FLAGS show a relatively higher positive correlation with the attack class, and this indicates 

their strong relevance or influence in distinguishing between benign and malicious traffic patterns. On the 

other hand, the other features like L4_DST_PORT and DNS_QUERY_ID show slight weak correlations, 

which suggests its limited direct impact on classification, but it has a significant contribution when 

considering with other features. Hence, these features are considered for the model training for both task 

anomaly detection and intrusion classification.  

 

2.3.  Anaomaly detection 

This is the first phase of the proposed framework that focuses on anomaly detection, and is 

modelled as a binary classification problem. In this phase of the modelling, the RF algorithm is employed 

due to its robustness, high interpretability, and low susceptibility to overfitting. The reason behind selecting 

the RF classifier among other ML classifiers is its ability to handle high-dimensional data. It is an ensemble-

based ML model that is designed based on the constructs of multiple decision trees and has less sensitivity to 

noise, and has fast inference speed, which is crucial for early-stage threat detection. In this work, RF is 

trained on the preprocessed feature set (as detailed in subsection 2.2) using 80% of the dataset, whereas the 

remaining 20% is used for evaluation. The output of this stage indicates whether the incoming traffic flow is 

anomalous, and if it flags network traffic as an attack, then the system quickly isolates malicious flows from 

the network and initiates the next phase for deep inspection using the proposed AT-LSTM model. 

 

2.4.  Intrusion classification 

This is the second and final phase of the proposed framework towards accurately categorising the 

anomalies identified by the first module into their respective attack types. This phase of the system modelling 

is essential to understand the type and impact of the threats, even in dynamic real-world IoT environments 

with a possibility of known attacks as well as unseen attacks (zero-day). The intrusion classification task is 

modelled as a temporal sequence classification problem, where network traffic samples developed after the 

anomaly detection model has detected anomalies are sequentially processed by the AT-LSTM network in the 

same manner as their ordering, repeating processing the samples until the sequencing is concluded. Rather 

than treating all temporal transitions equally like conventional LSTM models, our AT-LSTM explicitly 

captures elapsed time (Δt) between input events as an additional input feature, through which the model can 

regulate its memory retention and forget mechanisms based on the temporal relevance of each input sample. 

Figure 3 outlines the workflow of the proposed AT-LSTM for intrusion classification. The main workflow 

and internel architecture are illustared in Figures 3(a) and (b) respectively. 

 

 

  
(a) (b) 

 

Figure 3. The workflow architecture of the AT-LSTM with; (a) main workflow and (b) internel architecture 

of the proposed AT-LSTM 
 

 

As shown in the Figure 3, at each time step 𝑡, the AT-LSTM model considers two inputs: i) the 

traffic feature vector 𝑥𝑡 and corresponding to the time gap 𝛥𝑡𝑡 i.e., elapsed time between two consecutive 

network traffic events, which quantifies how much time has passed between two such events. The 𝛥𝑡 is 
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computed using a numerical formula as in (1). Afterwards, the input original feature vector 𝑥𝑡 is fused with 

𝛥𝑡𝑡  to compute a time-aware context vector, numerically expressed in (2).  

 

𝛥𝑡𝑡 = 𝑡𝑡 − 𝑡𝑡−1 (1) 

 

𝑥̃𝑡 = 𝑓(𝑥𝑡 , 𝛥𝑡𝑡) (2) 

 

The obtained time-aware feature vector 𝑥̃𝑡 is then used to update the AT-LSTM states, where its 

internal gates are modified to incorporate the temporal decay, so that it can allow the network to discount 

outdated information when the time gap is large. This process of temporal sensitivity ensures that recent 

patterns are given higher importance, thereby enhancing the ability of the model to capture time-dependent 

behaviours in network traffic. The updated LSTM gate equations are defined as (3)-(8): 

 

𝑖𝑡 = 𝜎(𝑊𝑖 × 𝑥̃𝑡 + 𝑈𝑖 × ℎ𝑡−1+𝑏𝑖) (3) 

 

𝑓𝑡 = 𝜎(𝑊𝑓 × 𝑥̃𝑡 + 𝑈𝑓 × ℎ𝑡−1 + 𝑏𝑓 + 𝛾 × 𝛥𝑡𝑡) (4) 

 

𝑜𝑡 = 𝜎(𝑊𝑜 × 𝑥̃𝑡 + 𝑈𝑜 × ℎ𝑡−1 + 𝑏𝑜) (5) 

 

𝑔𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑐 × 𝑥̃𝑡 + 𝑈𝑐 × ℎ𝑡−1 + 𝑏𝑐) (6) 

 

𝑐𝑡 = 𝑓𝑡⨀𝑐𝑡−1 + 𝑖𝑡⨀𝑔𝑡 (7) 

 

ℎ𝑡 = 𝑜𝑡⨀tanh(𝑐𝑡)  (8) 
 

Where, 𝑖𝑡 , 𝑓𝑡 , 𝑜𝑡  are the input, forget, and output gates respectively, 𝑔𝑡  is the candidate memory, 𝑐𝑡  is the 

memory cell, and ℎ𝑡 is the hidden state. The associated learnable parameters (weights) are denoted as 𝑊 and 

𝑈, 𝑏 denotes bias vectors, and γ is a learnable decay parameter controlling temporal relevance and 𝜎 is the 

sigmoid activation function for performing non-linear operation in learning sequential dependencies by the 

LSTM units. The model here dynamically attenuates the influence of outdated patterns by discounting hidden 

states associated with large 𝛥𝑡, and at the same time, it prioritizes the more recent events. This mechanism 

helps the model to detect asynchronous, multi-stage, or complex intrusion patterns that are often irregular at 

different time intervals. The final hidden state ℎ𝑡  is passed through a fully connected output layer with 

SoftMax activation to yield the predicted class of intrusion. 

 

 

3. RESULT 

The proposed multi-level intrusion detection framework is developed and executed using Python 3.9 

with Tenforflow on a Windows system with an Intel Core i7 processor, 16 GB RAM, and an NVIDIA GPU 

(4 GB VRAM) to ensure efficient training and inference performance. The configuration details of the 

proposed multi-level security framework are highlighted in Table 2. The performance evaluation is done 

using standard classification metrics such as accuracy, precision, recall, and F1-score, along with confusion 

matrix analysis.  
  
   

Table 2. Illustrates configuration details of the proposed multi-level security model 
Module Component Parameter 

Anomaly 

detection 

Model type RF 

Number of trees; splitting criterion; bootstrap sampling; and 

random state 

100; Gini impurity; and enabled; 42 

Output type Binary classification (benign vs. attack) 

Intrusion 

classification 

Model type AT-LSTM 

Input features and input shape  15 selected; (batch size, time steps, and 16)  
LSTM units; activation; and recurrent activation  128; tanh; and sigmoid 

Dropout rate; dense units; and dense activation 0.3; 64; and ReLU  

Output units and output activation 10 (attack including normal) and Softmax 
Optimizer; learning rate; and loss function  Adam; 0.001; and categorical crossentropy  

Batch size; epochs; and validation split 512; 50; and 10% 

 
 

Figure 4 presents the confusion matrices of the proposed multi-level security framework based on 

AT-LSTM, where Figure 4(a) displays the performance of the binary anomaly detection task and Figure 4(b) 



Bulletin of Electr Eng & Inf  ISSN: 2302-9285  

 

Hybrid AI-driven anomaly detection and sequential attack classification for … (Gauri Sameer Rapate) 

675 

illustrates the results for the multiclass intrusion classification. It can also be seen in the case of the binary 

anomaly detection task (Figure 4(b)) that the model has achieved outstanding performance. The analysis of 

the confusion matrix reveals that the model has achieved high performance, where out of a total of 2,627,206 

samples, the model correctly identifies 1,906,737 attack samples (true positives) and 719,834 benign samples 

(true negatives) and only 182 attack samples are misclassified as benign (false negatives), and 453 benign 

samples are misclassified as attacks (false positives).  

The overall classification accuracy was found to be 99.974%, with a precision of 99.976%, a recall 

of 99.990% and the F1-score of 99.983%. The result shows that the RF model has extremely low false 

positive and false negative rates, which highlights the high sensitivity and specificity of the model for 

anomaly detection. On the other hand, in the multiclass intrusion classification task (Figure 4(b)), it can be 

observed that the proposed AT-LSTM model demonstrated a strong classification capability for all  

10 categories, even for rare attacks such as ransomware and MITM. A detailed evaluation of class-wise 

precision, recall and F1-score metrics is presented in Table 3, where the effectiveness of the proposed system 

to handle imbalanced and complex intrusion types is extensively discussed. 
  
 

 
(a) 

 

 
(b) 

 

Figure 4. Confusion matrix for; (a) binary anomaly detection and (b) multiclass intrusion classification task 
 

 

Table 3 presents the performance metrics of the AT-LSTM model for multi-class intrusion 

classification across 10 traffic categories. The model consistently achieves high precision and recall (>97%) 

for major categories such as scanning, XSS, and DDoS, with an overall accuracy of 99.04%. Even for 

minority categories such as ransomware and MitM, the model maintains strong F1-scores above 0.95, 

indicating strong generalization. The highest precision (99.50%), recall (99.70%), and AUC (99.9%) are 

achieved for the benign class, thereby indicating the low false-positive rate of the model in real traffic. 
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Table 3. The quantified classification outcomes for multiclass intrusion classification 
Attack type Precision Recall F1-score AUC Support 

Scanning 0.9915 0.9897 0.9906 0.998 300,217 
XSS 0.9878 0.9853 0.9865 0.997 244,996 

DDoS 0.9912 0.9899 0.9905 0.998 174,659 

Password 0.9832 0.9760 0.9796 0.996 99,372 
Injection 0.9850 0.9735 0.9792 0.995 66,047 

DoS 0.9874 0.9720 0.9796 0.996 65,436 

Backdoor 0.9812 0.9532 0.9670 0.994 1,626 
MITM 0.9754 0.9398 0.9572 0.991 772 

Ransomware 0.9843 0.9343 0.9587 0.990 335 

Benign 0.9950 0.9970 0.9960 0.999 360,159 
Overall accuracy:   0.9904 

 

 

3.1.  Outcome discussion  

Table 4 provides a comparative evaluation of the proposed multi-level intrusion detection system 

against recent methods on the NF-ToN-IoT-V2 dataset. Our model achieves 99% accuracy and F1-score in 

both binary and multiclass tasks using only 15 selected features. The method by Li et al. [25] obtained 98.8% 

accuracy using a pre-trained DL+generative adversarial network (GAN) model, but required all features, 

thereby increasing computational cost. On the other hand, our system achieves better accuracy with reduced 

feature space.  

 

 

Table 4. Comparative analysis with recent existing works on the NF-ToN-IoT-V2 dataset 
Reference Method Classification task Accuracy F1-score 

[25] Pre-trained DL+GAN  Multiclass 98.8% 98.8% 

[26] GNN  Binary 96.6 97.9 
[27] FSLLM Multiclass 95.8 95.8 

[28] Stacked classifier and adaptive thresholding Binary 93.715% 95.145% 

[29] AE-DTNN Multiclass 98.30 98.30 
[30] MAS-LSTM Binary 95.22 96.78 

Proposed Binary Binary 99 99 

Proposed Multiclass  Multiclass  99 99 

 

 

Similarly, Wang et al. [26] applied a GNN with 96.6% accuracy but also used all features, which 

limits their methodology's scalability. Ma et al. [27] used only 7 features but achieved lower accuracy 

(95.8%), which shows that minimal features alone aren't sufficient without robust modelling, and the work by 

Kamal et al. [29] and Qin et al. [30] also used all features, and achievd 98.3% and 95.2% accuracy 

respectively, but at higher model complexity. The proposed RF+AT-LSTM framework offers a better trade-

off between performance and computational efficiency, which suggests that it can be suitable for real-time 

deployment under resource-constrained IoT deployments. In order to validate the proposed system design, 

Table 5 presents an Ablation study considering different ML classifiers and DL models along with 

hyperparameters such as batch size (bs), learning rate (lr) and Adam and RMSProp optimizers. 

 

  

Table 5. Ablation study 

Model Task Features Accuracy 
Response 

time (ms) 
Remarks 

NB Binary 15 94.8% 9.5  Simple, fast, and lower accuracy 
KNN Binary 15 96.7% 17.9  Higher latency 

SVM Binary 15 97.8% 13.4  Better generalization 

CNN Multiclass All 97.6% 25.3  Complex and high latency 
GRU Multiclass 20 98.0% 22.7  Effective for sequences 

LSTM Multiclass 20 98.2% 24.1  Long-range temporal capture 

AT-GRU Multiclass 15 98.6% 20.2  Time-aware GRU 
AT-LSTM Multiclass 20 98.8% 8.9  Slightly lower accuracy 

AT-LSTM Multiclass All 98.6% 10.1  Higher compute and no gain 

AT-LSTM (proposed) Multiclass 15 99.0% 7.9  Best accuracy+speed 
AT-LSTM (bs=32, lr=0.001, and Adam) Multiclass 15 99.0 7.9  Optimal configuration  

AT-LSTM (bs=16, lr=0.001, and Adam) Multiclass 15 98.7 9.2  Smaller batch and slightly slower 

AT-LSTM (bs=64, lr=0.001, and Adam) Multiclass 15 98.6 6.5  Faster and slight drop in accuracy 
AT-LSTM (bs=32, lr=0.005, and Adam) Multiclass 15 98.4 7.9  Higher LR and less stable 

AT-LSTM (bs=32, lr=0.001, and 

RMSProp) 

Multiclass 15 98.8 8.3  Different optimizer 
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3.2.  Scope and limitation 

The proposed system offers multi-level protection with low response time by utilizing RF for early 

anomaly filtering, which reduces data load before deep analysis by AT-LSTM. Its efficiency and high 

accuracy make it suitable for real-time IoT/industrial internet of things (IIoT) deployment scenarios. 

However, the current design focuses on offline training; the future work will explore online learning, 

adaptive feature updates, and a data compression scheme in the communication layer or in the message 

queuing telemetry transport (MQTT) protocol to ensure a more efficient approach in integration with edge-

computing platforms to enhance its adaptiveness under evolving threat patterns. 

 

 

4. CONCLUSION 

This paper has presented a hybrid and multi-level IDS with a RF classifier and adaptive time-aware 

LSTM to enhance the security of IoT applications against unknown, dynamic, and multi-vector cyber threats. 

The RF-based anomaly detector acts as an efficient primary filter to block adversarial traffic, and the  

AT-LSTM model performs secondary classification of known intrusions. The proposed multi-level approach 

ensures comprehensive protection by preventing complex threats at the initial stage and enables a detailed 

threat categorisation for informed response. The experimental evaluation on the NF-ToN-IoT-V2 dataset 

demonstrates high accuracy and low latency, thereby highlighting the suitability of the proposed security 

framework for real-time deployment with support of adaptability in diverse IoT/IIoT environments. The 

future work will explore lightweight DL models and online learning techniques to enhance real-time 

performance and resilience under high traffic and evolving attack scenarios.  
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