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Long short-term memory

Internet of things (IoT) systems are often inherently heterogeneous and the
constantly evolving cyber threat presents a variety of attack vectors that can
expose sensitive data across multiple mission-critical applications. The
existing intrusion detection methods are often prone to zero-day attacks and
specific to limited known intrusions. This paper designs a hybrid and multi-
level cyber-threat detection framework based on the robust data
preprocessing scheme, correlation-based optimal feature selection and
integrated anomaly and intrusion detection using a supervised learning
approach. In the first stage, a random forest (RF)-based binary anomaly
detector is designed as a fast primary threat filter against zero-day threats by
detecting traffic anomalies without any prior attack signal. In the second
stage, an adaptive, time-aware long short-term memory (LSTM) model
performs multi-class intrusion classification using time-lag analysis in traffic
flows to accurately identify and classify known attack types with high

Random forest precision. The proposed framework is evaluated on the network flow—
telemetry of network—internet of things—version 2 (NF-ToN-10T-V2) dataset
and achieved 99% accuracy in both binary and multiclass settings, with a

lower response time of 7.8 ms.
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1. INTRODUCTION

The internet of things (1oT) links billions of physical devices, sensors, actuators, and smart things
that communicate data over the Internet. 10T is being utilized across the globe in real-world applications and
has a dramatic rate of adoption in industrial systems and agricultural systems, enabling real-time monitoring,
automated decisions, and overall improvements in efficiency [1]. However, the 10T is vulnerable to security
concerns because it is highly distributed, has lower computation power, has various communication
protocols, and has little-to-no authentication [2]. Cyber-attacks that include denial-of-service (DoS), man-in-
the-middle (MITM), botnets, ransomware, and data leaks have demonstrated how perimeter security fails [3].
In addition, there are two major concerns, i.e., zero-day attacks, which exploit unknown vulnerabilities, and
multi-stage intrusions that escalate over time [4]. The conventional signature-based detection methods often
fail to identify such threats, as they are highly dependent on the predefined patterns [5], but with the
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advancement in machine learning (ML) and deep learning (DL), there is an increasing trend towards
developing intelligent anomaly detection and intrusion classification [6]. However, designing an effective
artificial intelligence (Al-based) security system for 10T is not a straightforward process, as it is associated
with various challenges such as imbalanced datasets, limited edge-device resources, difficulty in generalizing
to new attacks, and a lack of model interpretability. Furthermore, achieving the best balance between
predictions with low false-positives and model complexity also presents challenges when adopted in real-
world scenarios.

In the recent literature, various research works have been presented towards developing an
intrusion-detection-system (IDS) for loT applications using different ML and DL models as well as their
hybridized versions. The usage of k-nearest neighbour (KNN) is seen in the work of Babbar et al. [7] for
detecting Android malware in 0T environments, which is effective in identifying known threats but may face
difficulty with evolving cyber-attacks. Agbedanu et al. [8] introduced an adaptive KNN model for detecting
zero-day attacks in industrial 10T, but this model may be a bit difficult to handle high-dimensional data.
Nuha et al. [9] introduced a modified distance metric in KNN using third-order distance to classify flooding
attacks in optical burst switching networks. Kaushik et al. [10] used a multinomial Naive Bayes (NB)
classifier to analyze intrusions from traffic generated from smart loT devices. Similarly, Prakash et al. [11]
developed an NB-based IDS framework for anomaly detection, but it is not very adaptive and may result in
high false-positive rates when subjected to different network datasets. Majeed et al. [12] suggested an NB-
powered cybersecurity model for drone networks, but it lacked robustness against dynamic attack scenarios.
In the work of Deshmukh and Ravulakollu [13], researchers designed a convolutional network-based l0T-
IDS due to its automated feature learning, but this approach is sensitive to overfitting due to the use of fixed
filters. Alabsi et al. [14] introduced a dual convolutional network architecture to improve feature learning,
but its computational cost increases. Hairab et al. [15] applied convolutional operations with regularization to
detect zero-day attacks. Okey et al. [16] explored transfer learning with convolutional neural networks
(CNNs) for loT-based IDS, but it lacks scalability for real-time deployment scenarios where continuous
training on new features is required.

The studies towards applying deep recurrent models such as the gated recurrent unit (GRU) for
modelling sequential dependencies in network traffic are seen in the work of Sagu et al. [17], where GRU is
combined with convolutional networks to improve prediction accuracy on known attacks. Alshdadi et al. [18]
developed a GRU integrated ResNet split-attention mechanism to detect distributed denial of service (DDoS)
attacks, which provided better detection rate but with extensive computational resources. Bi et al. [19]
introduced a temporal-convolutional network with bi-directional GRUs for attack prediction to capture
temporal behaviours in the network traffic. Similarly, ALMahadin et al. [20] used GRU for detecting
anomalies in vehicular ad hoc network (VANET) traffic, which demonstrated robust performance but may be
prone to adversarial attacks. The work carried out by Gueriani et al. [21] explored an advanced recurrent
model, i.e., long short-term memory (LSTM) networks, which is combined with convolutional layers to build
a hybrid-1DS for detecting complex intrusion patterns. In a similar direction, development of the hybrid IDS
based on the joint approach of CNN-LSTM is also found in the work of Altunay and Albayrak [22] and
Sinha et al. [23] towards enhanced feature learning and classification of complex network intrusions in
Industrial 10T. However, these models are not validated against zero-day or un-seen attacks, which is
important for real-world deployment. However, the literature is diverse, but most of them highlight
individual strengths without addressing trade-offs such as accuracy versus scalability or temporal modelling
versus interpretability.

The identified research problem after reviewing existing system are as follows: i) the existing ML
classifiers are only effective for known malware patterns [7]-[12], but have been found to be ineffective
against emerging threats and zero-day attacks; ii) the existing DL-based IDSs [13]-[20] provide better
accuracy, but suffer from overfitting, high resource demand, and poor scalability for edge deployments;
iii) LSTM-based systems [21]-[23] show robust temporal modeling for stealth attacks, but often lack
interpretability and have high latency, making them unsuitable for real-time loT use; iv) the current
approaches struggle with stateless and evolving attacks such as single-packet flooding or timing-based
intrusions, which require both timing and behavioral analysis for effective detection; and v) also, in many
real-world 10T scenarios, traffic patterns are not uniformly sampled and there are variable delays between
events. The existing approaches often ignore this temporal gap that can distort the sequence modelling, which
may limit performance when applied to real, noisy network data.

The proposed study presents an effective and hybridized cyber-threat countermeasure framework
that integrates multiple Al-driven components for robust 10T security. Specifically, the proposed model is a
multi-level security architecture: i) it applies data analytics techniques for feature correlation and optimal
selection; ii) introduces anomaly detection using ML where a random forest (RF)-classifier is used for
preliminary anomaly detection; and iii) implements intrusion classification via DL LSTM classifier enhanced
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with adaptive temporal (AT) network traffic pattern analysis. The unique contribution of the proposed work
is the inclusion of elapsed time between traffic events in the sequential classification that enables the model
to adaptively discount outdated information and prioritize recent observations. As a result, the proposed
system achieves high accuracy in classifying both known and previously unseen (zero-day) attacks.

2. METHOD

The schematic outline of the proposed multi-layer security framework is illustrated in Figure 1,
which integrates data analytics, supervised-learning-based anomaly detection and intrusion classification in
10T environments. The system modelling is carried out in four distinct stages, such as: i) data preprocessing,
i) feature selection, iii) binary anomaly detection, and iv) multi-class intrusion classification. Unlike
conventional models that attempt to address all tasks within a single implementation strategy, the proposed
approach separates anomaly detection and threat classification into distinct yet interconnected stages. The
input module of the proposed system incorporates a lightweight correlation-guided feature selection
mechanism for reducing the dimensionality of the data and selecting optimal features without compromising
detection capability. At the first stage of cyber-threat detection, the system employs an RF-based anomaly
detector, which is trained on optimized features that allow the system to quickly flag abnormal traffic
patterns. At this stage, the proposed model contributes to the early threat interception by acting as a first-
layer security filter.
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Figure 1. The schematic architecture of the proposed multi-level 10T security framework

Upon detection of anomalies, the framework activates a second-layer threat analysis via an AT-
LSTM network, which is designed for sequence learning and is capable of modelling the temporal and
contextual patterns of network traffic. It enables multi-class classification of threats of various 10T attack
categories, i.e., from DoS and DDoS to cross-site scripting (XSS), injection, and ransomware, ensuring
comprehensive threat labelling and future traceability. Finally, the framework is evaluated on a large-scale
modern loT dataset, towards justifying and validating its effectiveness against zero-day attacks and known
cyber-threats. The development of the proposed 10T security solution is carried out in such a manner that it
enhances both the speed of response and classification depth, thereby optimising performance for real-time
and resource-constrained 10T environments.

2.1. Dataset description

This study utilises the network flow—telemetry of network—internet of things—version 2 (NF-ToN-
10T-V2) dataset [24], a recent benchmark from the ToN-loT series, which is the Netflow version of the
UNSW-ToN-loT dataset. This dataset consists of the telemetry network traffic data obtained from the diverse
10T devices and industrial control systems, which consists of more than 13 million labelled data samples.
This dataset comes with both normal traffic and nine different attack classes, where each samples are
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associated with numerical and statistical features related to network sessions, packet count, flow duration,
and header flags. For model development, the dataset is used in two tasks, viz; i) binary classification
(anomaly detection), i.e., benign vs. attack, with an 80:20 train-test split and ii) multi-class classification
(intrusion type classification) with an 80:10:10 train-validation-test split considering all ten classes. The
detailed class-wise distribution is summarized in Table 1.

Table 1. Dataset distribution
Attack type  Train (80%) Validation (10%)  Test (10%) Total

Scanning 2,401,735 300,217 300,217 3,002,169
XSS 1,959,964 244,996 244,996 2,449,955
DDOS 1,397,272 174,659 174,659 1,746,590
Password 794,974 99,372 99,372 993,718
Injection 528,374 66,047 66,047 660,467
DOS 523,487 65,436 65,436 654,359
Backdoor 13,007 1,626 1,626 16,259
MITM 6,178 773 772 7,723
Ransomware 2,686 336 335 3,357
Benign 2,880,997 360,128 360,159 3,601,284
Total 10,508,674 1,313,590 1,313,619 13,135,881

2.2. Preprocessing and feature selection

The exploratory analysis of the adopted dataset reveals that the dataset has a total of 43 numerical
and categorical attributes and 9,534,597 samples. Further investigation using descriptive statistics reveals that
the dataset is not associated with any missing or zero values. However, it is found that the dataset is
associated with class imbalance issues with different attack classes, which are handled using an upsampling
approach on the training set using synthetic-minority-over-sampling-technique (SMOTE). The next process
leads to data encoding, where categorical attributes are encoded to numerical representations, which are then
standardised using the Z-score normalization approach by removing each feature's mean and scaling it to unit
variance. Further steps are subjected to correlation analysis and feature selection to identify the most relevant
and task-associated features for the target label. Figure 2 shows the top-15 selected features using the Pearson
coefficient method.
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Figure 2. The top-15 features selected based on their relevance to the target class
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The Figure 2 shows the correlation matrix of the top-15 features identified and most relevant to the
target class. It can be seen that the features such as MIN_IP_PKT_LEN, TCP_WIN_MAX_IN, and
CLIENT_TCP_FLAGS show a relatively higher positive correlation with the attack class, and this indicates
their strong relevance or influence in distinguishing between benign and malicious traffic patterns. On the
other hand, the other features like L4 DST_PORT and DNS_QUERY_ID show slight weak correlations,
which suggests its limited direct impact on classification, but it has a significant contribution when
considering with other features. Hence, these features are considered for the model training for both task
anomaly detection and intrusion classification.

2.3. Anaomaly detection

This is the first phase of the proposed framework that focuses on anomaly detection, and is
modelled as a binary classification problem. In this phase of the modelling, the RF algorithm is employed
due to its robustness, high interpretability, and low susceptibility to overfitting. The reason behind selecting
the RF classifier among other ML classifiers is its ability to handle high-dimensional data. It is an ensemble-
based ML model that is designed based on the constructs of multiple decision trees and has less sensitivity to
noise, and has fast inference speed, which is crucial for early-stage threat detection. In this work, RF is
trained on the preprocessed feature set (as detailed in subsection 2.2) using 80% of the dataset, whereas the
remaining 20% is used for evaluation. The output of this stage indicates whether the incoming traffic flow is
anomalous, and if it flags network traffic as an attack, then the system quickly isolates malicious flows from
the network and initiates the next phase for deep inspection using the proposed AT-LSTM model.

2.4. Intrusion classification

This is the second and final phase of the proposed framework towards accurately categorising the
anomalies identified by the first module into their respective attack types. This phase of the system modelling
is essential to understand the type and impact of the threats, even in dynamic real-world 10T environments
with a possibility of known attacks as well as unseen attacks (zero-day). The intrusion classification task is
modelled as a temporal sequence classification problem, where network traffic samples developed after the
anomaly detection model has detected anomalies are sequentially processed by the AT-LSTM network in the
same manner as their ordering, repeating processing the samples until the sequencing is concluded. Rather
than treating all temporal transitions equally like conventional LSTM models, our AT-LSTM explicitly
captures elapsed time (At) between input events as an additional input feature, through which the model can
regulate its memory retention and forget mechanisms based on the temporal relevance of each input sample.
Figure 3 outlines the workflow of the proposed AT-LSTM for intrusion classification. The main workflow
and internel architecture are illustared in Figures 3(a) and (b) respectively.
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Figure 3. The workflow architecture of the AT-LSTM with; (a) main workflow and (b) internel architecture
of the proposed AT-LSTM

As shown in the Figure 3, at each time step t,the AT-LSTM model considers two inputs: i) the
traffic feature vector x; and corresponding to the time gap 4t; i.e., elapsed time between two consecutive
network traffic events, which quantifies how much time has passed between two such events. The At is
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computed using a numerical formula as in (1). Afterwards, the input original feature vector x; is fused with
At, to compute a time-aware context vector, numerically expressed in (2).

Aty =t —tp @
X = f(xe, Aty) 2

The obtained time-aware feature vector %, is then used to update the AT-LSTM states, where its
internal gates are modified to incorporate the temporal decay, so that it can allow the network to discount
outdated information when the time gap is large. This process of temporal sensitivity ensures that recent
patterns are given higher importance, thereby enhancing the ability of the model to capture time-dependent
behaviours in network traffic. The updated LSTM gate equations are defined as (3)-(8):

ip =0(W; XX, + U; X hy_1+b;) 3)
fo =o(Wp X %, + U X hy_y + by + v X At,) (4)
op=0(W, X% + U, X h_y +b,) (5)
g: = tanh(W, X X, + U, X hy_y + b,) (6)
¢ = [iOc_4 +i:0g; )
h: = 0,Otanh(c;) (8)

Where, i, f;, 0, are the input, forget, and output gates respectively, g, is the candidate memory, c; is the
memory cell, and h; is the hidden state. The associated learnable parameters (weights) are denoted as W and
U, b denotes bias vectors, and y is a learnable decay parameter controlling temporal relevance and o is the
sigmoid activation function for performing non-linear operation in learning sequential dependencies by the
LSTM units. The model here dynamically attenuates the influence of outdated patterns by discounting hidden
states associated with large At, and at the same time, it prioritizes the more recent events. This mechanism
helps the model to detect asynchronous, multi-stage, or complex intrusion patterns that are often irregular at
different time intervals. The final hidden state h, is passed through a fully connected output layer with
SoftMax activation to yield the predicted class of intrusion.

3. RESULT

The proposed multi-level intrusion detection framework is developed and executed using Python 3.9
with Tenforflow on a Windows system with an Intel Core i7 processor, 16 GB RAM, and an NVIDIA GPU
(4 GB VRAM) to ensure efficient training and inference performance. The configuration details of the
proposed multi-level security framework are highlighted in Table 2. The performance evaluation is done
using standard classification metrics such as accuracy, precision, recall, and F1-score, along with confusion
matrix analysis.

Table 2. lllustrates configuration details of the proposed multi-level security model

Module Component Parameter

Anomaly Model type RF

detection Number of trees; splitting criterion; bootstrap sampling; and  100; Gini impurity; and enabled; 42
random state
Output type Binary classification (benign vs. attack)

Intrusion Model type AT-LSTM

classification  Input features and input shape 15 selected; (batch size, time steps, and 16)
LSTM units; activation; and recurrent activation 128; tanh; and sigmoid
Dropout rate; dense units; and dense activation 0.3; 64; and ReLU
Output units and output activation 10 (attack including normal) and Softmax
Optimizer; learning rate; and loss function Adam; 0.001; and categorical crossentropy
Batch size; epochs; and validation split 512; 50; and 10%

Figure 4 presents the confusion matrices of the proposed multi-level security framework based on
AT-LSTM, where Figure 4(a) displays the performance of the binary anomaly detection task and Figure 4(b)
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illustrates the results for the multiclass intrusion classification. It can also be seen in the case of the binary
anomaly detection task (Figure 4(b)) that the model has achieved outstanding performance. The analysis of
the confusion matrix reveals that the model has achieved high performance, where out of a total of 2,627,206
samples, the model correctly identifies 1,906,737 attack samples (true positives) and 719,834 benign samples
(true negatives) and only 182 attack samples are misclassified as benign (false negatives), and 453 benign
samples are misclassified as attacks (false positives).

The overall classification accuracy was found to be 99.974%, with a precision of 99.976%, a recall
of 99.990% and the F1-score of 99.983%. The result shows that the RF model has extremely low false
positive and false negative rates, which highlights the high sensitivity and specificity of the model for
anomaly detection. On the other hand, in the multiclass intrusion classification task (Figure 4(b)), it can be
observed that the proposed AT-LSTM model demonstrated a strong classification capability for all
10 categories, even for rare attacks such as ransomware and MITM. A detailed evaluation of class-wise
precision, recall and F1-score metrics is presented in Table 3, where the effectiveness of the proposed system
to handle imbalanced and complex intrusion types is extensively discussed.

Attack 1,906,737 182

True Label

Benign - 453 719,834

i i
Attack Benign
Predicted Label
(@)
sCan 700 200 200 300 20 15 10 1072
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Figure 4. Confusion matrix for; (a) binary anomaly detection and (b) multiclass intrusion classification task

Table 3 presents the performance metrics of the AT-LSTM model for multi-class intrusion
classification across 10 traffic categories. The model consistently achieves high precision and recall (>97%)
for major categories such as scanning, XSS, and DDoS, with an overall accuracy of 99.04%. Even for
minority categories such as ransomware and MitM, the model maintains strong F1-scores above 0.95,
indicating strong generalization. The highest precision (99.50%), recall (99.70%), and AUC (99.9%) are
achieved for the benign class, thereby indicating the low false-positive rate of the model in real traffic.
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Table 3. The quantified classification outcomes for multiclass intrusion classification
Attack type Precision  Recall Fl-score AUC  Support

Scanning 0.9915  0.9897 0.9906  0.998 300,217
XSS 0.9878  0.9853  0.9865 0.997 244,996
DDoS 0.9912  0.9899 0.9905 0.998 174,659
Password 0.9832 0.9760 09796 0.996 99,372
Injection 0.9850 0.9735 09792 0.995 66,047
DoS 0.9874  0.9720 09796 0996 65,436
Backdoor 0.9812  0.9532 09670 0.994 1,626
MITM 0.9754  0.9398 0.9572  0.991 772
Ransomware 0.9843  0.9343  0.9587  0.990 335
Benign 0.9950  0.9970 0.9960 0.999 360,159
Overall accuracy: 0.9904

3.1. Outcome discussion

Table 4 provides a comparative evaluation of the proposed multi-level intrusion detection system
against recent methods on the NF-ToN-10T-V2 dataset. Our model achieves 99% accuracy and F1-score in
both binary and multiclass tasks using only 15 selected features. The method by Li et al. [25] obtained 98.8%
accuracy using a pre-trained DL+generative adversarial network (GAN) model, but required all features,
thereby increasing computational cost. On the other hand, our system achieves better accuracy with reduced
feature space.

Table 4. Comparative analysis with recent existing works on the NF-ToN-10T-V2 dataset

Reference Method Classification task  Accuracy  Fl-score
[25] Pre-trained DL+GAN Multiclass 98.8% 98.8%
[26] GNN Binary 96.6 97.9
[27] FSLLM Multiclass 95.8 95.8
[28] Stacked classifier and adaptive thresholding ~ Binary 93.715%  95.145%
[29] AE-DTNN Multiclass 98.30 98.30
[30] MAS-LSTM Binary 95.22 96.78

Proposed  Binary Binary 99 99

Proposed  Multiclass Multiclass 99 99

Similarly, Wang et al. [26] applied a GNN with 96.6% accuracy but also used all features, which
limits their methodology's scalability. Ma et al. [27] used only 7 features but achieved lower accuracy
(95.8%), which shows that minimal features alone aren't sufficient without robust modelling, and the work by
Kamal et al. [29] and Qin et al. [30] also used all features, and achievd 98.3% and 95.2% accuracy
respectively, but at higher model complexity. The proposed RF+AT-LSTM framework offers a better trade-
off between performance and computational efficiency, which suggests that it can be suitable for real-time
deployment under resource-constrained l1oT deployments. In order to validate the proposed system design,
Table 5 presents an Ablation study considering different ML classifiers and DL models along with
hyperparameters such as batch size (bs), learning rate (Ir) and Adam and RMSProp optimizers.

Table 5. Ablation study

Response

Model Task Features  Accuracy time (ms) Remarks
NB Binary 15 94.8% 95 Simple, fast, and lower accuracy
KNN Binary 15 96.7% 17.9 Higher latency
SVM Binary 15 97.8% 13.4 Better generalization
CNN Multiclass All 97.6% 25.3 Complex and high latency
GRU Multiclass 20 98.0% 22.7 Effective for sequences
LSTM Multiclass 20 98.2% 24.1 Long-range temporal capture
AT-GRU Multiclass 15 98.6% 20.2 Time-aware GRU
AT-LSTM Multiclass 20 98.8% 8.9 Slightly lower accuracy
AT-LSTM Multiclass All 98.6% 10.1 Higher compute and no gain
AT-LSTM (proposed) Multiclass 15 99.0% 79 Best accuracy+speed
AT-LSTM (bs=32, Ir=0.001, and Adam) Multiclass 15 99.0 79 Optimal configuration
AT-LSTM (bs=16, Ir=0.001, and Adam) Multiclass 15 98.7 9.2 Smaller batch and slightly slower
AT-LSTM (bs=64, Ir=0.001, and Adam) Multiclass 15 98.6 6.5 Faster and slight drop in accuracy
AT-LSTM (bs=32, Ir=0.005, and Adam) Multiclass 15 98.4 79 Higher LR and less stable
AT-LSTM (bs=32, Ir=0.001, and Multiclass 15 98.8 8.3 Different optimizer

RMSProp)
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3.2. Scope and limitation

The proposed system offers multi-level protection with low response time by utilizing RF for early
anomaly filtering, which reduces data load before deep analysis by AT-LSTM. Its efficiency and high
accuracy make it suitable for real-time loT/industrial internet of things (l1oT) deployment scenarios.
However, the current design focuses on offline training; the future work will explore online learning,
adaptive feature updates, and a data compression scheme in the communication layer or in the message
queuing telemetry transport (MQTT) protocol to ensure a more efficient approach in integration with edge-
computing platforms to enhance its adaptiveness under evolving threat patterns.

4. CONCLUSION

This paper has presented a hybrid and multi-level IDS with a RF classifier and adaptive time-aware
LSTM to enhance the security of 10T applications against unknown, dynamic, and multi-vector cyber threats.
The RF-based anomaly detector acts as an efficient primary filter to block adversarial traffic, and the
AT-LSTM model performs secondary classification of known intrusions. The proposed multi-level approach
ensures comprehensive protection by preventing complex threats at the initial stage and enables a detailed
threat categorisation for informed response. The experimental evaluation on the NF-ToN-loT-V2 dataset
demonstrates high accuracy and low latency, thereby highlighting the suitability of the proposed security
framework for real-time deployment with support of adaptability in diverse 10T/IloT environments. The
future work will explore lightweight DL models and online learning techniques to enhance real-time
performance and resilience under high traffic and evolving attack scenarios.
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