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 The preservation and recognition of traditional Indonesian dances face 

challenges due to limited digital documentation and declining 

intergenerational transmission. Manual annotation of dance videos is time-

consuming and prone to subjectivity, creating urgency for automated 

solutions. This study proposes a deep learning-based approach combining 

convolutional neural networks (CNN) for spatial feature extraction and long 

short-term memory (LSTM) for temporal modeling to recognize traditional 

dance movements from video sequences. The system leverages OpenPose 

for keypoint detection and gesture estimation, enabling frame-wise pose 

representation prior to classification. A hyperparameter tuning process was 

applied to optimize the CNN-LSTM architecture using 80% of the dataset 

for training and 20% for testing. Experimental results show the proposed 

model achieved a macro accuracy of 98.4%, with perfect precision, recall, 

and F1-score. This research contributes to cultural heritage digitization and 

intelligent video analysis by enabling accurate, real-time classification of 

traditional dances, providing a foundation for future systems in education, 

archiving, and motion-driven applications. 
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1. INTRODUCTION 

The analysis and interpretation of visual patterns in video data have emerged as central topics within 

the fields of computer vision and digital image processing [1]-[3]. With the rapid expansion of multimedia 

content and the growing demand for intelligent systems capable of understanding visual information 

autonomously, researchers have increasingly focused on developing methods to recognize objects [4], human 

actions [5], and complex motion sequences from dynamic image inputs [6], [7]. One particularly compelling 

area of application lies in video-based activity recognition [5], [8], where the goal is to extract both spatial 

and temporal context from scenes [9]-[11]. Beyond conventional domains such as surveillance or sports 

analytics [12], this technology is beginning to find relevance in cultural preservation [13], notably in the 

classification of traditional dances that involve intricate movements and rich visual symbolism [14], [15]. 

This evolution highlights the expanding role of computational methods in supporting the intelligent 

interpretation and digital conservation of cultural heritage. 

While video-based activity recognition has seen substantial progress across various domains, the 

task of classifying traditional dances remains particularly complex, especially within culturally rich settings 

https://creativecommons.org/licenses/by-sa/4.0/
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like Indonesia [16], [17]. Traditional dance performances often involve layered choreographic structures that 

unfold gradually, featuring intricate gestures [18], expressive body movements [19], and symbolic motion 

sequences [20], [21]. These temporal characteristics are interwoven with diverse spatial elements such as 

regional costumes, background environments, and lighting conditions, which introduce high intra-class 

variation and challenge the consistency of feature representation [22], [23]. Additionally, many of these 

dances embody cultural meanings that are difficult to capture using general-purpose action recognition 

models [21], [24], which tend to focus on broad, repetitive motion patterns and often overlook subtle, 

semantically rich details [25], [26]. The disconnect between these generic models and the cultural specificity 

of traditional dance highlights a significant limitation in existing approaches [27]-[29]. There is a growing 

need for more specialized techniques that can effectively learn from both the spatial appearance and the 

temporal dynamics embedded in traditional dance videos, while being sensitive to the symbolic and stylistic 

diversity that defines these cultural artifacts.  

To raise our research, our research is based on and supported by previous research, such as study by 

[30], where the authors developed a hybrid convolutional neural networks–long short-term memory (CNN–

LSTM) architecture to classify motion sequences in Baduanjin (a traditional Chinese exercise). The CNN 

module automatically extracts visual features from video frames, while the LSTM captures temporal 

dependencies across the sequence. On a test set of practitioners, their model achieved 96.43% accuracy, 

significantly outperforming conventional geometrical-feature based models. The main contribution lies in 

leveraging CNN‑based feature learning to capture complex motion semantics without manual pose engineering. 

A noted drawback is that the study focuses on relatively constrained movements and lacks evaluation under 

varied backgrounds or attires, limiting generalizability to more complex, culturally varied dance forms. 

Study by [31] using a hybrid CNN‑LSTM model to identify dance emotions, the study compared 

decision trees, random forest, CNN-only, LSTM-only, and CNN‑LSTM approaches. The CNN‑LSTM model 

reached the highest recognition rate (97%), surpassing CNN (94%) and LSTM (94%) across seven labeled 

emotional categories. Their contribution demonstrates that combining spatial feature extraction with temporal 

modeling improves emotion recognition in dance. However, the approach targets only emotional expression, 

not specific dance styles, and does not address cultural complexity or motion diversity typical of traditional 

dances. Study by [32] applies a CNN‑LSTM pipeline to classify hand mudra gestures in Bharatanatyam 

dance videos. Their model achieved up to 93% accuracy and high F1-scores (97%) after 65 epochs, 

outperforming baseline models like 3D CNN, long-term recurrent convolutional network (LRCN), LSTM, 

and multilayer perceptron (MLP). Contribution includes focusing on fine-grained gesture recognition (hand 

mudras) within classical dance, leveraging EfficientNet‑UNet for preprocessing and feature extraction. 

Drawbacks include reliance on cropped hand regions rather than full-body context, limiting applicability for 

full-body traditional dance recognition which involves coordinated limb and torso movements. Study by [33] 

reviewed a hybrid recurrent neural network (CNN–RNN) model that successfully classified various Indian 

classical dance styles with improved accuracy over traditional approaches. Their architecture captured both 

spatial (appearance) and temporal (motion) features, showing that such hybrid models are effective in 

classifying culturally nuanced performances (95%). Contribution rests in demonstrating the feasibility of 

hybrid deep learning for intangible cultural heritage (ICH) data. The primary drawback is a lack of 

implementation details and limited evaluation on a culturally diverse dataset; generalization to other dance 

traditions remains untested. Study by [34] implemented a 3D‑CNN coupled with an LSTM layer to detect 

erroneous actions in Erhu playing videos. RGB video input underwent preprocessing with body and 

instrument-specific landmark extraction. Their model effectively captured spatio-temporal movement related 

to instrument handling and body posture errors. Contribution demonstrates the integration of domain-specific 

preprocessing (body/instrument landmarks) with hybrid deep learning to improve recognition. However, as a 

proof of concept for musical gesture detection rather than dance, it did not address stylistic variation or visual 

complexity typical in traditional dance performances. 

Based on the drawbacks of related research above, this study proposes a culturally grounded video 

classification framework that integrates a CNN–LSTM architecture with spatial attention mechanisms to 

address the complex characteristics of traditional Indonesian dance. While previous works have demonstrated 

success in constrained domains such as gesture recognition, emotion classification, or domain-specific 

motion detection, they often fall short in handling the full-body spatial complexity, cultural variability, and 

symbolic richness that define traditional dances. To overcome these limitations, our model captures both the 

temporal dynamics of movement sequences and the spatial cues from entire body postures and costumes, 

guided by an attention mechanism that emphasizes semantically salient regions in the video frames. This 

enables more robust learning of intricate motion patterns without relying on cropped features or narrowly 

defined motion categories. As a result, the proposed approach not only advances the technical capabilities of 

deep learning in cultural contexts but also contributes meaningfully to the digital preservation and intelligent 

interpretation of diverse intangible heritage expressions. 
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2. METHOD 

Based on the proposed stages as seen in Figure 1, the overall workflow of the traditional dance 

recognition system is segmented into three primary modules: preprocessing, training and evaluation, and 

testing. The process begins with data collection, where videos containing traditional dance performances are 

gathered and subsequently converted into individual image frames. This conversion allows the system to 

extract spatial information from static visual cues across the sequence. Once converted, the data is split into 

two subsets, allocating 80% for training and 20% for testing. In parallel, the system initializes 

hyperparameters and defines architectural components, including ResNet-based feature extraction and 

stacked LSTM layers, to be used during model training. Following the setup, the training phase involves 

feeding the 80% training data through a ResNet-based CNN to extract discriminative spatial features from 

each frame, which are then passed into a stacked LSTM composed of two sequential layers with 256 and 128 

hidden units. This architecture enables the model to capture temporal dependencies and motion continuity in 

the frame sequence. The trained model is then validated through performance evaluation metrics to assess 

accuracy and classification efficacy. In the testing phase, the reserved 20% of the dataset is passed through 

the same feature extraction and temporal modeling pipeline. The final outcome is a pose estimation and 

classification output, which labels each dance motion sequence based on learned spatial-temporal patterns, 

thus completing the recognition process from raw input to semantic understanding. 
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Each Video 

Convert to Frame
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Data 

Initialized 
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Performance 
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Model Building for 
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Figure 1. Proposed stages 

 

 

2.1.  Data collections 

The dataset used in this study was sourced from publicly available YouTube videos representing 

three distinct traditional Indonesian dance styles: Tari Gagrak Anyar [35], Tari Gambyong [36], and Tari 

Topeng [37]. Each video was trimmed to a 5-minute segment to ensure comparable durations. These clips 

then underwent a systematic frame extraction process, yielding a varying number of frames per class: 4,501 

frames for Gagrak Anyar, 4,293 frames for Gambyong, and 4,560 frames for Topeng. All frames were 

preprocessed by resizing them to a fixed resolution of 227×227×3 to conform with CNN input requirements 

and maintain consistent spatial dimensions. 

Figure 2 presents representative sequential frames extracted from each traditional dance category. 

Figure 2(a) shows the Gagrak Anyar, which contains fast-paced rhythmic movements with distinctive hand 

and torso coordination. Figure 2(b) illustrates the Gambyong, characterized by graceful gestures and fluid 

body transitions. Figure 2(c) depicts the Topeng, where performers emphasize expressive facial and bodily 

postures through mask usage and dramatic limb movements. These frame samples highlight the temporal 

richness and stylistic variation across classes, providing the system with discriminative features for 

subsequent learning. Although the dataset in this study is limited to three traditional Indonesian dance 

categories, it was deliberately selected as a proof-of-concept to demonstrate the feasibility of automated 

classification in culturally specific domains. To improve model robustness and reduce potential overfitting, 

data augmentation techniques were applied, including horizontal flipping, random rotation, brightness 

adjustment, and slight cropping. These augmentations increased the effective diversity of the training 

samples while preserving the authenticity of the original movements. Furthermore, while no formal 

benchmark dataset currently exists for Indonesian traditional dances, the videos were sourced from publicly 

available YouTube repositories, ensuring that the dataset can be reproduced by other researchers. This design 

choice allows future work to expand the dataset toward a more comprehensive benchmark covering a wider 

range of dance traditions. 
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   ⋯ ⋯ ⋯  
1st Frame 2nd Frame 3rd Frame  4501th Frame 

(a) 
 

   ⋯ ⋯ ⋯  
1st Frame 2nd Frame 3rd Frame  4293th Frame 

(b) 
 

   ⋯ ⋯ ⋯  
1st Frame 2nd Frame 3rd Frame  4560th Frame 

(c) 

 

Figure 2. Sample frame after extraction; (a) Gagrak Anyar, (b) Gambyong, and (c) Topeng 

 

 

2.2.  Convolutional neural network–long short-term memory 

In this study, we propose a hybrid CNN–LSTM architecture specifically designed to address the 

challenges of motion-based video recognition, particularly for classifying traditional dance performances 

[38]. The model architecture is logically divided into two core components: a CNN for spatial feature 

extraction from individual video frames, and a stacked LSTM module for learning temporal dynamics across 

sequences of motion [39], [40]. The feature extraction stage begins with a series of Conv2D layers, each 

followed by batch normalization and ReLU activation functions [41], [42]. This combination helps to 

stabilize learning by normalizing feature distributions, accelerating convergence, and introducing non-

linearity to enhance the network’s capacity to capture complex patterns. The convolutional operation can be 

calculated using (1): 
 

𝑍𝑖,𝑗
(𝑙)

= 𝑓 (∑ ∑ ∑ 𝑊𝑝,𝑞,𝑚
(𝑙)

× 𝑋𝑖+𝑝,𝑗+𝑞,𝑚
(𝑙−1)

+  𝑏(𝑙)𝑄
𝑞=1

𝑃
𝑝=1

𝑀
𝑚=1 ) (1) 

 

where 𝑍𝑖,𝑗
(𝑙)

 the output activation at position (𝑖, 𝑗) in layer 𝑙, with learnable filters 𝑊(𝑙), input feature maps 

𝑋(𝑙−1), and non-linearity function 𝑓.  

To deepen the model’s representation power while avoiding vanishing gradient issues, we integrate 

ResNet blocks [43], [44], which include shortcut connections that allow gradients to propagate more directly 

through the network. These residual blocks follow the formulation as seen in (2):  
 

𝑦 = 𝐹(𝑥, {𝑊𝑖}) + 𝑥 (2) 
 

where 𝐹 represents the stacked convolutional layers within the block, and 𝑥 is the identity mapping passed 

through the shortcut path. This formulation significantly improves the ability to learn complex, hierarchical 

features such as body posture, costume patterns, and choreographic cues unique to each dance.  

Once the spatial features are extracted, a global average pooling (GAP) layer is applied to reduce the 

spatial dimensionality of the feature maps into a compact 1D vector that summarizes the global spatial 
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information of each frame. These vectors are then passed sequentially into a stacked LSTM module 

composed of two layers with 256 and 128 units, respectively. LSTM networks are particularly suited for this 

task due to their gating mechanisms, which regulate the flow of information across time steps. The internal 

computations of LSTM at each time step 𝑡 are governed by (3): 

 

𝑓𝑡 =  𝜎 (𝑊𝑓  ×  [𝐻𝑡−1, 𝑋𝑡] + 𝑏𝑓)       

𝑖𝑡 =  𝜎 (𝑊𝑖  ×  [𝐻𝑡−1, 𝑋𝑡] + 𝑏𝑖)         

𝐶̅𝑡 =  𝑡𝑎𝑛ℎ (𝑊𝐶  ×  [𝐻𝑡−1, 𝑋𝑡] + 𝑏𝐶)

𝐶𝑡 =  𝑓𝑡  ×  𝐶𝑡−1 + 𝑖𝑡  ×  𝐶̅𝑡                

𝑜𝑡 =  𝜎 (𝑊𝑜  ×  [𝐻𝑡−1, 𝑋𝑡] + 𝑏𝑜)

ℎ𝑡 =  𝑜𝑡  × tanh(𝐶̅𝑡)                    
        

 (3) 

 

where 𝑋𝑡 is the frame-wise CNN output, and 𝑓𝑡, 𝑖𝑡, 𝑜𝑡 represent the forget, input, and output gates 

respectively. This temporal modeling enables the network to learn transitions in dance movements, such as 

rhythmic shifts, gesture sequences, and body coordination patterns.  

The final stage consists of a dense layer that maps the temporal feature representation to class 

probabilities using a softmax activation function, completing the classification pipeline. This hybrid 

integration of ResNet-based CNN with stacked LSTM equips the model with robust spatial-temporal learning 

capacity, making it particularly effective in capturing both static visual cues and dynamic motion patterns 

within traditional dance video sequences. 

 

2.3.  Parameter and layer configurations 

To understand the architectural backbone and modeling decisions in related hybrid CNN–LSTM 

frameworks, this study conducted a comparative analysis of five influential works. Each model integrates 

spatial and temporal modeling, yet they differ in their layer choices, depth, and preprocessing pipelines. Most 

studies utilize standard Conv2D layers for spatial feature extraction, often accompanied by pooling layers 

and regularization components like dropout or batch normalization. In temporal modeling, a single-layer 

LSTM is commonly employed, with hidden unit sizes ranging around 256, as seen in [30]-[32]. Meanwhile, 

[33] enhances temporal understanding by adopting a bidirectional LSTM (Bi-LSTM), improving 

performance for multi-class classification tasks involving stylistic nuances. Preprocessing steps vary 

significantly depending on the domain: while some studies adopt full-frame video inputs [30], [31], others 

perform domain-specific segmentation, such as cropping hand mudras [32] or extracting landmarks [34].  

To better illustrate the architectural diversity and commonalities among the referenced works,  

Table 1 presents a concise summary of their layer configurations, core components, and model depths. This 

tabulation serves to contextualize the design space upon which our proposed method builds. Notably, [32] 

integrates a EfficientNet-based encoder–decoder pipeline prior to temporal modeling, enabling more precise 

spatial localization, whereas [34] leverages 3D convolutions to capture spatio-temporal features jointly 

before feeding into the LSTM. These differences in layer design and parameter initialization reflect the 

unique challenges of each task, but they also point to common limitations, such as restricted body context, 

fixed viewpoint assumptions, or insufficient cultural representation. To eliminate the effect of confounding 

factors and ensure a fair model comparison, we adopted a uniform training configuration across all 

implementations, including re-implementations of baseline methods.  

 

 

Table 1. Layer configuration in CNN–LSTM-based activity recognition models 
Study Model type Main layers Feature extractor Temporal module 

[30] CNN-LSTM Conv2D, MaxPooling, Dropout, LSTM, Dense Base CNN LSTM (1 layer, 256 units) 
[31] CNN-LSTM Conv2D, MaxPooling, Dropout, LSTM, Dense Base CNN LSTM (1 layer, 256 units) 

[32] CNN-LSTM EfficientNet, LSTM, Dense EfficientNet Based LSTM (1 layer) 

[33] CNN-RNN Conv2D, BatchNorm, ReLU, Bi-LSTM, Dense Base CNN Bi-LSTM 
[34] CNN-LSTM 3DConv, MaxPooling3D, LSTM, Dense Base CNN LSTM (1 layer) 

Our CNN-LSTM Conv2D, BatchNorm, ReLU, ResNet Block, 

GlobalAveragePooling, LSTM, Dense 

ResNet Based Stacked LSTM (2 layers, 

256 and 128 units) 

 

 

Table 2 details the fixed hyperparameter settings applied throughout all experiments to maintain 

consistency in evaluation. These values were selected based on preliminary experiments and prior literature 

to provide a stable convergence behavior and prevent overfitting. The use of early stopping further ensures 

that the training process halts once performance saturates, thus avoiding unnecessary computations and 

overfitting on the validation set. 
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Table 2. Hyperparameter settings for training model 
Optimizer Learning rate Batch size Epochs Dropout rate Early stopping 

Adam 0.0001 64 10 0.5 Patience=10 

 

 

2.4.  Gesture and pose estimation 

In this study, pose estimation is carried out using the OpenPose framework, which detects 2D body 

keypoints by combining two parallel processes in a multi-stage CNN. One branch generates confidence maps 

for locating individual joints such as the wrists, elbows, knees, and ankles. The other estimates part affinity 

fields, which capture the spatial relationships and orientation between those joints. By refining these outputs 

over multiple stages, the system is able to construct accurate skeletal models for each dancer in every frame. 

Once video frames are processed, each resulting image is annotated with joint markers and connecting lines, 

as shown in Figure 3. The model identifies 18 keypoints based on the COCO format, covering critical joints 

and limb segments. This skeletal abstraction allows the system to focus on core movements such as arm 

swings, hand gestures, leg positions, and posture shifts, which are particularly important in traditional dance. 

Beyond visualization, the extracted pose keypoints are numerically encoded into feature vectors and 

concatenated with CNN-extracted spatial representations before being passed into the LSTM layers. This 

design ensures that pose estimation contributes directly to the training and classification process rather than 

being limited to post-hoc illustration. By combining raw pixel-based features with structural skeletal 

descriptors, the model captures both visual appearance and articulated motion patterns of traditional dance 

sequences.  

As seen in Figure 3, the gesture and pose estimation process applied to a sequence of frames 

extracted from a traditional dance video. Figure 3(a) shows the raw input frame capturing the dancer in a 

specific pose, while Figures 3(b)-(d) demonstrate the output of the pose estimation model applied to three 

successive frames (t₁, t₂, and t₃). The colored markers and lines overlaid on the dancer's body represent the 

detected keypoints and skeletal connections, which correspond to anatomical landmarks such as shoulders, 

elbows, wrists, hips, knees, and ankles. These skeletal representations provide a simplified abstraction of 

complex dance movements, enabling the system to consistently track limb trajectories, posture shifts, and 

joint articulation over time. The smooth transition of keypoint positions across the frames illustrates the 

model’s capability to maintain temporal coherence and accurately capture motion dynamics. 
 

 

    
(a)  (b)  (c) (d)  

 

Figure 3. Gesture and pose estimation process; (a) video input, (b) pose estimation on frame 𝑡1, (c) pose 

estimation on frame 𝑡2, and (d) pose estimation on frame 𝑡3 

 

 

3. RESULTS AND DISCUSSION 

This section presents the experimental results and discusses the performance of the proposed system 

for traditional dance recognition, which was developed and executed using MATLAB R2024b as the main 

software platform. The outcomes are analyzed based on several evaluation metrics, including accuracy, 

precision, recall, and F1-score, calculated using (4) to (7): 
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇𝑃 + 𝑇𝑁)

(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)
 (4) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)
 (5) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
 (6) 

 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2 ∗ (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙 ) 

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙 )
 (7) 
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Each metric was computed per class and subsequently macro-averaged to ensure equal weighting 

across all traditional dance categories, regardless of class imbalance. This strategy prevents dominant classes 

from disproportionately influencing the overall performance evaluation and allows for a more equitable 

assessment of underrepresented dance types, which often exhibit more nuanced and distinctive motion 

patterns. The results were obtained through a combination of training and validation processes, along with 

visual observations such as pose estimation outputs, providing a comprehensive understanding of the 

system’s behavior in real-world scenarios. The implications of these findings are further discussed in the 

context of gesture recognition robustness and classification consistency across different frame sequences and 

input variations. The primary step of this research involves the training phase, which is executed by 

initializing the CNN-LSTM model architecture as specified in Table 1. The network layers are carefully 

designed to capture both spatial and temporal features from the input video frames, leveraging convolutional 

layers for spatial extraction and LSTM units for sequential temporal modeling. The training process utilizes 

the hyperparameter settings listed in Table 2, including learning rate, batch size, optimizer, and number of 

epochs, to ensure optimal convergence and generalization. As seen in Figure 4, the training progress showing 

the trend of loss minimization and accuracy improvement over epochs, which indicates the model's learning 

behavior and stability throughout the training phase. 

In Figure 4(a), the training accuracy graph demonstrates a steep rise during the initial epochs, 

indicating rapid learning by the network. As the iterations progress, the accuracy curve begins to stabilize and 

converge near 95%, reflecting the model’s ability to generalize well across the training data. The consistency 

between the training and validation accuracy lines further signifies minimal overfitting, implying that the 

model maintains robust performance throughout the learning process. Figure 4(b) presents the corresponding 

loss graph, where a sharp decline is observed in the early stages of training. This rapid reduction in loss 

values highlights effective optimization and convergence of the model. After approximately the third epoch, 

the loss stabilizes near zero, showing that the model achieves minimal prediction error. Upon completing the 

training phase, the trained network is then employed to perform multi-class predictions.  
 

 

 
(a) 

 

 
(b)  

 

Figure 4. Training and loss graph; (a) training graph and (b) loss graph 
 

 

The detailed evaluation of these predictions is presented in the form of a confusion matrix as seen in 

Figure 5. Based on Figure 5, a comparison of the confusion matrices for six different layer settings is 

presented sequentially from Figures 5(a) to (f). Figure 5(a), adapted from [30], represents the setting layers 

where the Gagrak Anyar class was correctly classified 896 times, although 4 instances were misclassified as 

Topeng. The Gambyong class achieved perfect classification with 859 data points, while the Topeng class 

experienced 13 misclassifications to Gagrak Anyar. Figure 5(b), corresponding to [31], demonstrates 

improved performance, with only 6 misclassifications in the Topeng class and near-perfect classification for 

Gagrak Anyar and perfect accuracy for Gambyong. In contrast, Figure 5(c), representing [32], shows 
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decreased performance, with 24 Topeng instances misclassified as Gagrak Anyar and 9 Gagrak Anyar 

instances misclassified as Topeng, indicating weaknesses in inter-class feature discrimination. Figure 5(d), 

from [33], indicates performance recovery with 6 misclassifications in Gagrak Anyar and 8 in Topeng, while 

Gambyong remains perfectly classified. Near-perfect results are evident in Figure 5(e), by [34], where all 

instances of Gagrak Anyar and Gambyong are correctly recognized, and only 4 Topeng instances are 

misclassified. Finally, Figure 5(f) shows the confusion matrix of the proposed method in this study, which 

achieves perfect classification across all three classes with 100% accuracy. These results confirm the 

effectiveness of the CNN architecture optimized through hyperparameter tuning in accurately recognizing 

complex and visually similar traditional dance movements. The detailed performance metrics for each 

method, including accuracy, precision, recall, and F1-score, are summarized in Table 3. 
 

 

   
(a) (b)  (c) 

   

   
(d)  (e)  (f)  

 

Figure 5. Multi-prediction by 20% of testing data; (a) multi-prediction by [30], (b) multi-prediction by [31], 

(c) multi-prediction by [32], (d) multi-prediction by [33], (e) multi-prediction by [34], and (f) our 
 
 

Table 3. Performance metrics 
Model by Macro accuracy (%) Macro precision (%) Macro recall (%) Macro F1-score (%) Elapsed time (%) 

[30] 96.8 99.37 99.34 99.35 18 min 12 sec 
[31] 96.9 99.60 99.50 99.54 18 min 21 sec 

[32] 97.5 98.40 98.50 98.45 18 min 36 sec 

[33] 97.5 98.80 98.80 98.80 17 min 48 sec 

[34] 98.1 99.50 99.60 99.55 32 min 54 sec 

Our 98.4 100 100 100 18 min 48 sec 

 
 

As seen in Table 3, the comparative performance metrics of six different models based on macro-

level evaluation criteria, including accuracy, precision, recall, and F1-score. Among the benchmarked models 

[30]-[34], model [34] achieved the highest macro F1-score of 99.55%, indicating strong and balanced 

classification performance across all classes, albeit with the longest execution time of 32 minutes and  

54 seconds. In contrast, the proposed model not only attained the highest scores in all macro metrics (100%) 

but also demonstrated efficient computation with an elapsed time of 18 minutes and 48 seconds. This 

suggests that the proposed approach offers superior classification accuracy and robustness without 

compromising processing time, outperforming existing methods in both effectiveness and efficiency. 

Although the proposed model achieved 100% accuracy, precision, recall, and F1-score across all three 

classes, this result should be interpreted with caution. The outcome is partly due to the limited scope of the 

dataset, which consists of only three dance categories that exhibit distinctive motion and stylistic 

characteristics, making them relatively easier to discriminate.  
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To mitigate overfitting, the dataset was split into training, validation, and testing subsets, and early 

stopping was applied during training to avoid memorization of samples. In addition, a 5-fold cross-validation 

experiment was conducted, which yielded consistent results with macro accuracy ranging from 97.8% to 

100%, further supporting the robustness of the approach. Nevertheless, the small number of classes remains a 

limitation, and performance on larger, more diverse datasets may not necessarily reach perfect scores. 

Regarding error analysis, the confusion matrices of baseline models [30]–[34] in Figure 5 show several 

misclassifications, particularly between Gagrak Anyar and Topeng, due to similar arm and torso positions. In 

contrast, our proposed model successfully resolved these ambiguities, leading to perfect classification. 

However, it is important to note that if additional classes with more subtle intra-class variations were 

included, potential errors could arise in cases where dances share overlapping gestures or costume features. 

This highlights the need for future research to test the system on more complex, multi-class datasets. 

The final phase of this research is the testing stage, using 20% of the dataset converted from video 

to frames. Figure 6 shows the results of gesture and pose estimation from a single test video, highlighting the 

model's ability to interpret traditional dance movements. As seen in Figure 6(a), the keypoint detection 

process using the OpenPose model successfully identifies critical joint locations of the dancer’s body, such as 

elbows, knees, wrists, and ankles. These keypoints are then connected in Figure 6(b) through a structured 

skeleton mapping that accurately outlines the dancer’s posture and gesture transitions over sequential frames. 

This visual output demonstrates the system's capability to capture motion dynamics from traditional dance 

performances, even with complex arm and leg positions. This research offers significant real-world 

contributions, particularly in the digital preservation and automated analysis of traditional Indonesian dance. 

By leveraging pose estimation techniques, the proposed system can assist in cultural documentation, motion-

based dance education, and even interactive virtual choreography. Moreover, it provides a foundation for 

gesture-based retrieval systems and intelligent feedback for dance learners, enabling a more immersive and 

data-driven learning experience. 
 
 

    
(a) 

    

    
(b) 

 

Figure 6. Gesture and pose estimation result; (a) keypoint detection using openpose model and (b) skeleton 

mapping based on estimated keypoints 

 

 

4. CONCLUSION 

This study presented a hybrid video classification framework that integrates ResNet-based CNN 

features, OpenPose skeletal keypoints, and stacked LSTM layers to capture both spatial and temporal 

dynamics of Indonesian traditional dances. The technical contribution of this work lies in the systematic 

fusion of spatial, skeletal, and sequential representations, which enables superior recognition accuracy 

compared to CNN-only or LSTM-only baselines. Beyond cultural preservation, this demonstrates that pose-

informed spatio–temporal modeling can be an effective and generalizable approach for complex motion 

recognition tasks. While the model achieved high accuracy on the evaluated dataset, limitations remain in 

terms of the relatively small dataset size, the limited number of dance categories, and the absence of real-

world deployment testing. Therefore, future work will focus on expanding the dataset with more diverse 
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dance classes, evaluating robustness under varying recording conditions, and implementing real-time 

recognition in practical cultural settings. These directions will directly address the current limitations and 

further strengthen the applicability and impact of the proposed framework. 
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