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Physical factors

The work presented in this article aligns with our university's commitment to
advancing renewable energy sources. We can better plan and optimize
energy use if we are aware of the factors that affect solar energy generation.
This study examines the application of artificial neural networks (ANNS) in
forecasting global horizontal irradiance (GHI) within the context of
sustainable energy. The primary objective is to enhance the accuracy and
reliability of solar irradiance forecasts, thereby improving the performance
of renewable energy systems, such as concentrated solar power (CSP). This
article provides an overview of solar radiation, the physical factors that
influence its distribution, and the impact of panel tilt angle on energy
production. It presents a case study in Morocco, which uses a hybrid
approach to predict solar radiation. The results demonstrate that ANN,
employing advanced machine learning (ML) methods, provides more

accurate and reliable forecasts than traditional models. This advance could
improve energy planning, reduce uncertainty, and enable better management
of solar energy production and storage systems. Our results suggest that this
approach has increased forecast accuracy.
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1. INTRODUCTION

Solar irradiance, defined as the amount of solar electromagnetic energy received per unit area, is a
fundamental parameter in meteorology, climatology, and renewable energy systems. It varies significantly
between space and Earth’s surface due to atmospheric absorption and scattering. While extraterrestrial
irradiance is influenced by solar cycles and Earth-Sun distance, surface-level irradiance depends on solar
elevation, surface orientation, weather conditions, and geographic location. Accurate knowledge of solar
irradiance is essential for applications ranging from climate modeling and weather forecasting to the design
and optimization of solar energy systems, particularly photovoltaic (PV) installations [1]. Despite its
importance, continuous, and reliable solar irradiance measurements are often unavailable, especially in
remote or underdeveloped regions, necessitating robust estimation methods.

Several components characterize solar irradiance: total solar irradiance (TSI), direct normal
irradiance (DNI), diffuse horizontal irradiance (DHI), and global horizontal irradiance (GHI), the latter being
the sum of direct and diffuse radiation on a horizontal surface [2], [3]. These components are influenced by a
complex interplay of astronomical, atmospheric, and meteorological factors, including cloud cover, humidity,
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aerosols, and surface albedo. Furthermore, the efficiency of PV systems depends not only on incident
radiation but also on panel orientation and tilt angle, which must be optimized according to latitude and
seasonal variations to maximize energy yield [4], [5].

A variety of models have been developed to estimate solar irradiance, ranging from empirical
correlations to satellite-based and reanalysis datasets [6], [7]. Recently, artificial intelligence (Al) and
machine learning (ML) approaches have gained prominence. For instance, deep learning models have been
applied to predict GHI using historical meteorological data, demonstrating the critical role of feature
selection in improving accuracy [8]. In Morocco, a deep learning algorithm successfully forecasted daily
solar radiation across 24 cities, incorporating variables such as cloud cover, temperature, and conversion
losses, with strong agreement between predicted and observed PV output [9]-[11]. Similarly, in Tamil Nadu,
India, a multilayer feedforward (MLFF) neural network was trained on climatic data from diverse locations,
showing high predictive performance based on error metrics and statistical tests [12].

Despite these advances, significant challenges remain. Most existing models rely on high-quality,
long-term ground measurements, which are sparse in many regions [13], [14]. Moreover, traditional methods
often fail to generalize across different climates and temporal scales, particularly when high-resolution
(hourly or sub-hourly) data are required for precise system sizing and energy storage planning [15], [16].
Additionally, while panel inclination is known to affect energy capture, many irradiance databases provide
only horizontal measurements, requiring transposition models that introduce further uncertainty. These
limitations hinder the accurate long-term planning of solar energy systems, especially in the context of
sustainable and eco-friendly energy strategies.

To address these shortcomings, this study proposes an enhanced approach based on artificial neural
networks (ANNS) to improve the accuracy, reliability, and adaptability of solar irradiance predictions. Unlike
previous works that focus on specific regions or limited input parameters, our model integrates a
comprehensive set of geographical, meteorological, and astronomical variables to deliver robust estimations
across diverse conditions. The use of ANNSs allows the model to capture nonlinear relationships and temporal
patterns that traditional methods may overlook, making it particularly suitable for concentrated solar power
(CSP) systems and grid-integrated PV plants where precise radiation forecasting is critical for energy
management and storage.

The remainder of this manuscript is structured as follows: section 2 details the method and data
sources and presents the model architecture and training process; section 3 discusses the results and
performance evaluation against existing models; and section 4 concludes with implications for solar energy
planning and recommendations for future work. Through this structured approach, we demonstrate how our
ANN-based model advances the state of the art in solar irradiance estimation and supports more effective,
data-driven renewable energy deployment.

2. METHOD

This section presents a comprehensive and reproducible methodology for predicting GHI in
Errachidia, Morocco, using an ANN enhanced with particle swarm optimization (PSO). The approach was
designed to address the critical challenge identified in the introduction: the lack of accurate, site-specific
solar irradiance data for reliable PV system design and energy forecasting in high-potential but data-scarce
regions. Given Errachidia’s exceptional solar resource (Figure 1), optimizing energy yield through precise
irradiance prediction is both technically and economically justified. However, variability in weather patterns
and limited ground measurement infrastructure necessitate a data-driven, adaptive modeling approach.

2.1. Data source and preprocessing

The study leverages high-resolution meteorological and solar radiation data from the National Solar
Radiation Database (NSRDB) for the period 2017-2019. NSRDB provides satellite-derived, ground-
validated solar and meteorological parameters at a spatial resolution of 4 km and temporal resolution of 30
minutes, making it a reliable and widely used source for solar energy modeling [17]. The selected location is
Errachidia (31.65°N, 4.43°W), a region characterized by high solar insolation and arid climate, ideal for PV
applications (Figures 1(a) and (b)).

To prevent time series leakage, the dataset was split chronologically—training on 2017-2018 and
testing on 2019 and all preprocessing (StandardScaler) was fitted exclusively on the training set before being
applied to the test set; furthermore, hourly predictions were aggregated to monthly resolution to align with
utility billing cycles and support long-term energy planning in sustainable buildings.

The dataset includes the target variable GHI and four key meteorological input features: ambient
temperature, wind speed, atmospheric pressure, and relative humidity [18]. These variables were chosen
based on their established influence on atmospheric transmissivity and solar radiation attenuation, as
supported by prior studies [19]. A data frame was constructed in Python using pandas, aligning all variables
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temporally and removing any entries with missing or inconsistent values to ensure data integrity. The input
features were selected based on their established physical influence on solar irradiance and strong empirical
correlations observed in prior solar forecasting studies; the ANN architecture (64—32-16) was determined
through iterative experimentation to balance model complexity and predictive performance, and all
experiments were conducted with a fixed random seed (42) to ensure full reproducibility.
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Figure 1. Errachidia 2024; (a) radiation and (b) sunshine duration [20]

To prepare the data for neural network training, the input features were normalized using
StandardScaler from the scikit-learn library. This step ensures that all variables contribute equally to the
learning process by transforming them to zero mean and unit variance, thereby improving convergence speed
and model stability.

2.2. Model architecture and training procedure

A multilayer perceptron (MLP)—a feedforward ANN—was implemented in Keras with TensorFlow
backend, featuring four input neurons (temperature, wind speed, pressure, and humidity), three hidden layers
(64, 32, and 16 neurons), and a single output neuron predicting GHI.

Each hidden layer uses the rectified linear unit (ReLU) activation function, which helps mitigate the
vanishing gradient problem and accelerates training. The output layer employs a linear activation function to
allow continuous GHI predictions.

The model was compiled using the adaptive moment estimation (Adam) optimizer with a learning
rate of 0.001, chosen for its efficiency in handling sparse gradients and noisy data. The MSE was selected as
the loss function, appropriate for regression tasks, and model performance was monitored using mean
absolute error (MAE) as a metric during training.

Training was conducted over 100 epochs with a batch size of 32, a configuration found to balance
computational efficiency and convergence stability. The dataset was split into 80% training and 20% testing
sets to evaluate generalization performance. All experiments were conducted on a standard computing
environment, and the full codebase is structured for reproducibility (see Figure 2).

2.3. Hyperparameter optimization using particle swarm optimization

A key innovation in this methodology is the integration of PSO for hyperparameter tuning. While
standard ANN training often relies on manual or grid-based tuning, PSO was employed to automatically
search the hyperparameter space (including learning rate, number of neurons, batch size, and number of
epochs) to minimize prediction error.

PSO simulates the social behavior of particles in a multidimensional space, where each particle
represents a potential solution. Through iterative evaluation and feedback, the swarm converges toward
optimal configurations. In this study, 5-fold cross-validation was used within the PSO loop to ensure
robustness against overfitting and dataset partitioning bias. This hybrid ANN-PSO approach significantly
enhances model performance by avoiding local minima and identifying globally optimal architectures, as
later demonstrated in the results.
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Figure 2. Prediction of GHI flow chart

2.4. Model evaluation and performance metrics

The trained model was evaluated on the independent test set using standard regression metrics:
- MAE: measures average prediction deviation.
- Root mean squared error (RMSE): emphasizes larger errors, useful for detecting outliers.
- Coefficient of determination (R?): indicates the proportion of variance explained by the model.

These metrics allow direct comparison with other models, seasonal autoregressive integrated
moving average (SARIMA) and long short-term memory (LSTM), and provide a clear benchmark for model
accuracy and reliability.

2.5. Workflow overview

The complete prediction workflow is summarized in Figure 2, which outlines the step-by-step
process: i) data collection from NSRDB, ii) preprocessing and feature scaling, iii) dataset splitting, iv) ANN
model construction and PSO-based hyperparameter optimization, v) model training and validation, and
vi) GHI prediction and performance assessment. This structured pipeline ensures transparency and facilitates
replication by other researchers or practitioners in solar energy planning.

3. RESULTS AND DISCUSSION

The proposed ANN-based solar irradiance prediction model demonstrates high accuracy and
robustness in forecasting GHI at an hourly resolution, with subsequent aggregation to daily and monthly
values for long-term assessment. As illustrated in Figure 3, the predicted GHI values show a strong alignment
with actual measurements over the full year of 2024 in Errachidia, Morocco.

This consistency across seasons underscores the model’s ability to capture both diurnal and seasonal
solar patterns, even under variable atmospheric conditions typical of arid regions. The use of hourly data as
the base temporal resolution ensures high granularity, which is essential for applications such as grid
integration, energy storage management, and real-time PV system control.

To rigorously evaluate the performance of our ANN model, a comparative analysis was conducted
against established statistical and ML approaches: SARIMA and LSTM networks. All models were trained
on the same dataset and evaluated using identical metrics MAE, RMSE, R?, and pearson correlation
coefficient (r). As summarized in Table 1, our ANN model significantly outperforms both SARIMA and
LSTM, achieving an MAE of 0.0226, RMSE of 0.0280, R? of 99.38%, and r of 0.9974. SARIMA represents
a classical statistical approach for seasonal time series, while LSTM is a widely adopted deep learning model
for solar forecasting [21].
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Figure 3. Comparison between predicted and actual outcomes in 2024
Table 1. Summary of the performance metric results
Performance metric Results of our ANN model study SARIMA LSTM
MAE 0.0226 0.15 0.08
RMSE 0.0280 0.25 0.14
R2 99.38% 85% 92%
r 0.9974 0.85 0.92
Hyperparameter Advanced Structured Adaptive
optimization
Data integration Solar irradiance+meteorological parameters (temperature, humidity, wind speed, and pressure)
Validation Errachidia-Morocco (2024)
Solar energy output Improved (15-20% higher accuracy) Average Good
estimation

These results indicate not only superior predictive accuracy but also excellent generalization and
stability. The learning curve in Figure 4(a) confirms rapid convergence and minimal overfitting, while
Figure 4(b) shows a tight clustering of predicted vs. real values along the ideal diagonal, further validating
the model’s reliability.
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Figure 4. Performance evaluation after PSO optimization; (a) learning curve and (b) comparison of
predictions

The superior performance of our ANN model can be attributed to two key innovations: i) the
integration of a comprehensive set of meteorological parameters; temperature, humidity, wind speed, and
pressure; alongside solar irradiance data and ii) the application of advanced hyperparameter optimization
using PSO, as shown in Figure 4. Unlike traditional models that rely on historical averages or linear
assumptions, the ANN captures complex nonlinear interactions between atmospheric variables and solar
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radiation. This is particularly critical in desert climates like Errachidia, where rapid changes in cloud cover,
dust loading, and thermal dynamics can drastically affect irradiance.

A deeper analysis of feature importance, illustrated in the correlation heatmap (Figure 5), reveals
insightful relationships. Clearsky GHI, expected to be a strong positive predictor, shows an inverse
correlation with actual GHI: a counterintuitive result that may reflect overestimation during dusty or hazy
conditions common in arid zones. Relative humidity and temperature also play indirect but significant roles,
likely through their influence on atmospheric transmissivity and cloud formation. Wind speed exhibits
minimal impact, suggesting limited convective influence on irradiance in this region, while atmospheric
pressure contributes valuable stability information. These findings emphasize the necessity of region-specific
feature engineering and caution against the blind transfer of models from temperate to desert climates.
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Figure 5. Correlation heatmap

Our results align with and extend prior work. For instance, Chaaban and Alfadl [22] reported MAE
values between 0.05% and 0.10% for ANN-based solar forecasting, while our model achieves an MAE of 0.0226
(representing a substantial improvement). Furthermore, while studies such as those in [23], [24] have used
hourly-to-monthly aggregation for GHI estimation, our approach enhances this methodology by incorporating
real-time meteorological inputs and advanced optimization, enabling higher precision and operational relevance.

The practical implications of improved GHI forecasting are demonstrated through a case study on a
100 kWp PV system in Errachidia (Figures 6 and 7). Two scenarios were compared: i) energy yield
prediction using conventional historical averages and ii) using ANN-based GHI forecasts. The ANN-
integrated scenario resulted in 154,600 kwWh of annual energy production, compared to 142,500 kWh in the
reference case (an 8.49% increase). This gain stems from better anticipation of irradiance fluctuations,
enabling optimized MPPT tracking, improved battery charging cycles, and reduced energy curtailment.
System efficiency rose from 14.3% to 15.5%, translating to an additional 14,520 MAD/year in revenue at a
feed-in tariff of 1.2 MAD/KWHh. These economic and technical gains highlight the tangible value of Al-driven
forecasting for solar plant operators, especially in regions with high solar potential but variable weather
conditions. In Morocco, regulated retail electricity tariffs, set by the “National Office for Electricity and
Drinking Water (ONEE)” and periodically updated under the oversight of the Ministry of Energy Transition
and Sustainable Development, generally vary from 0.90 to 1.59 MAD/kWh, depending on consumption
brackets, customer type (residential, commercial, or industrial), and contracted power capacity [25].

Beyond immediate energy gains, our findings have broader implications for the future of solar
energy systems [26]. First, the model supports more accurate pre-sizing and techno-economic assessment of
PV and CSP installations, reducing investment risks [27], [28]. Second, it enables smarter grid integration by
improving day-ahead forecasting, thereby enhancing grid stability and reducing reliance on backup power
[29], [30]. Third, the framework can be adapted to smart buildings and hybrid energy systems, where real -
time solar prediction aids in load balancing and demand-side management [31], [32].
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However, challenges remain. The model’s performance depends on data quality and availability. In
regions lacking ground-based weather stations, integration with satellite-derived datasets (e.g., from
Meteonorm or Copernicus) could enhance robustness [33], [34]. Future work should explore transfer learning
to adapt the model to new locations with minimal retraining, and hybrid architectures combining ANNs with
physical radiation models for improved interpretability [35]-[37].

In conclusion, this study demonstrates that Al-enhanced solar forecasting is not just academically
promising, but operationally transformative. By bridging the gap between meteorological data and energy
output, our ANN model provides a scalable, accurate, and economically viable tool for advancing solar
energy deployment, particularly in underserved, high-potential regions like the Moroccan desert. The
integration of such models into energy management systems represents a critical step toward resilient,
intelligent, and sustainable power infrastructures.

4. CONCLUSION

The ANN-PSO model significantly outperformed SARIMA and LSTM in forecasting GHI,
achieving an R2 of 99.38% and MAE of 0.0226. This high-accuracy forecasting enables more effective
energy optimization in sustainable buildings and CSP systems through improved operational planning and
storage management. However, the model was developed and validated using data from Errachidia,
Morocco, limiting its current applicability to similar arid climates. Future work will focus on extending the
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framework to diverse climatic zones, integrating it into real-time energy management systems, and exploring
hybrid or ensemble approaches to enhance robustness and generalizability. This study demonstrates the
practical value of Al-driven solar forecasting as a tool for advancing renewable energy integration and grid
reliability.

Overall, this research does not just propose a better forecasting model, it advocates for a paradigm
shift in how we design, operate, and scale solar energy systems. For researchers, engineers, and policymakers
alike, the message is clear: the future of solar energy is not only renewable, it is intelligent.

ACKNOWLEDGMENTS

The authors gratefully acknowledge the administrative, and technical, support provided by the
Faculty of Sciences and Techniques of Errachidia (FSTE), Moulay Ismail University of Meknes, Morocco.
Special thanks are also extended to the reviewers of the Bulletin of Electrical Engineering and Informatics
(BEEI) Journal for their insightful comments and constructive feedback, which significantly contributed to
improving the quality of this work.

FUNDING INFORMATION
The authors state that no funding was involved.

AUTHOR CONTRIBUTIONS STATEMENT
This journal uses the Contributor Roles Taxonomy (CRediT) to recognize individual author
contributions, reduce authorship disputes, and facilitate collaboration.

Name of Author C M So Va Fo | R D O E Vi Su P Fu
Imad Laabab v v v v v v v v v v v v v

Said Ziani v v v v v v v v
Abdellah Benami v v v v v v v v

C : Conceptualization I : Investigation Vi : Visualization

M : Methodology R : Resources Su : Supervision

So : Software D : Data Curation P : Project administration

Va : Validation O : writing - Original Draft Fu : Funding acquisition

Fo : Formal analysis E : Writing - Review & Editing

CONFLICT OF INTEREST STATEMENT
Authors state no conflict of interest.

DATA AVAILABILITY
The corresponding author [IL] can provide data to support the study's conclusions upon request.

REFERENCES

[1] B. Mekuye, G. Mebratie, B. Abera, A. Yibeltal, A. Lake, and A. Tefera, “Energy: An Overview of Type, Form, Storage,
Advantages, Efficiency, and Their Impact,” Energy Science and Engineering, vol. 12, no. 12, pp. 5678-5707, Dec. 2024, doi:
10.1002/ese3.1937.

[2] M. Jlidi, O. Barambones, F. Hamidi, and M. Aoun, “ANN for Temperature and Irradiation Prediction and Maximum Power Point
Tracking Using MRP-SMC,” Energies, vol. 17, no. 12, pp. 1-21, Jun. 2024, doi: 10.3390/en17122802.

[3] J. Fan, L. Wu, X. Ma, H. Zhou, and F. Zhang, “Hybrid support vector machines with heuristic algorithms for prediction of daily
diffuse solar radiation in air-polluted regions,” Renewable Energy, vol. 145, pp. 2034-2045, 2020, doi:
10.1016/j.renene.2019.07.104.

[4] M. I. D. Zulkifly and M. S. M. Said, “Determining Optimal Solar Power Plant Location in Melaka, Malaysia: A GIS-Based
Solutions,” IOP Conference Series: Earth and Environmental Science, vol. 1051, no. 1, pp. 1-16, Jul. 2022, doi: 10.1088/1755-
1315/1051/1/012022.

[5] C.-C.Chenand C.-H. Huang, “Using Artificial Intelligence To Assess Solar Radiation From the Total Sky Images,” International
Journal of Engineering Technologies and Management Research, vol. 7, no. 5, pp. 64-71, Jun. 2020, doi:
10.29121/ijetmr.v7.i5.2020.685.

[6] S. Mohanty, P. K. Patra, and S. S. Sahoo, “Prediction and application of solar radiation with soft computing over traditional and
conventional approach - A comprehensive review,” Renewable and Sustainable Energy Reviews, vol. 56, pp. 778-796, Apr. 2016,
doi: 10.1016/j.rser.2015.11.078.

Artificial intelligence-based solar radiation forecasting for energy optimization in ... (Imad Laabab)



626

a ISSN: 2302-9285

[71

(8]
[9]
[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]
[18]
[19]
[20]
[21]
[22]
[23]

[24]

[25]
[26]
[27]
[28]

[29]

[30]

[31]

[32]

[33]
[34]
[35]
[36]

371

I. Laabab, S. Ziani, and A. Benami, “A Review of the Application of Artificial Intelligence for Weather Prediction in Solar
Energy: Using Artificial Neural Networks,” in Lecture Notes in Networks and Systems, vol. 635 LNNS, 2023, pp. 114-119, doi:
10.1007/978-3-031-26254-8_17.

M. K. Boutahir, Y. Farhaoui, M. Azrour, I. Zeroual, and A. El Allaoui, “Effect of Feature Selection on the Prediction of Direct
Normal Irradiance,” Big Data Mining and Analytics, vol. 5, no. 4, pp. 309-317, Dec. 2022, doi: 10.26599/BDMA.2022.9020003.
Y. El Mghouchi, T. Ajzoul, and A. El Bouardi, “Prediction of daily solar radiation intensity by day of the year in twenty-four
cities of Morocco,” Renewable and Sustainable Energy Reviews, vol. 53, pp. 823-831, Jan. 2016, doi: 10.1016/j.rser.2015.09.059.
A. El Kounni, H. Radoine, H. Mastouri, H. Bahi, and A. Outzourhit, “Solar Power Output Forecasting Using Artificial Neural
Network,” in 2021 9th International Renewable and Sustainable Energy Conference (IRSEC), Morocco: IEEE, Nov. 2021, pp. 1-
7, doi: 10.1109/IRSEC53969.2021.9741130.

H. Hissou, S. Benkirane, A. Guezzaz, M. Azrour, and A. Beni-Hssane, “A Novel Machine Learning Approach for Solar Radiation
Estimation,” Sustainability, vol. 15, no. 13, pp. 1-21, Jul. 2023, doi: 10.3390/su151310609.

M. Vakili, S. R. Sabbagh-Yazdi, S. Khosrojerdi, and K. Kalhor, “Evaluating the effect of particulate matter pollution on
estimation of daily global solar radiation using artificial neural network modeling based on meteorological data,” Journal of
Cleaner Production, vol. 141, pp. 1275-1285, Jan. 2017, doi: 10.1016/j.jclepro.2016.09.145.

I. Laabab, S. Ziani, and A. Benami, “Solar Irradiation Prediction and Atrtificial Intelligence for Energy Efficiency in Sustainable
Buildings, Case of Errachidia, Morocco,” in Lecture Notes in Networks and Systems, vol. 837 LNNS, 2024, pp. 360366, doi:
10.1007/978-3-031-48465-0_46.

A. Escamilla-Garcia, G. M. Soto-ZarazGa, M. Toledano-Ayala, E. Rivas-Araiza, and A. Gastélum-Barrios, “Applications of
artificial neural networks in greenhouse technology and overview for smart agriculture development,” Applied Sciences, vol. 10,
no. 11, pp. 1-43, May 2020, doi: 10.3390/app10113835.

S. X. Chen, H. B. Gooi, and M. Q. Wang, “Solar radiation forecast based on fuzzy logic and neural networks,” Renewable
Energy, vol. 60, pp. 195-201, Dec. 2013, doi: 10.1016/j.renene.2013.05.011.

R. Singh and A. K. Singhal, “Artificial Intelligence based Technique for Solar Irradiance Prediction Model with Improved
Performance,” in 2023 IEEE Renewable Energy and Sustainable E-Mobility Conference (RESEM), Bhopal, India: IEEE, May
2023, pp. 1-6, doi: 10.1109/RESEM57584.2023.10236416.

National Renewable Energy Laboratory (NREL), “National Solar Radiation Database — Errachidia solar data information,” nsrdb.
[Online]. Available: https://nsrdb.nrel.gov/. (Accessed: Jul. 06, 2025).

L. Yang, J. C. Lam, and J. Liu, “Analysis of typical meteorological years in different climates of China,” Energy Conversion and
Management, vol. 48, no. 2, pp. 654-668, Feb. 2007, doi: 10.1016/j.enconman.2006.05.016.

Y. Jiang, “Generation of typical meteorological year for different climates of China,” Energy, vol. 35, no. 5, pp. 19461953, May
2010, doi: 10.1016/j.energy.2010.01.009.

Meteonorm, “Meteonorm 8 Software Version 8.2.0,” Meteonorm. [Online]. Available: https://meteonorm.com/en/meteonorm-
version-8/. (Accessed: Sep. 01, 2020).

C. Voyant et al., “Machine learning methods for solar radiation forecasting: A review,” Renewable Energy, vol. 105, pp. 569—
582, May 2017, doi: 10.1016/j.renene.2016.12.095.

A. K. Chaaban and N. Alfadl, “A comparative study of machine learning approaches for an accurate predictive modeling of solar
energy generation,” Energy Reports, vol. 12, pp. 1293-1302, Dec. 2024, doi: 10.1016/j.egyr.2024.07.010.

Dlpv-Dev, “Accueil. Démocratisons le  Photovoltaique,” democratisonslephotovoltaique.  [Online].  Available:
https://www.democratisonslephotovoltaique.fr/. (Accessed: Jul. 09, 2025).

F. Alhebshi, H. Alnabilsi, A. Bensenouci, and T. Brahimi, “Using artificial intelligence techniques for solar irradiation
forecasting: The case of Saudi Arabia,” in Proceedings of the International Conference on Industrial Engineering and Operations
Management, 2019, pp. 926-927, doi: 10.46254/GC01.20190031.

Globalen LLC, “Morocco Electricity Prices, March 2025. GlobalPetrolPrices.com,” GlobalPetrolPrices.com. [Online]. Available:
https://www.globalpetrolprices.com/Morocco/electricity _prices/?utm_source. (Accessed: Oct. 12, 2025).

Y. Xie et al., “Development of a multi-nodal thermal regulation and comfort model for the outdoor environment assessment,”
Building and Environment, vol. 176, p. 106809, Jun. 2020, doi: 10.1016/j.buildenv.2020.106809.

M. S. Alam, F. S. Al-Ismail, M. S. Hossain, and S. M. Rahman, “Ensemble Machine-Learning Models for Accurate Prediction of
Solar Irradiation in Bangladesh,” Processes, vol. 11, no. 3, pp. 1-15, Mar. 2023, doi: 10.3390/pr11030908.

Y. Gao, S. Miyata, and Y. Akashi, “Multi-step solar irradiation prediction based on weather forecast and generative deep learning
model,” Renewable Energy, vol. 188, pp. 637-650, Apr. 2022, doi: 10.1016/j.renene.2022.02.051.

A. M. Assaf, H. Haron, H. N. A. Hamed, F. A. Ghaleb, S. N. Qasem, and A. M. Albarrak, “A Review on Neural Network Based
Models for Short Term Solar Irradiance Forecasting,” Applied Sciences, vol. 13, no. 14, pp. 1-43, Jul. 2023, doi:
10.3390/app13148332.

M. S. Sevas, N. Sharmin, C. F. T. Santona, and S. R. Sagor, “Advanced ensemble machine-learning and explainable ai with
hybridized clustering for solar irradiation prediction in Bangladesh,” Theoretical and Applied Climatology, vol. 155, no. 7, pp.
5695-5725, Jul. 2024, doi: 10.1007/s00704-024-04951-5.

A. G. Olabi et al., “Application of artificial intelligence for prediction, optimization, and control of thermal energy storage
systems,” Thermal Science and Engineering Progress, vol. 39, p. 101730, Mar. 2023, doi: 10.1016/j.tsep.2023.101730.

E. Gul, G. Baldinelli, J. Wang, P. Bartocci, and T. Shamim, “Artificial intelligence based forecasting and optimization model for
concentrated solar power system with thermal energy storage,” Applied Energy, vol. 382, p. 125210, Mar. 2025, doi:
10.1016/j.apenergy.2024.125210.

S. Liu et al., “The contribution of artificial intelligence to phase change materials in thermal energy storage: From prediction to
optimization,” Renewable Energy, vol. 238, p. 121973, Jan. 2025, doi: 10.1016/j.renene.2024.121973.

I. Laabab, S. Ziani, and A. Benami, “Solar panels overheating protection: a review,” Indonesian Journal of Electrical Engineering
and Computer Science, vol. 29, no. 1, pp. 49-55, Jan. 2023, doi: 10.11591/ijeecs.v29.i1.pp49-55.

I. Laabab, S. Ziani, and A. Benami, “Investigation of Buildings’ Energy Efficiency,” in Lecture Notes in Networks and Systems,
vol. 1123 LNNS, 2024, pp. 86-91, doi: 10.1007/978-3-031-70411-6_14.

I. Laabab, S. Ziani, and A. Benami, “Enhancing Energy Efficiency in a Residential Apartment: A Case Study in Kenitra,
Morocco,” in Lecture Notes in Networks and Systems, vol. 1584 LNNS, 2026, pp. 352-358, doi: 10.1007/978-3-032-01536-5_54.
Q. Zhang et al., “Development of a novel power generation model for bifacial photovoltaic modules based on dynamic
bifaciality,” Energy Conversion and Management, vol. 324, p. 119305, Jan. 2025, doi: 10.1016/j.enconman.2024.119305.

Bulletin of Electr Eng & Inf, Vol. 15, No. 1, February 2026: 618-627



Bulletin of Electr Eng & Inf ISSN: 2302-9285 a 627

BIOGRAPHIES OF AUTHORS

Dr. Eng. Imad Laabab © B Bd > carned a Bachelor’s degree in Electrical Engineering
from the Royal Military Academy (ARM), Meknes, Morocco, in 2013, and an Engineer’s
degree in Hydro-Geotechnical Engineering from the National Graduate School of Mines—
Rabat (ENSMR), Morocco, in 2018. He was awarded his Ph.D. in Physics, specializing in
Energy Efficiency and Sustainable Buildings, by Moulay Ismail University (UMI), Morocco,
on 22 November 2025. He is a member of the Intelligent Systems, Materials and Sustainable
Energies Laboratory (SIMED). His research interests include photovoltaic solar, energy
materials, artificial intelligence, renewable energy technologies, energy engineering, energy
optimization, sustainable buildings, and hydro geotechnical studies. He can be contacted at
email: im.laabab@edu.umi.ac.ma or imadlaabab@gmail.com.

Prof. Dr. Said Ziani @ EIEd 2 s a professor at the National School of Arts and Crafts of
Rabat (ENSAM), Mohammed V University of Rabat, Morocco. His research interests include
electrical engineering, industrial engineering, and biomedical engineering. He focuses on
digital design, industrial applications, industrial electronics, industrial informatics, power
electronics, motor drives, renewable energy, FPGA and DSP applications, embedded systems,
adaptive control, neural network control, automatic robot control, motion control, and artificial
intelligence. He can be contacted at email: s.ziani@umbr.ac.ma or ziani9@yahoo.fr.

Prof. Dr. Abdellah Benami B 12 is a Full Professor in the Engineering Sciences
Department at the Faculty of Sciences and Techniques. He was Head of the Physics
Department from 2021 to 2023 and has been Head of the OTEA team since 2020. He earned
his Ph.D. in Materials Science and Engineering from the National Autonomous University of
Mexico (UNAM) in 2008. In recognition of his performance in the Ph.D. program. He
received the Alfonso Caso Medal from UNAM in 2008. His primary research interests include
photovoltaics, plasmonic, nanotechnology, metallic and semiconducting nanoparticles, and
renewable energy. He can be contacted at email: a.benami@umi.ac.ma.

Artificial intelligence-based solar radiation forecasting for energy optimization in ... (Imad Laabab)


https://orcid.org/0000-0002-4608-2684
https://www.scopus.com/authid/detail.uri?authorId=57964077100
https://www.webofscience.com/wos/author/record/GPW-7413-2022
https://orcid.org/0000-0001-9586-4511
https://scholar.google.com/citations?hl=en&user=sgM2JH4AAAAJ
https://www.scopus.com/authid/detail.uri?authorId=57202161842
https://www.webofscience.com/wos/author/record/1206789
https://orcid.org/0000-0001-5516-5660
https://scholar.google.com/citations?hl=en&user=CVM1A1EAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=15062217800
https://www.webofscience.com/wos/author/record/3631018

