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 The work presented in this article aligns with our university's commitment to 

advancing renewable energy sources. We can better plan and optimize 

energy use if we are aware of the factors that affect solar energy generation. 

This study examines the application of artificial neural networks (ANNs) in 

forecasting global horizontal irradiance (GHI) within the context of 

sustainable energy. The primary objective is to enhance the accuracy and 

reliability of solar irradiance forecasts, thereby improving the performance 

of renewable energy systems, such as concentrated solar power (CSP). This 

article provides an overview of solar radiation, the physical factors that 

influence its distribution, and the impact of panel tilt angle on energy 

production. It presents a case study in Morocco, which uses a hybrid 

approach to predict solar radiation. The results demonstrate that ANN, 

employing advanced machine learning (ML) methods, provides more 

accurate and reliable forecasts than traditional models. This advance could 

improve energy planning, reduce uncertainty, and enable better management 

of solar energy production and storage systems. Our results suggest that this 

approach has increased forecast accuracy. 
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1. INTRODUCTION 

Solar irradiance, defined as the amount of solar electromagnetic energy received per unit area, is a 

fundamental parameter in meteorology, climatology, and renewable energy systems. It varies significantly 

between space and Earth’s surface due to atmospheric absorption and scattering. While extraterrestrial 

irradiance is influenced by solar cycles and Earth-Sun distance, surface-level irradiance depends on solar 

elevation, surface orientation, weather conditions, and geographic location. Accurate knowledge of solar 

irradiance is essential for applications ranging from climate modeling and weather forecasting to the design 

and optimization of solar energy systems, particularly photovoltaic (PV) installations [1]. Despite its 

importance, continuous, and reliable solar irradiance measurements are often unavailable, especially in 

remote or underdeveloped regions, necessitating robust estimation methods. 

Several components characterize solar irradiance: total solar irradiance (TSI), direct normal 

irradiance (DNI), diffuse horizontal irradiance (DHI), and global horizontal irradiance (GHI), the latter being 

the sum of direct and diffuse radiation on a horizontal surface [2], [3]. These components are influenced by a 

complex interplay of astronomical, atmospheric, and meteorological factors, including cloud cover, humidity, 
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aerosols, and surface albedo. Furthermore, the efficiency of PV systems depends not only on incident 

radiation but also on panel orientation and tilt angle, which must be optimized according to latitude and 

seasonal variations to maximize energy yield [4], [5]. 

A variety of models have been developed to estimate solar irradiance, ranging from empirical 

correlations to satellite-based and reanalysis datasets [6], [7]. Recently, artificial intelligence (AI) and 

machine learning (ML) approaches have gained prominence. For instance, deep learning models have been 

applied to predict GHI using historical meteorological data, demonstrating the critical role of feature 

selection in improving accuracy [8]. In Morocco, a deep learning algorithm successfully forecasted daily 

solar radiation across 24 cities, incorporating variables such as cloud cover, temperature, and conversion 

losses, with strong agreement between predicted and observed PV output [9]–[11]. Similarly, in Tamil Nadu, 

India, a multilayer feedforward (MLFF) neural network was trained on climatic data from diverse locations, 

showing high predictive performance based on error metrics and statistical tests [12]. 

Despite these advances, significant challenges remain. Most existing models rely on high-quality, 

long-term ground measurements, which are sparse in many regions [13], [14]. Moreover, traditional methods 

often fail to generalize across different climates and temporal scales, particularly when high-resolution 

(hourly or sub-hourly) data are required for precise system sizing and energy storage planning [15], [16]. 

Additionally, while panel inclination is known to affect energy capture, many irradiance databases provide 

only horizontal measurements, requiring transposition models that introduce further uncertainty. These 

limitations hinder the accurate long-term planning of solar energy systems, especially in the context of 

sustainable and eco-friendly energy strategies. 

To address these shortcomings, this study proposes an enhanced approach based on artificial neural 

networks (ANNs) to improve the accuracy, reliability, and adaptability of solar irradiance predictions. Unlike 

previous works that focus on specific regions or limited input parameters, our model integrates a 

comprehensive set of geographical, meteorological, and astronomical variables to deliver robust estimations 

across diverse conditions. The use of ANNs allows the model to capture nonlinear relationships and temporal 

patterns that traditional methods may overlook, making it particularly suitable for concentrated solar power 

(CSP) systems and grid-integrated PV plants where precise radiation forecasting is critical for energy 

management and storage. 

The remainder of this manuscript is structured as follows: section 2 details the method and data 

sources and presents the model architecture and training process; section 3 discusses the results and 

performance evaluation against existing models; and section 4 concludes with implications for solar energy 

planning and recommendations for future work. Through this structured approach, we demonstrate how our 

ANN-based model advances the state of the art in solar irradiance estimation and supports more effective, 

data-driven renewable energy deployment. 

 

 

2. METHOD 

This section presents a comprehensive and reproducible methodology for predicting GHI in 

Errachidia, Morocco, using an ANN enhanced with particle swarm optimization (PSO). The approach was 

designed to address the critical challenge identified in the introduction: the lack of accurate, site-specific 

solar irradiance data for reliable PV system design and energy forecasting in high-potential but data-scarce 

regions. Given Errachidia’s exceptional solar resource (Figure 1), optimizing energy yield through precise 

irradiance prediction is both technically and economically justified. However, variability in weather patterns 

and limited ground measurement infrastructure necessitate a data-driven, adaptive modeling approach. 

 

2.1.  Data source and preprocessing 

The study leverages high-resolution meteorological and solar radiation data from the National Solar 

Radiation Database (NSRDB) for the period 2017–2019. NSRDB provides satellite-derived, ground-

validated solar and meteorological parameters at a spatial resolution of 4 km and temporal resolution of 30 

minutes, making it a reliable and widely used source for solar energy modeling [17]. The selected location is 

Errachidia (31.65°N, 4.43°W), a region characterized by high solar insolation and arid climate, ideal for PV 

applications (Figures 1(a) and (b)). 

To prevent time series leakage, the dataset was split chronologically—training on 2017–2018 and 

testing on 2019 and all preprocessing (StandardScaler) was fitted exclusively on the training set before being 

applied to the test set; furthermore, hourly predictions were aggregated to monthly resolution to align with 

utility billing cycles and support long-term energy planning in sustainable buildings. 

The dataset includes the target variable GHI and four key meteorological input features: ambient 

temperature, wind speed, atmospheric pressure, and relative humidity [18]. These variables were chosen 

based on their established influence on atmospheric transmissivity and solar radiation attenuation, as 

supported by prior studies [19]. A data frame was constructed in Python using pandas, aligning all variables 
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temporally and removing any entries with missing or inconsistent values to ensure data integrity. The input 

features were selected based on their established physical influence on solar irradiance and strong empirical 

correlations observed in prior solar forecasting studies; the ANN architecture (64–32–16) was determined 

through iterative experimentation to balance model complexity and predictive performance, and all 

experiments were conducted with a fixed random seed (42) to ensure full reproducibility. 

 

 

  
(a) (b) 

 

Figure 1. Errachidia 2024; (a) radiation and (b) sunshine duration [20] 

 

 

To prepare the data for neural network training, the input features were normalized using 

StandardScaler from the scikit-learn library. This step ensures that all variables contribute equally to the 

learning process by transforming them to zero mean and unit variance, thereby improving convergence speed 

and model stability. 

 

2.2.  Model architecture and training procedure 

A multilayer perceptron (MLP)—a feedforward ANN—was implemented in Keras with TensorFlow 

backend, featuring four input neurons (temperature, wind speed, pressure, and humidity), three hidden layers 

(64, 32, and 16 neurons), and a single output neuron predicting GHI. 

Each hidden layer uses the rectified linear unit (ReLU) activation function, which helps mitigate the 

vanishing gradient problem and accelerates training. The output layer employs a linear activation function to 

allow continuous GHI predictions. 

The model was compiled using the adaptive moment estimation (Adam) optimizer with a learning 

rate of 0.001, chosen for its efficiency in handling sparse gradients and noisy data. The MSE was selected as 

the loss function, appropriate for regression tasks, and model performance was monitored using mean 

absolute error (MAE) as a metric during training. 

Training was conducted over 100 epochs with a batch size of 32, a configuration found to balance 

computational efficiency and convergence stability. The dataset was split into 80% training and 20% testing 

sets to evaluate generalization performance. All experiments were conducted on a standard computing 

environment, and the full codebase is structured for reproducibility (see Figure 2). 

 

2.3.  Hyperparameter optimization using particle swarm optimization 

A key innovation in this methodology is the integration of PSO for hyperparameter tuning. While 

standard ANN training often relies on manual or grid-based tuning, PSO was employed to automatically 

search the hyperparameter space (including learning rate, number of neurons, batch size, and number of 

epochs) to minimize prediction error. 

PSO simulates the social behavior of particles in a multidimensional space, where each particle 

represents a potential solution. Through iterative evaluation and feedback, the swarm converges toward 

optimal configurations. In this study, 5-fold cross-validation was used within the PSO loop to ensure 

robustness against overfitting and dataset partitioning bias. This hybrid ANN-PSO approach significantly 

enhances model performance by avoiding local minima and identifying globally optimal architectures, as 

later demonstrated in the results. 

 

 

Month Month 
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Figure 2. Prediction of GHI flow chart 

 

 

2.4.  Model evaluation and performance metrics 

The trained model was evaluated on the independent test set using standard regression metrics: 

- MAE: measures average prediction deviation. 

- Root mean squared error (RMSE): emphasizes larger errors, useful for detecting outliers. 

- Coefficient of determination (R²): indicates the proportion of variance explained by the model. 

These metrics allow direct comparison with other models, seasonal autoregressive integrated 

moving average (SARIMA) and long short-term memory (LSTM), and provide a clear benchmark for model 

accuracy and reliability. 

 

2.5.  Workflow overview 

The complete prediction workflow is summarized in Figure 2, which outlines the step-by-step 

process: i) data collection from NSRDB, ii) preprocessing and feature scaling, iii) dataset splitting, iv) ANN 

model construction and PSO-based hyperparameter optimization, v) model training and validation, and  

vi) GHI prediction and performance assessment. This structured pipeline ensures transparency and facilitates 

replication by other researchers or practitioners in solar energy planning. 

 

 

3. RESULTS AND DISCUSSION 

The proposed ANN-based solar irradiance prediction model demonstrates high accuracy and 

robustness in forecasting GHI at an hourly resolution, with subsequent aggregation to daily and monthly 

values for long-term assessment. As illustrated in Figure 3, the predicted GHI values show a strong alignment 

with actual measurements over the full year of 2024 in Errachidia, Morocco. 

This consistency across seasons underscores the model’s ability to capture both diurnal and seasonal 

solar patterns, even under variable atmospheric conditions typical of arid regions. The use of hourly data as 

the base temporal resolution ensures high granularity, which is essential for applications such as grid 

integration, energy storage management, and real-time PV system control. 

To rigorously evaluate the performance of our ANN model, a comparative analysis was conducted 

against established statistical and ML approaches: SARIMA and LSTM networks. All models were trained 

on the same dataset and evaluated using identical metrics MAE, RMSE, R², and pearson correlation 

coefficient (r). As summarized in Table 1, our ANN model significantly outperforms both SARIMA and 

LSTM, achieving an MAE of 0.0226, RMSE of 0.0280, R² of 99.38%, and r of 0.9974. SARIMA represents 

a classical statistical approach for seasonal time series, while LSTM is a widely adopted deep learning model 

for solar forecasting [21]. 
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Figure 3. Comparison between predicted and actual outcomes in 2024 

 

 

Table 1. Summary of the performance metric results 
Performance metric Results of our ANN model study SARIMA LSTM 

MAE 0.0226 0.15 0.08 

RMSE 0.0280 0.25 0.14 

R² 99.38% 85% 92% 
r 0.9974 0.85 0.92 

Hyperparameter 

optimization 

Advanced Structured Adaptive 

Data integration Solar irradiance+meteorological parameters (temperature, humidity, wind speed, and pressure) 

Validation Errachidia-Morocco (2024) 

Solar energy output 
estimation 

Improved (15-20% higher accuracy) Average Good 

 

 

These results indicate not only superior predictive accuracy but also excellent generalization and 

stability. The learning curve in Figure 4(a) confirms rapid convergence and minimal overfitting, while  

Figure 4(b) shows a tight clustering of predicted vs. real values along the ideal diagonal, further validating 

the model’s reliability. 

 

 

  
(a) (b) 

 

Figure 4. Performance evaluation after PSO optimization; (a) learning curve and (b) comparison of 

predictions 

 

 

The superior performance of our ANN model can be attributed to two key innovations: i) the 

integration of a comprehensive set of meteorological parameters; temperature, humidity, wind speed, and 

pressure; alongside solar irradiance data and ii) the application of advanced hyperparameter optimization 

using PSO, as shown in Figure 4. Unlike traditional models that rely on historical averages or linear 

assumptions, the ANN captures complex nonlinear interactions between atmospheric variables and solar 
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radiation. This is particularly critical in desert climates like Errachidia, where rapid changes in cloud cover, 

dust loading, and thermal dynamics can drastically affect irradiance. 

A deeper analysis of feature importance, illustrated in the correlation heatmap (Figure 5), reveals 

insightful relationships. Clearsky GHI, expected to be a strong positive predictor, shows an inverse 

correlation with actual GHI: a counterintuitive result that may reflect overestimation during dusty or hazy 

conditions common in arid zones. Relative humidity and temperature also play indirect but significant roles, 

likely through their influence on atmospheric transmissivity and cloud formation. Wind speed exhibits 

minimal impact, suggesting limited convective influence on irradiance in this region, while atmospheric 

pressure contributes valuable stability information. These findings emphasize the necessity of region-specific 

feature engineering and caution against the blind transfer of models from temperate to desert climates. 
 

 

 

 

Figure 5. Correlation heatmap 
 

 

Our results align with and extend prior work. For instance, Chaaban and Alfadl [22] reported MAE 

values between 0.05% and 0.10% for ANN-based solar forecasting, while our model achieves an MAE of 0.0226 

(representing a substantial improvement). Furthermore, while studies such as those in [23], [24] have used 

hourly-to-monthly aggregation for GHI estimation, our approach enhances this methodology by incorporating 

real-time meteorological inputs and advanced optimization, enabling higher precision and operational relevance. 

The practical implications of improved GHI forecasting are demonstrated through a case study on a 

100 kWp PV system in Errachidia (Figures 6 and 7). Two scenarios were compared: i) energy yield 

prediction using conventional historical averages and ii) using ANN-based GHI forecasts. The ANN-

integrated scenario resulted in 154,600 kWh of annual energy production, compared to 142,500 kWh in the 

reference case (an 8.49% increase). This gain stems from better anticipation of irradiance fluctuations, 

enabling optimized MPPT tracking, improved battery charging cycles, and reduced energy curtailment. 

System efficiency rose from 14.3% to 15.5%, translating to an additional 14,520 MAD/year in revenue at a 

feed-in tariff of 1.2 MAD/kWh. These economic and technical gains highlight the tangible value of AI-driven 

forecasting for solar plant operators, especially in regions with high solar potential but variable weather 

conditions. In Morocco, regulated retail electricity tariffs, set by the “National Office for Electricity and 

Drinking Water (ONEE)” and periodically updated under the oversight of the Ministry of Energy Transition 

and Sustainable Development, generally vary from 0.90 to 1.59 MAD/kWh, depending on consumption 

brackets, customer type (residential, commercial, or industrial), and contracted power capacity [25]. 

Beyond immediate energy gains, our findings have broader implications for the future of solar 

energy systems [26]. First, the model supports more accurate pre-sizing and techno-economic assessment of 

PV and CSP installations, reducing investment risks [27], [28]. Second, it enables smarter grid integration by 

improving day-ahead forecasting, thereby enhancing grid stability and reducing reliance on backup power 

[29], [30]. Third, the framework can be adapted to smart buildings and hybrid energy systems, where real-

time solar prediction aids in load balancing and demand-side management [31], [32]. 
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Figure 6. Monthly PV output comparison of a 100 kWp PV system in Errachidia 

 

 

 
 

Figure 7. Impact of ANN forecasts on the output and efficiency of a 100 kWp PV system in Errachidia 

 

 

However, challenges remain. The model’s performance depends on data quality and availability. In 

regions lacking ground-based weather stations, integration with satellite-derived datasets (e.g., from 

Meteonorm or Copernicus) could enhance robustness [33], [34]. Future work should explore transfer learning 

to adapt the model to new locations with minimal retraining, and hybrid architectures combining ANNs with 

physical radiation models for improved interpretability [35]–[37]. 

In conclusion, this study demonstrates that AI-enhanced solar forecasting is not just academically 

promising, but operationally transformative. By bridging the gap between meteorological data and energy 

output, our ANN model provides a scalable, accurate, and economically viable tool for advancing solar 

energy deployment, particularly in underserved, high-potential regions like the Moroccan desert. The 

integration of such models into energy management systems represents a critical step toward resilient, 

intelligent, and sustainable power infrastructures. 

 

 

4. CONCLUSION 

The ANN-PSO model significantly outperformed SARIMA and LSTM in forecasting GHI, 

achieving an R² of 99.38% and MAE of 0.0226. This high-accuracy forecasting enables more effective 

energy optimization in sustainable buildings and CSP systems through improved operational planning and 

storage management. However, the model was developed and validated using data from Errachidia, 

Morocco, limiting its current applicability to similar arid climates. Future work will focus on extending the 
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framework to diverse climatic zones, integrating it into real-time energy management systems, and exploring 

hybrid or ensemble approaches to enhance robustness and generalizability. This study demonstrates the 

practical value of AI-driven solar forecasting as a tool for advancing renewable energy integration and grid 

reliability. 

Overall, this research does not just propose a better forecasting model, it advocates for a paradigm 

shift in how we design, operate, and scale solar energy systems. For researchers, engineers, and policymakers 

alike, the message is clear: the future of solar energy is not only renewable, it is intelligent. 
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