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This research examined a real-time speed-limit sign detection framework
based upon deep learning using the YOLOv12 neural network, optimized for
the use of small edge devices that are embedded advanced driver assistance
systems (ADAS). You only look once version 12 (YOLOv12) achieved a
remarkable detection performance, while maintaining efficient computation,
utilizing significantly optimized lightweight attention modules with an R-
ELAN backbone capable of small and partially occluded detection. A
custom dataset comprising 23,000 annotated images was prepared and
augmented to ensure robustness under varying conditions. Model training
utilized quantization-aware techniques and optimization via TensorRT and
ONNX Runtime. Deployment and performance were rigorously evaluated
on resource-constrained edge platforms, specifically NVIDIA Jetson Nano
and Raspberry Pi 5. Experimental results demonstrated exceptional detection
performance, achieving a precision of 99.0%, recall of 99.1%, and mean
average precision (MAP@50) of 99.2%, confirming YOLOV12’s suitability
for reliable, real-time ADAS implementation in intelligent transportation and

You only look once version 12 autonomous vehicles.
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1. INTRODUCTION

The advanced driver assistance systems (ADAS) have a critical function in intelligent transportation
systems (ITS) for the betterment of road safety and traffic efficiencies which in turn drive us towards fully
automated vehicles. One the primary features of an ADAS is real-time detection and recognition of traffic
signs (especially speed-limit signs) and ensuring we appropriately coordinate our vehicle movements relative
to the restrictions imposed by traffic signs. It can be challenging to detect and recognize traffic signs in an
automated fashion not only due to variability in illumination, partial occlusions, and small object size in the
scene, but also because of problems associated with motion blur and different weather conditions [1], [2].

Convolutional neural networks (CNNs) in particular the you only look once (YOLO) family of
models provide the best in terms of state-of-the-art performance for traffic sign detection delivering the best
speed-to-accuracy ratio attainable. More recent models in the YOLO family, namely YOLOv8 and
YOLOV11 pushed the feature aggregation and computation of CNNs even further, but these models rely on
convolutions to aggregate contextual information to better detect smaller or partially occluded signs, and are
particularly powerful for higher resource platforms and models [3].

The latest model, named YOLOvV12, introduces lightweight attention mechanism and the residual
efficient layer aggregation network (R-ELAN) backbone to achieve better multi-scale feature extraction
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while still maintaining a fast inference speed [4]. With these potentially advantageous architectural
improvements, effective and detailed inspections of YOLOv12 on edge devices (such as NVIDIA Jetson
Nano and Raspberry Pi 5) are scarce [5]. These are among the platforms designed to be performing, low-
power solutions suiting embedded deployment of ADAS system that is cost effective and energy
efficient [6], [7].

Earlier ADAS in embedded systems were based on traditional pipelines, e.g., histogram of oriented
gradients (HOG) and support vector machines (SVMs). With the advent of deep learning, the community has
shifted towards one-stage detectors such as YOLO that provide excellent real-time performance. Jamali and
Sadedel [7] used YOLOVS5 on Jetson Nano for license plate recognition, which obtained 95.5% mean average
precision (mAP) at 23 FPS, while Flores-Calero et al. [8] studied YOLO’s popularization and also the
problems of continuous detection in an unconstrained space. Hybrid pipelines remain: Haar-style detectors
followed by CNN classifier, but with large latencies (see, e.g., [9]) with excellent accuracy is performed and
demonstrate its sufficiency for single-stage YOLO architectures.

The emergence of YOLO led to architectural improvements. Tran et al. [10] obtained 32 FPS with a
TensorRT-optimized YOLOV8-Nano on Jetson Nano. Luo et al. [11] and Liu and Luo [12] presented
Coordinate Attention, EloU loss and YOLO-TS to get higher detection accuracy while bringing low
computation overhead. Multi-task systems for ADAS become popular as well Sarvajcz et al. [13] used SSD-
MobileNet for concurrent detection of pedestrians and traffic signs. Further integrating classical and deep
learning methods, Karray et al. [14] combined Haar cascades, CNN classifiers, and ensemble learning to
achieve exceptionally high F1 scores exceeding 99.9% on both Raspberry Pi and Jetson Nano, underscoring
the potential of hybrid detection systems.

Eswarawaka et al. [15] went on to investigate embedded usage, Shivayogi et al. [16], and William et
al. [17] which shows the real-time viability on Jetson Nano and Raspberry Pi. Giiney et al. [18] and Shekhar
et al. [19] conducted YOLO models on Jetson devices' performance benchmark studies. Farid et al. [20]
highlighted the need for local data sets and reached more than 50% in detection accuracy with YOLOVS.
Further supporting this, studies by Triki et al. [21] and Lopez-Montiel et al. [22] discussed hardware
limitations and hybrids. Finally, Chaman et al. [23] directly compared YOLOv11l and YOLOv12, which
further verified the efficiency of YOLOv12 on small or partially occluded signs.

Although object detection has achieved significant progress, few comprehensive evaluations of
YOLOvV12 on the embedded edge device are available. This gap is addressed by this study, which proposes a
real-time speed-limit sign detection system based on YOLO, specially tailored for running on NVIDIA Jetson
Nano and Raspberry Pi 5. The method combines quantization-aware training, lightweight attention modules, and
TensorRT/ONNX runtime optimizations over novel deep models tested on a very diverse dataset suffering from
challenging conditions. The rest of this paper is organized as follows: the approach is described in section 2,
followed by experimental study and analysis in section 3, and conclusion and future works are section 4.

2. MATERIALS AND METHODS

This section outlines the methodology for developing a real-time speed-limit sign detection system
optimized for embedded ADAS platforms using the YOLOv12 deep neural network. A custom dataset of
23,000 annotated images covering ten speed-limit classes (20—120 km/h) was created and preprocessed using
Roboflow. Data augmentation was applied to improve model robustness. The YOLOv12 model was trained,
optimized, and deployed on NVIDIA Jetson Nano and Raspberry Pi 5 to assess real-time performance. Key
innovations in the architecture, training strategies, and evaluation metrics are also presented to validate
system effectiveness.

2.1. You only look once version 12 architecture

YOLOV12 is a considerable step forward in edge-artificial intelligence (Al) object detection for real-
time ADAS on low-power platforms such as the NVIDIA Jetson Nano and Raspberry Pi 5. YOLOv12 is
successfully overcoming longstanding issues with detecting high occurrences of small, occluded, and off-
center traffic signs while varying conditions of challenging driving environments. YOLOv12 includes a
complete architecture (backbone, neck, and detection head). The structure of the YOLOv12 architecture is
shown in Figure 1 and illustrates the modular structure and relatively optimized data flow [23], [24].

At the heart of the model is the residual extended linear attention network (R-ELAN), which builds
upon the ELAN architecture from YOLOV7 by integrating residual connections and an improved cross-stage
partial (CSP) structure. These enhancements improve gradient flow, promote efficient feature reuse, and
support multi-scale feature aggregation without significantly increasing model depth or computational load.
Grouped convolutions and dynamic feature concatenation further improve the balance between detection
accuracy and inference speed key for embedded deployment.
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YOLOvV12 also offers the architecture of area-attention (A2) modules, which operate on spatial
blocks instead of pixels. This operation allows the network to pay attention to significant areas of the image
and simultaneously ignore unimportant background information. This is particularly valuable for detecting
small or faraway traffic signs as they are often located in cluttered road environments.
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Figure 1. Architecture of YOLOv12 neural network

Other architectural changes in the model include bi-directional feature pyramids and lightweight
upsampling modules in the neck of the network; an optimized design using depthwise-separable convolutions
in the detection head; flash attention for fast memory access; SiLU activation; and lastly, removing positional
encodings in order to reduce the number of parameters to optimize generalization. All of these contributions
allow YOLOv12 to be able to achieve high mAP when compared to low latency, which makes it a good
candidate for real time embedded ADAS.

2.2. Dataset and resources for training and deployment

The research workflow illustrated in Figure 2 consists of three stages: dataset preparation, model
training, and deployment on embedded edge platforms. To ensure reproducibility and transparency, a custom
dataset of 23,000 images was constructed and is available from the authors upon reasonable request. Images were
captured using a vehicle-mounted camera across diverse urban and suburban roads, representing a wide range of
lighting (day/night) and weather conditions (clear, rainy, foggy, and overcast) to improve real-world robustness.

All images were manually annotated using the Roboflow platform and exported in YOLO format,
enabling direct integration into the training pipeline. The dataset includes ten speed-limit classes ranging
from 20 km/h to 120 km/h, and their distribution is reported in Table 1, providing insight into class balance,
which is an important factor for reliable model evaluation. Representative samples illustrating variations in
illumination, occlusion, and camera viewpoints are shown in Figure 2(a). All images were resized to
640x640 pixels, achieving an effective trade-off between detection accuracy and computational efficiency.

Table 1. Distribution of speed limit sign images in the custom dataset
Speed limit (km/h) 20 30 40 50 60 70 80 90 100 120 Total
Number of images 1,256 3,120 3,253 1437 3,015 3,065 1425 1,563 2710 2,156 23,000

To improve model robustness and mitigate overfitting, various data augmentation techniques were
applied, including horizontal flipping, rotation, noise injection, and exposure adjustment. The dataset was
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split into 70% training, 20% validation, and 10% testing sets to ensure balanced evaluation. The trained
YOLOvV12 model was subsequently deployed and evaluated on embedded edge Al platforms, namely the
NVIDIA Jetson Nano and Raspberry Pi 5, to assess real-time inference performance, detection accuracy, and
resource utilization in autonomous driving scenarios. The training, optimization, and deployment stages are
jointly summarized in Figure 2(b).
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Figure 2. Model training and deployment workflow: (a) dataset preparation and annotation and (b) training,
and deployment on embedded edge platforms

2.3. Edge computing systems for implementation

Real-time ADAS performance is evaluated using a pre-trained YOLOv12 model deployed on two
typical edge computing platforms, as illustrated in Figure 3. The NVIDIA Jetson Nano, shown in Figure 3(a),
is equipped with a quad-core ARM Cortex-A57 CPU and a 128-core Maxwell GPU. It runs the JetPack 4.6
software stack, including CUDA, cuDNN, and TensorRT, to fully exploit GPU acceleration. This
architecture achieves low-latency inference, making it well suited for real-time speed-limit sign detection.

A cost-effective alternative is the Raspberry Pi 5, shown in Figure 3(b), which features a quad-core
ARM Cortex-A76 CPU with 8 GB of RAM but does not include a dedicated GPU. By leveraging optimized
libraries such as OpenCV for image processing and ONNX Runtime for model inference, the Raspberry Pi 5
can still achieve real-time detection while maintaining low power consumption, making it an ideal
lightweight embedded application. For both configurations, camera input and display output were natively
integrated to represent in-vehicle scenarios. The results further verify that YOLOv12 can operate effectively
on resource-constrained devices, validating a pragmatic trade-off among detection precision, computational
efficiency, and deployment cost for ITS.

2.4. Performance metrics

In this work, we evaluate the traffic sign detection model using precision, recall and mAP. Precision
represents the rate of correct positive predictions, while recall is the proportion of actual positives that were
predicted correctly. mAP averages the average precision of all classes providing an overall accuracy measure.
Precision and recall are formally based on true positives (TP), false positives (FP), and false negatives (FN);
mMAP is computed as the mean of class-wise average precisions [3], [25]:

Precision = —Y— x 100% .
TP+FP

Recall = % x 100% )

AP = [} P(R)dR )

mAP = %Ziﬂ (AP)j N

F1-score=2x/récisionxRecall .

Precision+Recall
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Figure 3. Experimental setup for edge deployment: (a) NVIDIA Jetson Nano platform and (b) Raspberry Pi 5
platform (components 1=Jetson Nano, 2=camera, 3=HDMI to USB adapter, 4=Lenovo monitor, and
5=Raspberry Pi 5)

3. RESULTS AND DISCUSSION

The experimental results of the YOLOv12 model are shown in Figure 4, which demonstrate
promising performance during both training and validation according to several important evaluation metrics.
We trained our model on PyTorch framework and used NVIDIA-GPU in 100 epochs. The stochastic gradient
descent (SGD) optimizer was used with a learning rate, schedule decay of 0.01, 0.9, and punctual,
respectively, for stable convergence. L2 regularization was only applied to mitigate overfitting
(decay=0.0005), and certain weights were not decayed (decay=0.0). Training was performed with a batch
size of 8 for the balance between efficiency and accuracy. The machine had an AMD Ryzen 9 7940HX CPU,
NVIDIA GeForce RTX 4070 GPU (8 GB VRAM) and 32GB DDR5 RAM, and Windows 11 OS with a
software stack including Python version 3.12.4, PyTorch 2.5.1, CUDA version 11.8.
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Figure 4. Training results of YOLOv12

As reported in Table 2, YOLOv12 obtains a precision of 99.0%, a recall of 99.1%, and an F1-score
of 99.0%. It achieved a mAP of 99.2% at loU 0.50 (mAP@50) and 85.5% at all loUs from 0.50 to 0.95
(mAP@50-95). These results show that the model is also robust across different driving conditions.

Table 2. Metrics of the proposed YOLOv12 model
Model Precision  Recall Fl-score  mAP@50 mAP@50-95
YOLOVI2  99%  99.1%  99% 99.2% 85.5%
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The loss curves clearly decreased over time for localization, classification, and objectness losses on
the test set, which is a sign of convergence. As can be seen in Figure 4, these results further validate the
ability to perform realtime speed limit sign detection at low resolution on embedded platforms such as Jetson
Nano or Raspberry Pi 5.

Additional results for the YOLOv12 model are provided based on the F1-confidence curve over ten
speed-limit classes. Discounted cumulative gain analysis as is shown in Figure 5, the F1-score achieves its
maximum value (0.99) at confidence threshold of 0.606, where the balance between precision and recall was
strong enough to reach such a high accuracy. The curve steeply ascends below the threshold, plateaus
between 0.3 and 0.75, and then slowly descends indicating that the model is robust against different search
criteria. Class-based performance is consistently very high, with strong values F1-scores for 100 km/h, 120
km/h and 60 km/h signs. These findings demonstrate the efficiency of YOLOvV12 in detecting a wide range of
traffic signs, whether they are common or rare, with low false negatives and positives.

These results are further confirmed by the precision—recall curves illustrated in Figure 6. The model
attains a mAP of 0.993 an loU threshold of 0.5. For classes 100 km/h, 120 km/h, and 90 km/h the precision is
also reached at 0.995. The curves are close to the top-right corner, which suggests that they have good
precision at different recalls.
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Figure 5. F1-confidence curve

Precision-Recall Curve

—— 100Km-h 0.995
120Km-h 0.995
—— 20Km-h 0.987
—— 30Km-h 0.991
40Km-h 0.995
—— 50Km-h 0.995
60Km-h 0.992
—— 70Km-h 0.987
0.6 80Km-h 0.990
90Km-h 0.995
= all classes 0.992 MAP@0.5

0.8

Precision

0.4

0.2

0.0 T N T
0.0 0.2 0.4 0.6 0.8 1.0

Recall

Figure 6. Precision—recall curves

The detection results in Figure 7 show that YOLOv12 has a strong ability to correctly detect and
classify speed-limit signs in different driving scenes (urban roads) and lighting conditions (daytime
illumination, night). The model consistently finds signs in at least three speed categories of 30 km/h,
40 km/h, and 60 km/h with high confidence scores (over 0.75). This visual proof reveals the robust efficiency
and accuracy of YOLOv12, which is guaranteed to be practical deployed in real-time ADAS.

In order to elucidate the performance superiority of YOLOv12, a comprehensive comparison was
made with the latest versions recently published named as YOLOV9 and YOLOV10 tested under the same
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training settings and deployment scenarios. YOLOv12 demonstrates its excellent detection performance
according to Table 3. It had the best precision (99%), recall (99.1%), and F1-score level (99%) compared to
98.5-98.6% precision and 98.7-99% recall of the baseline models. Furthermore, YOLOv12 achieved the
highest mAP with 99.2% when 1oU=0.5 and 85.5% when threshold varied in the range of 0.50-0.95
respectively. These findings attest to the improved localization precision and generalization capability of our
model. Using the same dataset and deployment graph allows us to characterize how much better or worse
YOLOvV12’s speed-limit detection is, while also validating the efficiency of YOLOv12 when performing
real-time speed limit-detection on edge deployment devices in embedded ADAS applications.

Figure 7. Detection of speed-limit signs at various speed levels using YOLOv12

Table 3. YOLO model comparison
Model Precision (%) Recall (%) Fl-score (%) mAP@50 (%) mAP@50-95 (%)

YOLOvV9 98.6 98.7 98.75 98.64 84.8
YOLOvV10 98.5 99 98.75 98.7 85
YOLOv12 99 99.1 99 99.2 85.5

The hardware comparison reveals the most important trade-offs we face when deploying YOLOv12 on
different computational platform. As shown in Table 4, we have evaluated the performance of PC, Rasberry Pi
5, NVIDIA Jetson Nano. The host PC, see Figure 6, which is based on AMD Ryzen 9 7940HX and NVIDIA
GeForce RTX 4070, shows outstanding processing performance as it can infer very fast, from the received
camera images, with an inference time of only 13.75 ms and throughput of around 72.7 FPS. But this superior
performance is delivered at the price of increased power use (115 W) and a higher system cost ($2,482).

On the other hand, Raspberry Pi 5 employs Broadcom BCM2712 and VideoCore VII, which also cuts
power usage down to 6.8 W - all for a price of $220. However, it suffers from much slower inference, at 476 ms
per frame and only 2.1 FPS. Compromising neither power nor performance, the NVIDIA Jetson Nano comes
with a quad-core ARM Cortex-A57 processor (quad-core) and is enabled by CUDA cores on the 128-core
Maxwell GPU. We have moderate power consumption and price (10.2 W, $400.00) while achieving reasonable
performance in inference at 149 ms per frame (6.7 FPS), ideal for tasks where both performance and budget are
concerns. This comparative study indicates that the hardware choice should be tailored to application demands.

The experiments conducted in this paper testify the efficiency and availability of deploying the
YOLOv12 model to detect speed-limit sign in real time based on embedded Al platform. The model
eventually met the desired high detection performance, i.e., a precision of 98.5%, a recall of 96.2%, and a
MAP@50% of 98.6%, demonstrating its good capability in robustly recognizing different speed-limit signs
under various scenarios such as occlusion, glare or low light illumination. The high Fl-score 97.3% also
ensures the model’s balanced ability to minimize false positives and false negatives. Furthermore, the
generality of YOLOv12 was demonstrated by the consistency of F1-confidence and precision—recall curves for
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the ten speed-limit classes. These results were corroborated by the confusion matrix of our analysis which had
high classification accuracy and minimal confusions between distinct classes, even for visually similar signs.
On the hardware side, from the deployment outcomes we obtain a good compromise between performance and
resource utilization. Although Jetson Nano performance already reached 6.7 FPS with an acceptable latency of
149 ms and is qualified as a real-time embedded ADAS good candidate, the results from RP5 P demonstrated
reduced but suitable performance (2.1 FPS) to be utilized in low-cost application scenarios. These results show
that with our attention mechanism designed architecture and streamlined deployment, YOLOV12 is applicable
in real-world scenario for ITS including resource-limited autonomous driving.

Table 4. Platform specifications and YOLOV12 inference performance across PC, Raspberry Pi 5, and Jetson

Nano

Processing systems Personnel computer Raspberry Pi 5 NVIDIA Jetson Nano

CPU AMD Ryzen 9 7940HX Broadcom BCM2712, quad-core (4x Quad-core ARM Cortex-A57
Arm Cortex-A76), 2.4 GHz

GPU NVIDIA GeForce RTX4070 VideoCore VII GPU, supporting 128-Core Maxwell GPU with
OpenGL ES 3.1, Vulkan 1.2 CUDA Core

Default storage 1 TB SSD high-speed PCle 64 GB microSD 128 GB eMMC 5.1 (Module)

interface (NVMe) Not Include (Dev-Kit)

System memory 32 GB DDR5 8GB RAM 64-bit 4 GB 64-bit LPDDR4

Camera interface Webcam Full HD 1080p 2x4-lane MIPI camera/display 2-lane MIPI CSI-2 (1.5 Gbps
transceivers per lane)

Operating system Windows 11 Raspberry Pi OS (Bookworm 64-bit) JetPack 4.6 (Ubuntu 18.04 base)

Typical power draw 115 W 6.8 W 10.2W

Processing time 13.75 ms 476 ms 149 ms

Frame per second 72.7 FPS 2.1 FPS 6.7 FPS

Power efficiency 0.63 0.31 0.66

Market price $2,482.00 $220.00 $400.00

4. CONCLUSION

This paper describes an effective and efficient pipeline for real-time speed-limit detection, which is
implemented based on YOLOv12 model particularly optimized for embedded edge platforms including the
NVIDIA Jetson Nano and Raspberry Pi 5. It is shown that the proposed method achieves high detection
accuracy, fast detection and low power consumption, indicating its potential for implementing in practical
ADAS systems. Adopting sophisticated architectural elements such as attention modules and the R-ELAN
backbone, the model significantly improves its capacity of detecting small and partially occluded signs in
diverse environments. Comprehensive analysis demonstrate YOLOv12 has the advantage over predecessors,
with a good trade-off between efficiency and accuracy. These results demonstrate concrete and important
implications for ITS development as well as provides direction for future research in scalable energy efficient
object detection in autonomous vehicles.
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