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 This research examined a real-time speed-limit sign detection framework 

based upon deep learning using the YOLOv12 neural network, optimized for 

the use of small edge devices that are embedded advanced driver assistance 

systems (ADAS). You only look once version 12 (YOLOv12) achieved a 

remarkable detection performance, while maintaining efficient computation, 

utilizing significantly optimized lightweight attention modules with an R-

ELAN backbone capable of small and partially occluded detection. A 

custom dataset comprising 23,000 annotated images was prepared and 

augmented to ensure robustness under varying conditions. Model training 

utilized quantization-aware techniques and optimization via TensorRT and 

ONNX Runtime. Deployment and performance were rigorously evaluated 

on resource-constrained edge platforms, specifically NVIDIA Jetson Nano 

and Raspberry Pi 5. Experimental results demonstrated exceptional detection 

performance, achieving a precision of 99.0%, recall of 99.1%, and mean 

average precision (mAP@50) of 99.2%, confirming YOLOv12’s suitability 

for reliable, real-time ADAS implementation in intelligent transportation and 

autonomous vehicles. 
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1. INTRODUCTION 

The advanced driver assistance systems (ADAS) have a critical function in intelligent transportation 

systems (ITS) for the betterment of road safety and traffic efficiencies which in turn drive us towards fully 

automated vehicles. One the primary features of an ADAS is real-time detection and recognition of traffic 

signs (especially speed-limit signs) and ensuring we appropriately coordinate our vehicle movements relative 

to the restrictions imposed by traffic signs. It can be challenging to detect and recognize traffic signs in an 

automated fashion not only due to variability in illumination, partial occlusions, and small object size in the 

scene, but also because of problems associated with motion blur and different weather conditions [1], [2]. 

Convolutional neural networks (CNNs) in particular the you only look once (YOLO) family of 

models provide the best in terms of state-of-the-art performance for traffic sign detection delivering the best 

speed-to-accuracy ratio attainable. More recent models in the YOLO family, namely YOLOv8 and 

YOLOv11 pushed the feature aggregation and computation of CNNs even further, but these models rely on 

convolutions to aggregate contextual information to better detect smaller or partially occluded signs, and are 

particularly powerful for higher resource platforms and models [3]. 

The latest model, named YOLOv12, introduces lightweight attention mechanism and the residual 

efficient layer aggregation network (R-ELAN) backbone to achieve better multi-scale feature extraction 
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while still maintaining a fast inference speed [4]. With these potentially advantageous architectural 

improvements, effective and detailed inspections of YOLOv12 on edge devices (such as NVIDIA Jetson 

Nano and Raspberry Pi 5) are scarce [5]. These are among the platforms designed to be performing, low-

power solutions suiting embedded deployment of ADAS system that is cost effective and energy  

efficient [6], [7]. 

Earlier ADAS in embedded systems were based on traditional pipelines, e.g., histogram of oriented 

gradients (HOG) and support vector machines (SVMs). With the advent of deep learning, the community has 

shifted towards one-stage detectors such as YOLO that provide excellent real-time performance. Jamali and 

Sadedel [7] used YOLOv5 on Jetson Nano for license plate recognition, which obtained 95.5% mean average 

precision (mAP) at 23 FPS, while Flores-Calero et al. [8] studied YOLO’s popularization and also the 

problems of continuous detection in an unconstrained space. Hybrid pipelines remain: Haar-style detectors 

followed by CNN classifier, but with large latencies (see, e.g., [9]) with excellent accuracy is performed and 

demonstrate its sufficiency for single-stage YOLO architectures. 

The emergence of YOLO led to architectural improvements. Tran et al. [10] obtained 32 FPS with a 

TensorRT-optimized YOLOv8-Nano on Jetson Nano. Luo et al. [11] and Liu and Luo [12] presented 

Coordinate Attention, EIoU loss and YOLO-TS to get higher detection accuracy while bringing low 

computation overhead. Multi-task systems for ADAS become popular as well Sarvajcz et al. [13] used SSD-

MobileNet for concurrent detection of pedestrians and traffic signs. Further integrating classical and deep 

learning methods, Karray et al. [14] combined Haar cascades, CNN classifiers, and ensemble learning to 

achieve exceptionally high F1 scores exceeding 99.9% on both Raspberry Pi and Jetson Nano, underscoring 

the potential of hybrid detection systems. 

Eswarawaka et al. [15] went on to investigate embedded usage, Shivayogi et al. [16], and William et 

al. [17] which shows the real-time viability on Jetson Nano and Raspberry Pi. Güney et al. [18] and Shekhar 

et al. [19] conducted YOLO models on Jetson devices' performance benchmark studies. Farid et al. [20] 

highlighted the need for local data sets and reached more than 50% in detection accuracy with YOLOv8. 

Further supporting this, studies by Triki et al. [21] and Lopez-Montiel et al. [22] discussed hardware 

limitations and hybrids. Finally, Chaman et al. [23] directly compared YOLOv11 and YOLOv12, which 

further verified the efficiency of YOLOv12 on small or partially occluded signs. 

Although object detection has achieved significant progress, few comprehensive evaluations of 

YOLOv12 on the embedded edge device are available. This gap is addressed by this study, which proposes a 

real-time speed-limit sign detection system based on YOLO, specially tailored for running on NVIDIA Jetson 

Nano and Raspberry Pi 5. The method combines quantization-aware training, lightweight attention modules, and 

TensorRT/ONNX runtime optimizations over novel deep models tested on a very diverse dataset suffering from 

challenging conditions. The rest of this paper is organized as follows: the approach is described in section 2, 

followed by experimental study and analysis in section 3, and conclusion and future works are section 4. 

 

 

2. MATERIALS AND METHODS 

This section outlines the methodology for developing a real-time speed-limit sign detection system 

optimized for embedded ADAS platforms using the YOLOv12 deep neural network. A custom dataset of 

23,000 annotated images covering ten speed-limit classes (20–120 km/h) was created and preprocessed using 

Roboflow. Data augmentation was applied to improve model robustness. The YOLOv12 model was trained, 

optimized, and deployed on NVIDIA Jetson Nano and Raspberry Pi 5 to assess real-time performance. Key 

innovations in the architecture, training strategies, and evaluation metrics are also presented to validate 

system effectiveness. 

 

2.1.  You only look once version 12 architecture  

YOLOv12 is a considerable step forward in edge-artificial intelligence (AI) object detection for real-

time ADAS on low-power platforms such as the NVIDIA Jetson Nano and Raspberry Pi 5. YOLOv12 is 

successfully overcoming longstanding issues with detecting high occurrences of small, occluded, and off-

center traffic signs while varying conditions of challenging driving environments. YOLOv12 includes a 

complete architecture (backbone, neck, and detection head). The structure of the YOLOv12 architecture is 

shown in Figure 1 and illustrates the modular structure and relatively optimized data flow [23], [24]. 

At the heart of the model is the residual extended linear attention network (R-ELAN), which builds 

upon the ELAN architecture from YOLOv7 by integrating residual connections and an improved cross-stage 

partial (CSP) structure. These enhancements improve gradient flow, promote efficient feature reuse, and 

support multi-scale feature aggregation without significantly increasing model depth or computational load. 

Grouped convolutions and dynamic feature concatenation further improve the balance between detection 

accuracy and inference speed key for embedded deployment. 
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YOLOv12 also offers the architecture of area-attention (A2) modules, which operate on spatial 

blocks instead of pixels. This operation allows the network to pay attention to significant areas of the image 

and simultaneously ignore unimportant background information. This is particularly valuable for detecting 

small or faraway traffic signs as they are often located in cluttered road environments. 
 

 

 
 

Figure 1. Architecture of YOLOv12 neural network 
 
 

Other architectural changes in the model include bi-directional feature pyramids and lightweight 

upsampling modules in the neck of the network; an optimized design using depthwise-separable convolutions 

in the detection head; flash attention for fast memory access; SiLU activation; and lastly, removing positional 

encodings in order to reduce the number of parameters to optimize generalization. All of these contributions 

allow YOLOv12 to be able to achieve high mAP when compared to low latency, which makes it a good 

candidate for real time embedded ADAS. 

 

2.2.  Dataset and resources for training and deployment 

The research workflow illustrated in Figure 2 consists of three stages: dataset preparation, model 

training, and deployment on embedded edge platforms. To ensure reproducibility and transparency, a custom 

dataset of 23,000 images was constructed and is available from the authors upon reasonable request. Images were 

captured using a vehicle-mounted camera across diverse urban and suburban roads, representing a wide range of 

lighting (day/night) and weather conditions (clear, rainy, foggy, and overcast) to improve real-world robustness. 

All images were manually annotated using the Roboflow platform and exported in YOLO format, 

enabling direct integration into the training pipeline. The dataset includes ten speed-limit classes ranging 

from 20 km/h to 120 km/h, and their distribution is reported in Table 1, providing insight into class balance, 

which is an important factor for reliable model evaluation. Representative samples illustrating variations in 

illumination, occlusion, and camera viewpoints are shown in Figure 2(a). All images were resized to 

640×640 pixels, achieving an effective trade-off between detection accuracy and computational efficiency. 
 
 

Table 1. Distribution of speed limit sign images in the custom dataset 
Speed limit (km/h) 20 30 40 50 60 70 80 90 100 120 Total 
Number of images 1,256 3,120 3,253 1,437 3,015 3,065 1,425 1,563 2,710 2,156 23,000 

 
 

To improve model robustness and mitigate overfitting, various data augmentation techniques were 

applied, including horizontal flipping, rotation, noise injection, and exposure adjustment. The dataset was 
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split into 70% training, 20% validation, and 10% testing sets to ensure balanced evaluation. The trained 

YOLOv12 model was subsequently deployed and evaluated on embedded edge AI platforms, namely the 

NVIDIA Jetson Nano and Raspberry Pi 5, to assess real-time inference performance, detection accuracy, and 

resource utilization in autonomous driving scenarios. The training, optimization, and deployment stages are 

jointly summarized in Figure 2(b). 
 

 

Train and evaluate 

YOLOv12 model

Best Result?
Adjust 

Hyperparameters

Model conversion

Training YOLOv12 custom dataset

No

Yes
Images

 + Annotation 

Deploy on Embedded  SystemData Preparation

Data Pre-Processing

Data Collection Data Preparation

Data PreparationData labelling

Train

 (70%)

Validation

 (20%)

Test

(10%)

 
(a) (b) 

 

Figure 2. Model training and deployment workflow: (a) dataset preparation and annotation and (b) training, 

and deployment on embedded edge platforms 

 

 

2.3.  Edge computing systems for implementation 

Real-time ADAS performance is evaluated using a pre-trained YOLOv12 model deployed on two 

typical edge computing platforms, as illustrated in Figure 3. The NVIDIA Jetson Nano, shown in Figure 3(a), 

is equipped with a quad-core ARM Cortex-A57 CPU and a 128-core Maxwell GPU. It runs the JetPack 4.6 

software stack, including CUDA, cuDNN, and TensorRT, to fully exploit GPU acceleration. This 

architecture achieves low-latency inference, making it well suited for real-time speed-limit sign detection. 

A cost-effective alternative is the Raspberry Pi 5, shown in Figure 3(b), which features a quad-core 

ARM Cortex-A76 CPU with 8 GB of RAM but does not include a dedicated GPU. By leveraging optimized 

libraries such as OpenCV for image processing and ONNX Runtime for model inference, the Raspberry Pi 5 

can still achieve real-time detection while maintaining low power consumption, making it an ideal 

lightweight embedded application. For both configurations, camera input and display output were natively 

integrated to represent in-vehicle scenarios. The results further verify that YOLOv12 can operate effectively 

on resource-constrained devices, validating a pragmatic trade-off among detection precision, computational 

efficiency, and deployment cost for ITS. 

 

2.4.  Performance metrics 

In this work, we evaluate the traffic sign detection model using precision, recall and mAP. Precision 

represents the rate of correct positive predictions, while recall is the proportion of actual positives that were 

predicted correctly. mAP averages the average precision of all classes providing an overall accuracy measure. 

Precision and recall are formally based on true positives (TP), false positives (FP), and false negatives (FN); 

mAP is computed as the mean of class-wise average precisions [3], [25]: 
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 × 100%  (1) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
 × 100% (2) 

 

𝐴𝑃 = ∫  𝑃(𝑅)𝑑𝑅
1

0
 (3) 

 

𝑚𝐴𝑃 =  
1

𝐶
∑  (𝐴𝑃)𝑗𝑐

𝑗=1  (4) 

 

F1-score=2×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (5) 
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(a) (b) 

 

 igure  .  xperi ental setup  or edge deploy ent: (a)  V     Jetson  ano plat or  and (b)  aspberry Pi 5 

platform (components 1=Jetson  ano,  =camera, 3=HDMI to USB adapter, 4=Lenovo monitor, and 

5= aspberry Pi 5) 

 

 

3. RESULTS AND DISCUSSION  

The experimental results of the YOLOv12 model are shown in Figure 4, which demonstrate 

promising performance during both training and validation according to several important evaluation metrics. 

We trained our model on PyTorch framework and used NVIDIA-GPU in 100 epochs. The stochastic gradient 

descent (SGD) optimizer was used with a learning rate, schedule decay of 0.01, 0.9, and punctual, 

respectively, for stable convergence. L2 regularization was only applied to mitigate overfitting 

(decay=0.0005), and certain weights were not decayed (decay=0.0). Training was performed with a batch 

size of 8 for the balance between efficiency and accuracy. The machine had an AMD Ryzen 9 7940HX CPU, 

NVIDIA GeForce RTX 4070 GPU (8 GB VRAM) and 32GB DDR5 RAM, and Windows 11 OS with a 

software stack including Python version 3.12.4, PyTorch 2.5.1, CUDA version 11.8. 
 

 

 
 

Figure 4. Training results of YOLOv12 
 

 

As reported in Table 2, YOLOv12 obtains a precision of 99.0%, a recall of 99.1%, and an F1-score 

of 99.0%. It achieved a mAP of 99.2% at IoU 0.50 (mAP@50) and 85.5% at all IoUs from 0.50 to 0.95 

(mAP@50-95). These results show that the model is also robust across different driving conditions.  
 

 

Table 2. Metrics of the proposed YOLOv12 model 
Model Precision Recall F1-score mAP@50 mAP@50-95 

YOLOv12 99% 99.1% 99% 99.2% 85.5% 
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The loss curves clearly decreased over time for localization, classification, and objectness losses on 

the test set, which is a sign of convergence. As can be seen in Figure 4, these results further validate the 

ability to perform realtime speed limit sign detection at low resolution on embedded platforms such as Jetson 

Nano or Raspberry Pi 5. 

Additional results for the YOLOv12 model are provided based on the F1-confidence curve over ten 

speed-limit classes. Discounted cumulative gain analysis as is shown in Figure 5, the F1-score achieves its 

maximum value (0.99) at confidence threshold of 0.606, where the balance between precision and recall was 

strong enough to reach such a high accuracy. The curve steeply ascends below the threshold, plateaus 

between 0.3 and 0.75, and then slowly descends indicating that the model is robust against different search 

criteria. Class-based performance is consistently very high, with strong values F1-scores for 100 km/h, 120 

km/h and 60 km/h signs. These findings demonstrate the efficiency of YOLOv12 in detecting a wide range of 

traffic signs, whether they are common or rare, with low false negatives and positives. 

These results are further confirmed by the precision–recall curves illustrated in Figure 6. The model 

attains a mAP of 0.993 an IoU threshold of 0.5. For classes 100 km/h, 120 km/h, and 90 km/h the precision is 

also reached at 0.995. The curves are close to the top-right corner, which suggests that they have good 

precision at different recalls.  
 

 

 
 

Figure 5. F1-confidence curve 
 
 

 
 

Figure 6. Precision–recall curves 
 

 

The detection results in Figure 7 show that YOLOv12 has a strong ability to correctly detect and 

classify speed-limit signs in different driving scenes (urban roads) and lighting conditions (daytime 

illumination, night). The model consistently finds signs in at least three speed categories of 30 km/h,  

40 km/h, and 60 km/h with high confidence scores (over 0.75). This visual proof reveals the robust efficiency 

and accuracy of YOLOv12, which is guaranteed to be practical deployed in real-time ADAS. 

In order to elucidate the performance superiority of YOLOv12, a comprehensive comparison was 

made with the latest versions recently published named as YOLOv9 and YOLOv10 tested under the same 
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training settings and deployment scenarios. YOLOv12 demonstrates its excellent detection performance 

according to Table 3. It had the best precision (99%), recall (99.1%), and F1-score level (99%) compared to 

98.5–98.6% precision and 98.7–99% recall of the baseline models. Furthermore, YOLOv12 achieved the 

highest mAP with 99.2% when IoU=0.5 and 85.5% when threshold varied in the range of 0.50-0.95 

respectively. These findings attest to the improved localization precision and generalization capability of our 

model. Using the same dataset and deployment graph allows us to characterize how much better or worse 

YOLO 1 ’s speed-limit detection is, while also validating the efficiency of YOLOv12 when performing 

real-time speed limit-detection on edge deployment devices in embedded ADAS applications. 
 
 

 
 

Figure 7. Detection of speed-limit signs at various speed levels using YOLOv12 
 
 

Table 3. YOLO model comparison 
Model Precision (%) Recall (%) F1-score (%) mAP@50 (%) mAP@50-95 (%) 

YOLOv9 98.6 98.7 98.75 98.64 84.8 

YOLOv10 98.5 99 98.75 98.7 85 
YOLOv12 99 99.1 99 99.2 85.5 

 

 

The hardware comparison reveals the most important trade-offs we face when deploying YOLOv12 on 

different computational platform. As shown in Table 4, we have evaluated the performance of PC, Rasberry Pi 

5, NVIDIA Jetson Nano. The host PC, see Figure 6, which is based on AMD Ryzen 9 7940HX and NVIDIA 

GeForce RTX 4070, shows outstanding processing performance as it can infer very fast, from the received 

camera images, with an inference time of only 13.75 ms and throughput of around 72.7 FPS. But this superior 

performance is delivered at the price of increased power use (115 W) and a higher system cost ($2,482). 

On the other hand, Raspberry Pi 5 employs Broadcom BCM2712 and VideoCore VII, which also cuts 

power usage down to 6.8 W - all for a price of $220. However, it suffers from much slower inference, at 476 ms 

per frame and only 2.1 FPS. Compromising neither power nor performance, the NVIDIA Jetson Nano comes 

with a quad-core ARM Cortex-A57 processor (quad-core) and is enabled by CUDA cores on the 128-core 

Maxwell GPU. We have moderate power consumption and price (10.2 W, $400.00) while achieving reasonable 

performance in inference at 149 ms per frame (6.7 FPS), ideal for tasks where both performance and budget are 

concerns. This comparative study indicates that the hardware choice should be tailored to application demands. 

The experiments conducted in this paper testify the efficiency and availability of deploying the 

YOLOv12 model to detect speed-limit sign in real time based on embedded AI platform. The model 

eventually met the desired high detection performance, i.e., a precision of 98.5%, a recall of 96.2%, and a 

mAP@50% of 98.6%, demonstrating its good capability in robustly recognizing different speed-limit signs 

under various scenarios such as occlusion, glare or low light illumination. The high F1-score 97.3% also 

ensures the  odel’s balan ed ability to  ini ize  alse positi es and  alse negati es.  urther ore, the 

generality of YOLOv12 was demonstrated by the consistency of F1-confidence and precision–recall curves for 
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the ten speed-limit classes. These results were corroborated by the confusion matrix of our analysis which had 

high classification accuracy and minimal confusions between distinct classes, even for visually similar signs. 

On the hardware side, from the deployment outcomes we obtain a good compromise between performance and 

resource utilization. Although Jetson Nano performance already reached 6.7 FPS with an acceptable latency of 

149 ms and is qualified as a real-time embedded ADAS good candidate, the results from RP5 P demonstrated 

reduced but suitable performance (2.1 FPS) to be utilized in low-cost application scenarios. These results show 

that with our attention mechanism designed architecture and streamlined deployment, YOLOv12 is applicable 

in real-world scenario for ITS including resource-limited autonomous driving. 
 

 

Table 4. Platform specifications and YOLOv12 inference performance across PC, Raspberry Pi 5, and Jetson 

Nano 
Processing systems Personnel computer Raspberry Pi 5 NVIDIA Jetson Nano 

CPU AMD Ryzen 9 7940HX Broadcom BCM2712, quad-core (4x 

Arm Cortex-A76), 2.4 GHz 

Quad-core ARM Cortex-A57 

GPU NVIDIA GeForce RTX4070 VideoCore VII GPU, supporting 
OpenGL ES 3.1, Vulkan 1.2 

128-Core Maxwell GPU with 
CUDA Core 

Default storage  1        high-speed PCIe 

interface (NVMe) 

64 G   i ro    128 GB eMMC 5.1 (Module) 

Not Include (Dev-Kit) 
System memory 32 GB DDR5 8GB RAM 64-bit 4 GB 64-bit LPDDR4 

Camera interface Webcam Full HD 1080p 2×4-lane MIPI camera/display 

transceivers 

2-lane M P     -  (1.5 Gbps 

per lane) 
Operating system  indo s 11  aspberry Pi O  ( oo  or  64-bit) JetPa   4.6 ( buntu 18.04 base) 

Typical power draw 115 W 6.8 W 10.2 W 

Processing time 13.75 ms 476 ms 149 ms 
Frame per second 72.7 FPS 2.1 FPS 6.7 FPS 

Power efficiency 0.63 0.31 0.66 

Market price $2,482.00 $220.00 $400.00 

 

 

4. CONCLUSION 

This paper describes an effective and efficient pipeline for real-time speed-limit detection, which is 

implemented based on YOLOv12 model particularly optimized for embedded edge platforms including the 

NVIDIA Jetson Nano and Raspberry Pi 5. It is shown that the proposed method achieves high detection 

accuracy, fast detection and low power consumption, indicating its potential for implementing in practical 

ADAS systems. Adopting sophisticated architectural elements such as attention modules and the R-ELAN 

backbone, the model significantly improves its capacity of detecting small and partially occluded signs in 

diverse environments. Comprehensive analysis demonstrate YOLOv12 has the advantage over predecessors, 

with a good trade-off between efficiency and accuracy. These results demonstrate concrete and important 

implications for ITS development as well as provides direction for future research in scalable energy efficient 

object detection in autonomous vehicles. 
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