Bulletin of Electrical Engineering and Informatics
Vol. 12, No. 5, October 2023, pp. 3142~3152
ISSN: 2302-9285, DOI: 10.11591/eei.v12i5.4240 O 3142

A case analysis for Kubernetes network security of financial
service industry in Indonesia using zero trust model

Nico Surantha®?, Felix lvan’, Ritchie Chandra®
IBINUS Graduate Program-Master of Computer Science, Bina Nusantara University, Jakarta, Indonesia
2Department of Electrical, Electronic, and Communication Engineering, Faculty of Engineering, Tokyo City University, Tokyo, Japan

Article Info ABSTRACT

Article history: In this study, a case analysis of Kubernetes application in an enterprise
. providing financial services in Indonesia is presented. It is implemented to

Received Jun 12, 2022 improve their digital services-based application, developed using micro-

Revised Dec 16, 2022 services architecture. Kubernetes, an application container technology, has

Accepted Feb 3, 2023 been applied in the enterprise providing financial services in Indonesia to

improve their digital services-based application, developed using micro-
services architecture concepts. Without incorporating any additional
Keywords: hardware, the new technology and services have been adopted to existing
Kubernetes virtualized resources of the en_terprise. An infrastrt_:cture_design for secure
- . Kubernetes networking was built and has been studied using the data center
Mlcro-serwces_ provided by the enterprise. This study focuses on two important aspects:
Network security network and security. As a security guideline, the network recommendations
Zero trust model from VMware, Cisco, and Forrester’s zero trust model were employed to
design the infrastructure and were evaluated. The proposed secure network
infrastructure design is successfully applied in the container networks using
the zero trust requirement, the enterprise’s requirements, and constraints.
And we hope this study about network design security can be used and
adaptable with existing network and reduce risk and disruption to the

business caused by the network.

This is an open access article under the CC BY-SA license.

0

Corresponding Author:

Ritchie Chandra

BINUS Graduate Program-Master of Computer Science, Bina Nusantara University
Jakarta, Indonesia

Email: ritchie.chandra@binus.ac.id

1. INTRODUCTION

Infrastructure is required to develop and operate an application with micro-service architecture. As
an application, the micro-services are expected to work together to provide a larger function of services in
which the connectivity between the services becomes critical. To ensure the communication of each service,
a reliable network is needed. Security acts to protect the services by validating and mitigating these services
from being compromised or attacked. Virtualization is one of the infrastructure technologies that is
commonly used by enterprises to host applications, including services. Alternatively, the enterprises could be
benefited by applying container technology resulting in immutable and agile services. Explain software aging
in cloud computing, software aging is in the operation software systems will be accumulate errors to system
failure and other hazardous consequences [1]. Software aging can be happening because memory
fragmentation, resource consumption in large scale and accumulation of errors happen in system.

One of the Indonesian financial service enterprises has deployed application container technology as
infrastructure technology. An IT security head explains that his enterprise as well as many other enterprises are
striving to be more competitive in their field. Reliable technology infrastructure enables his enterprise to

Journal homepage: http://beei.org

https://creativecommons.org/licenses/by-sa/4.0/

Bulletin of Electr Eng & Inf ISSN: 2302-9285 O 3143

provide significant improvement, such as shortening the product-development cycles. Moreover,
troubleshooting and manual setting of the configuration changes would require less time. The respondent also
focuses on important aspects of infrastructure, such as network and security. His concern raises two major
questions: i) “how to run applications on Kubernetes container technology?” and ii) “how to address the
network and security aspects in their highly virtualized data center?”. Using hypervisors, most of the
enterprises’ applications are run virtually while the dynamic routing protocol is used to route the access to the
applications in a physical network device by the open shortest path first (OSPF). A firewall to inspect outgoing
and incoming traffic is deployed to implement security at the perimeter. In this case study, Kubernetes acted as
leverage only in the farm segment of the enterprise’s internal server, instead of the entire network segment.

According to Pahl [2], the container could be activated via a requirement to deploy an application on
distributed cloud platforms because many enterprises have adopted Kubernetes to run their applications.
Kubernetes along with Docker is a standard platform for a cloud-based service [3]. Moreover, Pahl discusses
the relevance of containers with virtualization technology. The relevance is laid on the requirement of
containers for advanced networking features based on network virtualization like routing [2]. To manage
applications on a microservice basis, Kubernetes allows the creation of multiple Horizontal Pod Autoscaler
instances adapts to a single microservice deployment, and proposes me-Kube (multi-level elastic
Kubernetes), referring to a Kubernetes extension that introduces a hierarchical architecture to control the
elasticity of application-based microservices [4]. Containers are characterized by having the ephemeral state
and aspects of a stateful microservice, which create a more complex array previously created by Kubernetes
controllers [5]. The development of microservice architecture-based cloud applications presents a variety of
challenges; one of them is scalability at the container level. A study shows that an algorithm uses an agnostic
approach to auto-scale microservices which are implemented in Google Kubernetes Engine [6].
Microservices in software development arise when a business department finds risk in a product and starts
asking questions; an example of the migration from monolithic to microservices took place in 2010 when
Netflix started using Amazon's Web Services (AWS) to host applications and services with over 100
fine-grained services instead of web applications, also known as or war [7].

Since the new threats using techniques to bypass perimeter-based protections emerge, John Becker
highlights the significance of the Forrester® zero trust model and explains the vulnerability of IP-based
network perimeter [8]. An American market research company, Forrester®, proposes the zero trust model
stipulating that all networks should be classified as untrusted, and all traffic must be logged and inspected
without considering its location; these strategies will lead to the use of least privilege strategies and enforce
strict access control [9]. Zero trust model can be used to secure and protect the big data environment as well
as solve a problem in big data security [10]. A zero trust management model for internet of things (1oT) can
guarantee the validation and participation of the credentials and configurations of every resource of the
infrastructure in the network [11]. A study proposes a model that is applicable to protect various data adopted
from the zero trust model and present new techniques based on the zero trust model to secure the data [12].

The implementation of zero trust for the energy sector could reduce the risks, secure the systems,
and protect the data of zero trust security architecture [13]. The authors have developed cyber security and
combined the zero trust model with cloud computing because zero trust schemes in cloud computing should
be integrated and combined with practices, policies, and technologies; thus, cyber security could become
workable [14]. The combination of the zero trust model and Kubernetes can protect infrastructure from
attackers who threaten the data of enterprises or organizations [15].

Plenty of security aspects and container systems are still necessarily explored. This study provides a
novel network design by developing secure Kubernetes based on container technology. This development is
expected to serve several recommendations for the enterprise. The vendors’ best practices, such as the
network virtualization technology of VMware and Cisco, were reviewed and adopted as a part of our design.
The zero trust model of Forrester® was also outlined as the security guideline. To validate the proposed
design, a lab simulation was deployed to explore the ability of the design to fulfill the enterprises’
requirements. This paper is an extended version of the work of [16].

2. PROBLEM STATEMENT AND PRELIMINARIES
2.1. Kubernetes container system

Kubernetes is used over the years to suffice the needs and the capability efficiently and using
Kubernetes to expose HTTP endpoints for metrics as it is simpler and most used [17]. Proposed work to
move high computational power near 10T sensors with fog serverless framework (FSF) and using Kubernetes
to form an interface with Kubernetes cluster which manage a set of Docker container [18]. Each of the
Kubernetes clusters has one or more worker nodes and masters [3] because the namespaces of each cluster
enable the isolation of networks and environments. Meanwhile, different environments, such as development
and production, can be segmented to have their network segment in traditional physical networks. In

A case analysis for Kubernetes network security of financial service industry in Indonesia ... (Nico Surantha)

3144 O3 ISSN: 2302-9285

Kubernetes, similar levels of segmentation possibly use a namespace. Kubernetes et al. [3] define a pod as
the smallest entity in the Kubernetes cluster. The container pod is allocated with its internet protocol (IP)
address, which is comparable to the endpoints, such as a real machine in the physical network environment.
A network gateway or router is required for the container pods in a namespace. Thus, the external network is
accessible to external networks or other namespaces. The containers run within pods in Kubernetes.
Nonetheless, Kubernetes does not manage the containers within a pod because it only manages the pods.
Through the master node, Kubernetes could expand or shrink the number of pods [3]. The pod’s probability
of compromising would increase as the number of pods increases. The zero trust model is implemented at the
network level to mitigate the risk of compromising, internal attacks, and external attacks as well as ultimately
avoid disruption to the business environment [9].

2.2. Zero trust model-based information security

There are no trusted and untrusted-internal or external networks in the zero trust model [9].
Inspection and logging should be performed on all traffic since the traffic is categorized as untrusted.
According to Forrester®, the perimeter-based network security insufficiently protects the networks and is
labeled as internal or trusted to perimeter-based protection [9]. The virtual local area network (VLAN), which
performs network segmentation, is not categorized as a network security method since it cannot prevent any
traffic to move between VLANS and cannot gain access to critical systems in different VLANSs [19].

The architecture that deploys microservice applications employs Kubernetes in the private cloud and
high availability of Kubernetes for application-based microservices [20]. As a comparison, the 2017 IBM
X-Force report has also been studied. The results of investigating global threat intelligence and deep security
could provide enhanced security solutions. The report states that in 2016, 58% of the attacks in the financial
service sector is from insiders while 53% of these attacks are not noticed by any employees [21]. The study
on Forrester® and the 2017 IBM X-Force report provide a strong motivation to more comprehensively
implement the zero trust model in the network. Meanwhile, adopts the zero trust model in intranet data to
secure the authentication when users want to access intranet data [22]. This method or architecture can more
effectively protect network communication.

3. THE PROPOSED METHOD DESIGN OF NETWORK AND SECURITY

This study employed a top-down design approach [23] to design the network. High-level staff, such
as the Head of the Department, were targeted from the financial service enterprises in Indonesia to
understand the business constraints and goals. Meanwhile, the manager-level staff contributed to give
knowledge on the technical goals and limitations to produce a proposed design. Then, the lab environment
was built to ensure that all technical requirements had been achieved. The requirements were based on the
enterprises’ business requirements to collect the technical requirements. The container network connectivity
from and to existing external physical networks was tested by dynamic-routing protocols to conduct route
redistribution. By default, all of the traffics were considered unsecured or untrusted, unless they had been
stated. In other words, the network security was configured to only allow intended traffic between containers.

In detail, the plan, design, implement, operate, and optimize (PDIOO) network life-cycle was
adopted [23] to design a secure network. As shown by Figure 1, the methods were classified into three major
steps: i) collecting requirements, ii) designing a network, and iii) evaluating the design. The results of this
analysis are as follows.

3.1. First stage: requirement gathering

The process of requirement gathering contains several steps, such as defining business goals,
translating the business goals into technical constraints and goals, and ultimately evaluating the currently
existing network. The outputs of every process are outlined. The analysis focuses on both business and
technical aspects. XYZ Bank’s current network topology and configuration is required, to understand how
the container networks shall be integrated into the existing networks.

3.1.1. Business goals

The IT security head expects shorter product development cycles because the released cycle could
be adjusted to the business requirement. To mitigate problems, a new secure network design should be able
to solve inconsistent policies and causes of misconfigurations. The network and security design should
leverage the dedicated technology for the container system, instead of using hardware-based technology. To
accommodate such a request, the containers should run with a consistent scale that is parallel to its host and
prefers network virtualization.

Bulletin of Electr Eng & Inf, Vol. 12, No. 5, October 2023: 3142-3152

Bulletin of Electr Eng & Inf ISSN: 2302-9285 O 3145

* Business and technical goals and constraints

. . . . 1
Requirement Assess current Server Farm network segment

Gathering

* Logical and physical network topology
* Switching and routing protocols

BTSN+ Network security strategies

+ Build a lab to simulate the design
+ Ensure containers are able reachable from external networks

* Ensure successful firewall implementation within the contamer networks

Design Evaluation

* Verify design meets business and technical goals

Figure 1. Research method

3.1.2. Technical goals

The technical team was interviewed to technically translate the goals by seeking their expectations
and technical perspectives. The technical goals provided by the network team are i) aligning with the existing
IP address schemes, ii) redistributing authentic and intended routing information through a routing protocol,
and iii) preventing reconnaissance attacks (e.g., port scanning) and network-based attacks (e.g., route
hijacking). Hence, internal network communications could be protected. The translation from business goals
to technical goals is outlined in Table 1.

Table 1. The mapping of the business goals into technical goals

Auvailable business goals Translation of technical goals
Shortening life-cycles of the product Planning IP address for containerized application networks
development Ensuring the connectivity to the existing IPv4 networks

Mitigating problems due to security and Protecting the internal container-to-container communications

network (e.g., misconfigurations and Ensuring only intended and authentic-routing information advertised in the networks

inconsistent policies) Implementing network security to combat network-based attacks, including
reconnaissance-based and route hijacking attacks.

Modernizing container technology- Protecting the internal communications between containers

specific technologies Implementing network security to prevent network-based attacks, such as route
hijacking and reconnaissance-based attacks
Properly recording traffic

3.1.3. Technical constraints

The IT security head expects a conformable design with the existing data center environment of the
enterprise without additional hardware. Hence, VMware’s virtualization is deployed to virtualize the
infrastructure, while any required virtual network components can be supported by the available hardware
resources. The network team is also put in another constraint because the OSPF must be used in its networks
as a dynamic routing protocol to avoid any configuration changes that might impact the existing systems; for
example, changing routing protocols or migrating network gateways. All of the prerequisites for
configuration changes are provided in Table 2.

A case analysis for Kubernetes network security of financial service industry in Indonesia ... (Nico Surantha)

3146 O3 ISSN: 2302-9285

Table 2. Necessary requirements prior to configuration change

Pre-requisite design decision Realization of design
Minimal having three different port groups in the Traffic differentiation and routing among physical servers in
VDS in the form of overlay, management, and data physical networks
Reusing the existing subnets and VLAN ID of the Aligning the security policy of XYZ Bank and putting the
management network management IP address of all components under the out-of-band
subnet
Provisioning a new overlay traffic network Traversing devices and links to increase the MTU size by 1580

bytes or above ue to the additional 80 bytes of payload in the
original packet by overlay
Provisioning a new network for external traffic data Isolating the high-security risk of rating in- and outgoing traffic of
path the container networks from management and overlay’s network

3.2. Second stage: proposed design of network

This section discusses the network design while the next section discusses the security design. In
this study, all of the required components of the design are virtual-based to avoid any additional hardware.
Additional configuration changes are still required to implement the design in the existing devices.

To set up a lab simulation for designing the study, the minimum requirements defined in the
Kubernetes documentation [3] are used since the size and number of workloads performing in a Kubernetes
cluster are unique for each enterprise. Kubernetes pods use the application programming interface (API) server
in master to worker nodes within the cluster because each Kubernetes cluster ran with one worker and one
master node [3]. Configuration changes are required when installing the underlying equipment. For example,
the addition of VLAN and IP addressing network and the increase of maximum transmit unit (MTU) size are
needed to add the IP packet header of the overlay network since generic network virtualization encapsulation
(GENEVE) [24] is used to overlay encapsulation. Table 2 summarizes the configuration changes for the
design recommendations, which relate to the design of the existing logical network.

Figure 2 depicts that the setup of the logical container network is outlined and a high-level
visualization of the network design is provided. Through VMware’s NSX [21], each namespace in the cluster
provides a logical switch, and a Tier-1 router is constructed. Before being connected to the external virtual
router, the namespaces are routed and aggregated to a Tier-0 router [21]. To set up the logical network as
shown in Figure 2, several steps are followed, such as making a design decision based on the IP address
planning as well as routing the protocol option and security considerations. Table 3 summarizes
recommendations for the logical network design.

ns : default

Logical Switch Logical Switch Logical Switch

@7

Figure 2. Proposed design of logical network

Bulletin of Electr Eng & Inf, Vol. 12, No. 5, October 2023: 3142-3152

Bulletin of Electr Eng & Inf ISSN: 2302-9285 g 3147

Table 3. The recommendation for logical network design

Logical network design decisions Realization of the design
Pre-allocating the 16 prefixes of network 256 subnets are reserved for new namespaces.
address spaces for the container
environment
Providing at least one logical switch for Ensuring pod-to-pod network connectivity [25]
each namespace [25]
Using BGP as the protocol for dynamic Proving dynamic routing protocols for >100,000

routing [26] endpoints to deploy large-scale data centers [26]

Enabling authentication of a routing Avoid unauthorized access or/and routing information
protocol between routing peers [27] tampers and attacks, such as route hijacking

Enabling route filtering for containers of Not advertising container networks without access from or
internal networks [27] to external networks outside the domain of BGP routing

Enterprise probably has various space availability allocations of network addresses. It is
recommended to allocate a large prefix per cluster to aid the subnet assignment for each newly created
namespace. Using this setup, a prefix allocation of/16 becomes a sample instead of a definitive requirement.
Moreover, 256 namespaces could be served in a Kubernetes cluster, and 254 pods could be instantiated for
each namespace. The modification of prefix and subnet allocations could be performed when required.

Container podscouldbe dramaticallycompared to virtual or physical machines since the container
pods could be easily escalated. To accommodate the dynamic networking behavior, a scalable dynamic
routing protocol is preferred. Border gateway protocol (BGP), as a proven dynamic routing protocol, is
reported in IETF RFC 7938, supporting “large-scale” data centers with over 100,000 servers [26]. In the
design, the container pods are assumed as endpoints, which are similar to traditional servers and have their
unique IP address. Kubernetes could be considered “large-scale” since it supports >100,000 pods within a
cluster. Cisco suggests that the security mechanism of BGP in an enterprise environment (e.g., filtering and
routing protocol authentication) could diminish the risks of attacks from the router’s perspective, such as
route hijacking [27]. To reduce risks from reconnaissance attacks, the routes (i.e., internal pods or namespace
networking) are not necessarily and externally advertised because they can be filtered out at the Tier-0 router.

3.3. Third stage: proposed design of network security

The zero trust model considers that all traffic is untrusted or unsecured [9], [19]. The inspection is
required, and the traffic is only allowed when needed, for example when the application or service requires
the traffic to function properly [9], [19]. Moreover, all traffic could be denied by default and only allow a
required or legitimate traffic communication.

The network security recommendations based on the zero trust model are summarized in Table 4. To
inspect network traffic, the firewall could be deployed [28]. The incoming traffic from or to external
networks could be inspected and protected by the perimeter-based firewall [9]. The firewall must be able to
recognize the incoming traffic from the pods to execute the internal firewall at the container pod level. To
map the pods as security objects in the firewall, Kubernetes’ label is utilized as an identifier [21], and the
label is assigned using Kubernetes API-server to the pods after or while the pods are instantiated [3], [21].
The firewall policies should have been configured and defined before the pod labeling process to protect and
inspect the incoming traffic from pods [21]. The firewall policies deny all traffic by default and only allow
the required communications. The policies include routing protocol of the traffic, legitimate workload traffic
or users, and the management of traffic from workloads’ or users’ requirements. Then, all traffic that has
been analyzed is reported to an external Syslog server in order to store connectivity information.

Table 4. The recommendation for security design
Decision on security design Realization of the design
Using zero trust as a model Treating all traffic as untrusted or unsecured without considering its direction or location but
complying with the requirement of the respondents to protect external elements (at the
perimeter) and internal elements (i.e., between container pods) [9], [19]
Inspecting all traffics [19] Attacking unauthorized personnel mitigation in accordance with the zero trust model [19]
Logging all traffic [19] Troubleshooting, analyzing, and/or forensic testing based on the zero trust model [19]

4. RESULTS AND DISCUSSION

The conformability of the proposed design with the technical requirements has been evaluated.
Table 5 shows that six requirements have been evaluated from the security or network perspectives.
Therequirement analysis is done to state the technical requirements as shown in Table 1. A lab simulation
was performed using a computer with a core 4 processor, x86, 500 GB disk capacity, 32 GB RAM, and a

A case analysis for Kubernetes network security of financial service industry in Indonesia ... (Nico Surantha)

3148 O3 ISSN: 2302-9285

network interface card (NIC) for network connectivity. Figure 3 shows the design of the logical network for
the lab simulation.

A vSphere ESXi is installed to run all the required components on the computer. As a virtual
machine in a VMware vSphere environment, a Kubernetes cluster with 2 worker nodes and 1 master node [3]
is installed by following the setup installation guide. To set up the NSX environment and components,
VMware’s installation guide is also followed along with Kubernetes nodes. A virtual router (CSR1Kv) is
incorporated into the environment to simulate the layers of three devices, which are the enterprise’s
checkpoint firewall appliances. To evaluate the design, the configurations following the proposed and
recommended design are made. The design was evaluated using the performed connectivity tests and the
design verifications. The results and the technical requirements are finally mapped, as presented in Table 1.
The design evaluation is summarized in Table 5.

Table 5. Summary of the design evaluation
Status (successful

Design

Technical specification Method . Description

category or failed)

Network Planning IP address to Producing several new Successful Large network address space should be
apply container networks namespaces in synchronized with the number of

Kubernetes clusters namespaces, and every new namespace
[21] is supplied with a /24 network.

Network Securing connectivity to Redistributing BGP Successful BGP to OSPF redistributions are

the existing IPv4 networks ~ routes into OSPF needed at the existing layers of three
networks devices that become checkpoints of
firewall appliances because the

container networks use BGP.

Network Ensuring only intended and ~ Conducting BGP Successful The BGP authentications should be
authentic routing authentication and configurated at the checkpoint firewall
information advertised in filtering out internal appliances. The internal route of
networks routes from being namespaces is only added manually

externally advertised into the lists of prefixes by denying the

[27] policy at the container’s perimeter (i.e.,
Tier-0) router and restricting it from
being broadcasted to the external
networks.

Security Preventing penetration Nmap port scanning of Successful A perimeter-based firewall is required
from external routes to the the container pods to inspect outgoing and incoming traffic
environment of the from the external from the container networks' external
application container network [29] routes.
network

Security Considering all of the Testing ICMP between Successful Allocating Kubernetes labels to every
traffic as unsecured and container pods in the instantiated pod is compulsory to apply
only allowing required same namespace and the firewall policy.
container communications network [21] Moreover, proper configuration and

documentation are needed for the
firewall policy.

Security Properly logging and Verifying the logging Successful External or third-party Syslog servers

recording traffic

of inspected traffic to a
Syslog serve

should store the firewall's logged traffic
inspection logs.

Modem + Switch

gateway: 192.168.31.1

Internet

'
| 13 14

|
1 Physical Computer

Management Network
192.168.31.0/24
(untagged)

Figure 3. Design of logical network for lab environment

Bulletin of Electr Eng & Inf, Vol. 12, No. 5, October 2023: 3142-3152

Bulletin of Electr Eng & Inf ISSN: 2302-9285 O 3149

The first step of proposed design evaluations is to ensure the advertised information in the networks
is only for the intended routing and authentic information. A new namespace is created to verify whether a
subnet is allocated from the pre-allocated prefix and justified its external and internal connectivity. The
external connectivity is verified using route redistribution, which refers to the virtual router of this setup and
is performed at the external router peer. Alternatively, it can be done through the checkpoint firewalls in the
enterprise’s environment. Moreover, BGP message digest 5 (MD5) authentication is deployed to confirm the
authenticity of the BGP peers and filter out certain internal namespace networks. Therefore, the BGP MD5
authentication is not acknowledged from the virtual router’s routing table. Figure 4 shows the BGP routing
table from the virtual router before the traffic filter.

The routing information from its peer is listed. The namespace’s subnet contains the 10.1.6.0/24
network in the Kubernetes cluster. Figure 4 presents that the route could be filtered out by using and mapping
the prefix lists to the outgoing interface at the BGP configuration of the Tier-0 (TO) router, supposing that the
subnet is only internal and does not need external connectivity [27]. The 10.1.6.0/24 route would be excluded
at the TO router after the prefix lists are mapped to the router. Figure 5 shows that the 10.1.6.0/24 could not
be found in the virtual router’s routing table. To sum up, the external BGP authentication and filtration of the
“internal” routes are successfully advertised.

root@k8s-masterl: ~ — ssh root@192.168.31.90 telnet 192.168.31.254

CSR1000v#show ip bgp summary

BGP router identifier 1.1.1.1, local AS number 65000

BGP table version is 252, main routing table version 252

9 network entries using 2232 bytes of memory

9 path entries using 1080 bytes of memory

3/3 BGP path/bestpath attribute entries using 744 bytes of memory
1 BGP AS-PATH entries using 24 bytes of memory

© BGP route-map cache entries using @ bytes of memory

© BGP filter-list cache entries using @ bytes of memory

BGP using 4080 total bytes of memory

BGP activity 37/28 prefixes, 38/29 paths, scan interval 6@ secs

Neighbor v AS MsgRcvd MsgSent TblVer InQ OutQ Up/Down State/PfxRcd
33.33.33.34 “ 65001 79 82 252) 9 01:04:21 (-]
CSR1@@dv#show ip bgp
BGP table version is 252, local router ID is 1.1.1.1
Status codes: s suppressed, d damped, h history, » valid, > best, i - internal,
RIB-failure, S Stale, m multipath, b backup-path, f RT-Filter

x best-external, a additional-path, ¢ RIB-compressed,
Origin codes: i - IGP, e - EGP, ? - incomplete
RPKI validation codes: V valid, I invalid, N Not found

"

Network Next Hop Metric LocPrf wWeight Path
« 1.1.1.1/32 0.0.0.0 L] 32768 i
« 7.7.7.7/32 9.9.0.0 e 32768 ?
*> 10.0.99.0/24 33.33.33.34 0 65001 ?
*> 10.1.3.0/24 33.33.33.34 @ 65001 ?
*> 10.1.4.0/24 33.33.33.34 @ 65001 ?
*> 10.1.5.0/24 33.33.33.34 0 65001 ?
*> 10.1.6.9/24 33.33.33.34 @ 65001 ?
> 172.16.0.0/24 33.33.33.34 @ 65001 ?
*> 192.168.31.0 0.0.0.0) 32768 ?
CSR1000v#

Figure 4. Screenshot of BGP routing table from virtual router prior to traffic filter

k8s-masterl: ~ — ssh root@192.168.31.90 telnet 192.168.31.254 t

CSR1eeav#sh ip bgp

BGP table version is 23, local router ID is 1.1.1.1

Status codes: s suppressed, d damped, h history, % wvalid, > best, i - internal,
r RIB-failure, S Stale, m multipath, b backup-path, f RT-Filter,
% best-external, a additienal-path, ¢ RIB-compressed,

Origin codes: i - IGP, e - EGP, ? - incomplete

RPKI validation codes: V valid, I inwvalid, N Not found

Metwork Mext Hop Metriec LocPrf Weight Path
#> 1.1.1.1/32 8.0.0.9 -] 32768 1
*> 7.7.7.7/32 B.8.8.8] 32768 7
*> 10.0.99.0/24 33.33.33.34 @ 65881 ?
*> 18.1.3.0/24 33.33.33.34 @ 65001 ?
*> 18.1.4.0/24 33.33.33.34 @ 65001 ?
*> 18.1.5.0/24 33.33.33.34 @ 65001 ?
*> 172.16.0.8/24 33.33.33.34 8 65881 ?
*> 192.168,31.0 0.9.0.9 @ 32768 ?

CSR1e@ev#show ip route 19.1.6.1
% Subnet not in table
CSRIBOOVH

Figure 5. Screenshot of BGP routing table from route after traffic filter

A case analysis for Kubernetes network security of financial service industry in Indonesia ... (Nico Surantha)

3150 O3 ISSN: 2302-9285

The second step is the penetration test of the design from the external route to the application of the
container network environment. To simulate a reconnaissance attack on the container pods, a port scanning is
performed with the Nmap tool, initiated from the outside of Kubernetes’ network. The perimeter firewall
policy is configured according to the zero-trust model. All of the traffic is denied by default and allows only
web traffic, internet control message protocol (ICMP), and BGP communication traffic for testing purposes.

Figure 6 signifies that the Nmap scan result is shown in four pods: 1 pod runs MYSQL service with
the IP address of 10.1.5.1, and 3 pods run the NGINX service with TCP 80 port opened. The port of MYSQL
pod is opened at TCP 3306. Nonetheless, it results in closed and unidentified status. Since the TCP 3306 port
communication or the MYSQL service is not allowed by the policy, such a testing result is expected.
Meanwhile, the MYSQL pod in the actual scenario would not be attained or allowed from any external
networks because the MYSQL pod should be for the internal route only. Moreover, the MYSQL pod is
reachable because ICMP communication traffic from the external route to the pod’s network is only allowed
for testing purposes.

®

root@kali:~# nmap -sV -p 8-65535 10.1.5.8/24
Starting Mmap 7.7@ (https://nmap.ocrg)

Nmap scan repert for 18.1.5.1

Host is up (©.8812s5 latency).

All 655346 scanned ports on 18.1.5.1 are filtered

Nmap scan report for 18.1.5.2
Host is up (©.8823s latencyl).
Mot shown: 465535 filtered ports
FORT STATE SERVICE VERSION
B8/tcp closed http

Mmap scan report for 18.1.5.3
Host is up (@.0026s latency).

Mot shown: 65535 filtered ports
PORT STATE SERVICE VERSION
Ba/tcp open http nginx 1.9.11

Nmap scan report for 10.1.5.4
Host is up (0.@826s latency).

Mot shown: 45535 filtered ports
PORT STATE SERVICE VERSION
B@/tcp open http nginx 1.9.11

Nmap scan report for 16.1.5.5
Host is up (©.00825s latency).

Mot shown: 45535 filtered ports
PORT STATE SERVICE VERSION

B8 /tcp open http nginx 1.%.11

Service detection performed. Please report any incorrect results at https://nmap.org/submit/ .
Nmap done: 256 IP addresses (5 hosts wp) scanned in 337.77 seconds
root@Pkali:~#

Figure 6. Screenshot of port scanning from external to container network

The third step is to evaluate the conformability of the proposed design to the other four technical
requirements. Table 5 summarizes all of the evaluation results, which provide a better perspective of this
particular work. To evaluate the internal network security, the label assignment to the pods verifies the
container’s pod-to-pod communication. Although the two pods are in the same network segment and
namespace, the ICMP test traffic can be inspected and denied due to undefined communication in the
distributed internal firewall’s policy. The default firewall policy is configured to deny all traffic in the zero
trust policy. In other words, communication would not be permitted without permission from the firewall
policy. The traffic inspection was implemented by Kubernetes label that identifies the pods of incoming
traffic to logical switch in the NSX networking. The policy only allows a legitimate pod-to-pod
communication traffic so that the built-in internal firewall is identified and inspected. By default, pods could
not communicate with another pod since they are not allowed and denied. Then, the logs of the inspected
traffic are forwarded to an external Syslog server, and the ejected logs by the firewall are displayed.

Bulletin of Electr Eng & Inf, Vol. 12, No. 5, October 2023: 3142-3152

Bulletin of Electr Eng & Inf ISSN: 2302-9285 g 3151

5. CONCLUSION

A simulation of the design was built to evaluate the secure network design and validate network
security following the zero trust model. To ensure proper implementation of firewall policy at the perimeter,
penetration testing of network security, such as external network scanning and route hijacking, was
conducted. The results show that the network is not penetrated. To examine the internal security, the internal
traffic was identified using Kubernetes’ labels, which allow the internal security to flow in the environment.
The default has restricted non-legitimate or unidentified traffic. All of the traffic is examined by the firewall
so that the traffics are logged to an external Syslog server to store the connectivity information. Then, the
traffics could be repurposed for troubleshooting, forensics, and analysis. For future work, several aspects
could be considered to improve the design. First, the role-based access controls could be implemented to
provide strict control and the least privilege for authorized users. Second, identity management systems could
be applied by unauthorized users and the next possible security-related users and would prevent unauthorized
access.

REFERENCES

[1] S. P and N. G. Cholli, “An analysis of software aging in cloud environment,” International Journal of Electrical and Computer
Engineering (IJECE), vol. 10, no. 6, pp. 5985-5991, Dec. 2020, doi: 10.11591/ijece.v10i6.pp5985-5991.

[2] C. Pahl, “Containerization and the PaaS Cloud,” IEEE Cloud Computing, vol. 2, no. 3, pp. 24-31, May 2015, doi:
10.1109/mcc.2015.51.

[3] K. Hightower, B. Burns, and J. Beda, Kubernetes: Up and Running: Dive into the Future of Infrastructure, 1st edition.
Sebastopol, CA: O’Reilly Media, 2017.

[4] F. Rossi, V. Cardellini, and F. L. Presti, “Hierarchical Scaling of Microservices in Kubernetes,” in 2020 IEEE International
Conference on Autonomic Computing and Self-Organizing Systems (ACSOS), pp. 28-37, Aug. 2020, doi:
10.1109/acs0s49614.2020.00023.

[5] L. A. Vayghan, M. A. Saied, M. Toeroe, and F. Khendek, “Microservice Based Architecture: Towards High-Availability for
Stateful Applications with Kubernetes,” in 2019 IEEE 19th International Conference on Software Quality, Reliability and
Security (QRS), pp. 176-185, Jul. 2019, doi: 10.1109/qrs.2019.00034.

[6] A. A. Khaleq and 1. Ra, “Agnostic Approach for Microservices Autoscaling in Cloud Applications,” in 2019 International
Conference on Computational Science and Computational Intelligence (CSCI), pp. 1411-1415, Dec. 2019, doi:
10.1109/csci49370.2019.00264.

[71 N. Mateus-Coelho, M. Cruz-Cunha, and L. G. Ferreira, “Security in Microservices Architectures,” Procedia Computer Science,
vol. 181, pp. 1225-1236, 2021, doi: 10.1016/j.procs.2021.01.320.

[8] J. Becker, “Trust No One: A Gap Analysis of Moving IP-Based Network Perimeters to A Zero Trust Network Architecture |
SANS Institute,” Global Information Assurance Certification Paper, pp. 1-23, 2017.

[9] J. Kindervag, “No More Chewy Centers: The Zero Trust Model of Information Security,” Forrester, 2016. [Online]. Available:
https://www.forrester.com/report/No-More-Chewy-Centers-The-Zero-Trust-Model-Of-Information-Security/RES56682

[10] Y. Tao, Z. Lei, and P. Ruxiang, “Fine-Grained Big Data Security Method Based on Zero Trust Model,” in 2018 IEEE 24th
International Conference on Parallel and Distributed Systems (ICPADS), pp. 1040-1045, Dec. 2018, doi:
10.1109/padsw.2018.8644614.

[11] M. Samaniego and R. Deters, “Zero-Trust Hierarchical Management in IoT,” in 2018 IEEE International Congress on Internet of
Things (ICIOT), Jul. 2018, doi: 10.1109/iciot.2018.00019.

[12] 1. Ahmed, T. Nahar, S. S. Urmi, and K. A. Taher, “Protection of Sensitive Data in Zero Trust Model,” in Proceedings of the
International Conference on Computing Advancements, Jan. 2020, doi: 10.1145/3377049.3377114.

[13] A. Alagappan, S. K. Venkatachary, and L. J. B. Andrews, “Augmenting Zero Trust Network Architecture to enhance security in
virtual power plants,” Energy Reports, vol. 8, pp. 1309-1320, Nov. 2022, doi: 10.1016/j.egyr.2021.11.272.

[14] S. Mehraj and M. T. Banday, “Establishing a Zero Trust Strategy in Cloud Computing Environment,” in 2020 International
Conference on Computer Communication and Informatics (ICCCI), pp. 1-5, Jan. 2020, doi: 10.1109/iccci48352.2020.9104214.

[15] D. D’Silva and D. D. Ambawade, “Building A Zero Trust Architecture Using Kubernetes,” in 2021 6th International Conference
for Convergence in Technology (I12CT), Apr. 2021, doi: 10.1109/i2ct51068.2021.9418203.

[16] N. Surantha and F. Ivan, “Secure Kubernetes Networking Design Based on Zero Trust Model: A Case Study of Financial Service
Enterprise in Indonesia,” in Innovative Mobile and Internet Services in Ubiquitous Computing, Springer International Publishing,
2019, pp. 348-361, doi: 10.1007/978-3-030-22263-5_34.

[17] P. S. S. P, S. V. Soudri, R. K. P, and S. Bailuguttu, “Enhancement of observability using Kubernetes operator,” Indonesian
Journal of Electrical Engineering and Computer Science, vol. 25, no. 1, pp. 496-503, Jan. 2022, doi:
10.11591/ijeecs.v25.i1.pp496-503.

[18] M. Elkholy and M. A. Marzok, “Light weight serverless computing at fog nodes for internet of things systems,” Indonesian
Journal of Electrical Engineering and Computer Science, vol. 26, no. 1, pp. 394-403, Apr. 2022, doi:
10.11591/ijeecs.v26.i1.pp394-403.

[19] V. Sucasas et al., “A privacy-enhanced OAuth 2.0 based protocol for Smart City mobile applications,” Computers
&\mathsemicolon Security, vol. 74, pp. 258-274, May 2018, doi: 10.1016/j.cose.2018.01.014.

[20] L. A. Vayghan, M. A. Saied, M. Toeroe, and F. Khendek, “Deploying Microservice Based Applications with Kubernetes:
Experiments and Lessons Learned,” in 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 970-973,
Jul. 2018. doi: 10.1109/cloud.2018.00148.

[21] “IBM X-Force Threat Intelligence Index 2017,” Security Intelligence, Mar. 29, 2017. [Online]. Available:
https://securityintelligence.com/ibm-x-force-threat-intelligence-index-2017/ (accessed Mar. 09, 2023).

[22] T. Chuan, Y. Lv, Z. Qi, L. Xie, and W. Guo, “An Implementation Method of Zero-trust Architecture,” Journal of Physics:
Conference Series, vol. 1651, no. 1, pp. 1-6, Nov. 2020, doi: 10.1088/1742-6596/1651/1/012010.

[23] P. Oppenheimer, Top-Down Network Design, 3rd Edition, 3rd ed. Cisco Press, 2010. [Online]. Available:
http://www.teraits.com/pitagoras/marcio/gpi/b_POppenheimer_TopDownNetworkDesign_3rd_ed.pdf Accessed: Mar. 09, 2023.

A case analysis for Kubernetes network security of financial service industry in Indonesia ... (Nico Surantha)

3152

a ISSN: 2302-9285

[24] 1. Gross, I. Ganga, and T. Sridhar, “Geneve: Generic Network Virtualization Encapsulation,” RFC Editor, Nov. 2020. doi:
10.17487/rfc8926.

[25] A. Gangil, J. Shen, D. Han, S. Orlando, S. Chaitanya, Y. Fauser, G. Kotton, Translating PAAS/CAAS abstractions to logical
network topologies, US20180375728, 2018. [Online]. Auvailable:
https://patentscope.wipo.int/search/en/detail.jsf?docld=US235228914&tab=NATIONALBIBLIO. accessed: Mar 30, 2023.

[26] P. Lapukhov, A. Premji, and J. Mitchell, “Use of BGP for Routing in Large-Scale Data Centers,” RFC Editor, Aug. 2016, doi:
10.17487/rfc7938.

[27 J. Stuppi, G. Schudel, T. Sammut, Protecting Border Gateway Protocol for the Enterprise, Cisco Secure (n.d.). [Online].
Available: https://tools.cisco.com/security/center/resources/protecting_border_gateway_protocol. accessed: Mar 30, 2023.

[28] M. E. Whitman and H. J. Mattord, Principles of Information Security, 4th edition. Boston, MA: Cengage Learning, 2011.

[29] P. Engebretson, The Basics of Hacking and Penetration Testing: Ethical Hacking and Penetration Testing Made Easy, 2nd
edition. Amsterdam Boston: Syngress, 2013.

BIOGRAPHIES OF AUTHORS

Nico Surantha © Ed B © (Member, IEEE) received the B.Eng. and M.Eng. degrees from
the Institut Teknologi Bandung, Indonesia, in 2007 and 2009, respectively, and the Ph.D.
degree from the Kyushu Institute of Technology, Japan, in 2013. He currently works as a full-
time Lecturer with the Department of Electrical, Electronic and Communication Engineering,
Tokyo City University, Japan. He is also a lecturer at the Department of Computer Science,
BINUS Graduate Program, Bina Nusantara University, Indonesia. His research interests
include ubiquitous computing, intelligent systems, the internet of things, health monitoring,
and system on chip. He can be contacted at email: nico.surantha@binus.ac.id.

Felix Ivan Bl 12 received the bachelor’s degree from the Department of Computer
Science, Bina Nusantara University, Jakarta, in 2010. Received Master degree with the
Department of Computer Science, BINUS Graduate Program—Master of Computer Science,
Jakarta, in 2016. His research interests include cloud computing, network security and
network design. He can be contacted at email: felix.ivan@binus.ac.id.

Ritchie Chandra k4 12 received the bachelor’s degree from the Department of
Computer Science, Bina Nusantara University, Jakarta, in 2018. He is currently pursuing the
degree with the Computer Science Department, BINUS Graduate Program—Master of
Computer Science. His research interests include health monitoring and the internet of things.
He can be contacted at email: ritchie.chandra@binus.ac.id.

Bulletin of Electr Eng & Inf, Vol. 12, No. 5, October 2023: 3142-3152

https://patentscope.wipo.int/search/en/detail.jsf?docId=US235228914&tab=NATIONALBIBLIO.
https://tools.cisco.com/security/center/resources/protecting_border_gateway_protocol.
https://orcid.org/0000-0002-7500-3199
https://scholar.google.co.jp/citations?user=rMaJdXYAAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=37119419800
https://researcherid.com/rid/AAB-8181-2021
https://orcid.org/0009-0003-3646-9599
https://orcid.org/0009-0002-5299-8856

