
Bulletin of Electrical Engineering and Informatics

Vol. 12, No. 5, October 2023, pp. 3142~3152

ISSN: 2302-9285, DOI: 10.11591/eei.v12i5.4240  3142

Journal homepage: http://beei.org

A case analysis for Kubernetes network security of financial

service industry in Indonesia using zero trust model

Nico Surantha1,2, Felix Ivan1, Ritchie Chandra1
1BINUS Graduate Program-Master of Computer Science, Bina Nusantara University, Jakarta, Indonesia

2Department of Electrical, Electronic, and Communication Engineering, Faculty of Engineering, Tokyo City University, Tokyo, Japan

Article Info ABSTRACT

Article history:

Received Jun 12, 2022

Revised Dec 16, 2022

Accepted Feb 3, 2023

 In this study, a case analysis of Kubernetes application in an enterprise

providing financial services in Indonesia is presented. It is implemented to

improve their digital services-based application, developed using micro-

services architecture. Kubernetes, an application container technology, has

been applied in the enterprise providing financial services in Indonesia to

improve their digital services-based application, developed using micro-

services architecture concepts. Without incorporating any additional

hardware, the new technology and services have been adopted to existing

virtualized resources of the enterprise. An infrastructure design for secure

Kubernetes networking was built and has been studied using the data center

provided by the enterprise. This study focuses on two important aspects:

network and security. As a security guideline, the network recommendations

from VMware, Cisco, and Forrester’s zero trust model were employed to

design the infrastructure and were evaluated. The proposed secure network

infrastructure design is successfully applied in the container networks using

the zero trust requirement, the enterprise’s requirements, and constraints.

And we hope this study about network design security can be used and

adaptable with existing network and reduce risk and disruption to the

business caused by the network.

Keywords:

Kubernetes

Micro-services

Network security

Zero trust model

This is an open access article under the CC BY-SA license.

Corresponding Author:

Ritchie Chandra

BINUS Graduate Program-Master of Computer Science, Bina Nusantara University

Jakarta, Indonesia

Email: ritchie.chandra@binus.ac.id

1. INTRODUCTION

Infrastructure is required to develop and operate an application with micro-service architecture. As

an application, the micro-services are expected to work together to provide a larger function of services in

which the connectivity between the services becomes critical. To ensure the communication of each service,

a reliable network is needed. Security acts to protect the services by validating and mitigating these services

from being compromised or attacked. Virtualization is one of the infrastructure technologies that is

commonly used by enterprises to host applications, including services. Alternatively, the enterprises could be

benefited by applying container technology resulting in immutable and agile services. Explain software aging

in cloud computing, software aging is in the operation software systems will be accumulate errors to system

failure and other hazardous consequences [1]. Software aging can be happening because memory

fragmentation, resource consumption in large scale and accumulation of errors happen in system.

One of the Indonesian financial service enterprises has deployed application container technology as

infrastructure technology. An IT security head explains that his enterprise as well as many other enterprises are

striving to be more competitive in their field. Reliable technology infrastructure enables his enterprise to

https://creativecommons.org/licenses/by-sa/4.0/

3143 Bulletin of Electr Eng & Inf ISSN: 2302-9285 

A case analysis for Kubernetes network security of financial service industry in Indonesia … (Nico Surantha)

provide significant improvement, such as shortening the product-development cycles. Moreover,

troubleshooting and manual setting of the configuration changes would require less time. The respondent also

focuses on important aspects of infrastructure, such as network and security. His concern raises two major

questions: i) “how to run applications on Kubernetes container technology?” and ii) “how to address the

network and security aspects in their highly virtualized data center?”. Using hypervisors, most of the

enterprises’ applications are run virtually while the dynamic routing protocol is used to route the access to the

applications in a physical network device by the open shortest path first (OSPF). A firewall to inspect outgoing

and incoming traffic is deployed to implement security at the perimeter. In this case study, Kubernetes acted as

leverage only in the farm segment of the enterprise’s internal server, instead of the entire network segment.

According to Pahl [2], the container could be activated via a requirement to deploy an application on

distributed cloud platforms because many enterprises have adopted Kubernetes to run their applications.

Kubernetes along with Docker is a standard platform for a cloud-based service [3]. Moreover, Pahl discusses

the relevance of containers with virtualization technology. The relevance is laid on the requirement of

containers for advanced networking features based on network virtualization like routing [2]. To manage

applications on a microservice basis, Kubernetes allows the creation of multiple Horizontal Pod Autoscaler

instances adapts to a single microservice deployment, and proposes me-Kube (multi-level elastic

Kubernetes), referring to a Kubernetes extension that introduces a hierarchical architecture to control the

elasticity of application-based microservices [4]. Containers are characterized by having the ephemeral state

and aspects of a stateful microservice, which create a more complex array previously created by Kubernetes

controllers [5]. The development of microservice architecture-based cloud applications presents a variety of

challenges; one of them is scalability at the container level. A study shows that an algorithm uses an agnostic

approach to auto-scale microservices which are implemented in Google Kubernetes Engine [6].

Microservices in software development arise when a business department finds risk in a product and starts

asking questions; an example of the migration from monolithic to microservices took place in 2010 when

Netflix started using Amazon`s Web Services (AWS) to host applications and services with over 100

fine-grained services instead of web applications, also known as or war [7].

Since the new threats using techniques to bypass perimeter-based protections emerge, John Becker

highlights the significance of the Forrester® zero trust model and explains the vulnerability of IP-based

network perimeter [8]. An American market research company, Forrester®, proposes the zero trust model

stipulating that all networks should be classified as untrusted, and all traffic must be logged and inspected

without considering its location; these strategies will lead to the use of least privilege strategies and enforce

strict access control [9]. Zero trust model can be used to secure and protect the big data environment as well

as solve a problem in big data security [10]. A zero trust management model for internet of things (IoT) can

guarantee the validation and participation of the credentials and configurations of every resource of the

infrastructure in the network [11]. A study proposes a model that is applicable to protect various data adopted

from the zero trust model and present new techniques based on the zero trust model to secure the data [12].

The implementation of zero trust for the energy sector could reduce the risks, secure the systems,

and protect the data of zero trust security architecture [13]. The authors have developed cyber security and

combined the zero trust model with cloud computing because zero trust schemes in cloud computing should

be integrated and combined with practices, policies, and technologies; thus, cyber security could become

workable [14]. The combination of the zero trust model and Kubernetes can protect infrastructure from

attackers who threaten the data of enterprises or organizations [15].

Plenty of security aspects and container systems are still necessarily explored. This study provides a

novel network design by developing secure Kubernetes based on container technology. This development is

expected to serve several recommendations for the enterprise. The vendors’ best practices, such as the

network virtualization technology of VMware and Cisco, were reviewed and adopted as a part of our design.

The zero trust model of Forrester® was also outlined as the security guideline. To validate the proposed

design, a lab simulation was deployed to explore the ability of the design to fulfill the enterprises’

requirements. This paper is an extended version of the work of [16].

2. PROBLEM STATEMENT AND PRELIMINARIES

2.1. Kubernetes container system

Kubernetes is used over the years to suffice the needs and the capability efficiently and using

Kubernetes to expose HTTP endpoints for metrics as it is simpler and most used [17]. Proposed work to

move high computational power near IoT sensors with fog serverless framework (FSF) and using Kubernetes

to form an interface with Kubernetes cluster which manage a set of Docker container [18]. Each of the

Kubernetes clusters has one or more worker nodes and masters [3] because the namespaces of each cluster

enable the isolation of networks and environments. Meanwhile, different environments, such as development

and production, can be segmented to have their network segment in traditional physical networks. In

3144  ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 12, No. 5, October 2023: 3142-3152

Kubernetes, similar levels of segmentation possibly use a namespace. Kubernetes et al. [3] define a pod as

the smallest entity in the Kubernetes cluster. The container pod is allocated with its internet protocol (IP)

address, which is comparable to the endpoints, such as a real machine in the physical network environment.

A network gateway or router is required for the container pods in a namespace. Thus, the external network is

accessible to external networks or other namespaces. The containers run within pods in Kubernetes.

Nonetheless, Kubernetes does not manage the containers within a pod because it only manages the pods.

Through the master node, Kubernetes could expand or shrink the number of pods [3]. The pod’s probability

of compromising would increase as the number of pods increases. The zero trust model is implemented at the

network level to mitigate the risk of compromising, internal attacks, and external attacks as well as ultimately

avoid disruption to the business environment [9].

2.2. Zero trust model-based information security

There are no trusted and untrusted-internal or external networks in the zero trust model [9].

Inspection and logging should be performed on all traffic since the traffic is categorized as untrusted.

According to Forrester®, the perimeter-based network security insufficiently protects the networks and is

labeled as internal or trusted to perimeter-based protection [9]. The virtual local area network (VLAN), which

performs network segmentation, is not categorized as a network security method since it cannot prevent any

traffic to move between VLANs and cannot gain access to critical systems in different VLANs [19].

The architecture that deploys microservice applications employs Kubernetes in the private cloud and

high availability of Kubernetes for application-based microservices [20]. As a comparison, the 2017 IBM

X-Force report has also been studied. The results of investigating global threat intelligence and deep security

could provide enhanced security solutions. The report states that in 2016, 58% of the attacks in the financial

service sector is from insiders while 53% of these attacks are not noticed by any employees [21]. The study

on Forrester® and the 2017 IBM X-Force report provide a strong motivation to more comprehensively

implement the zero trust model in the network. Meanwhile, adopts the zero trust model in intranet data to

secure the authentication when users want to access intranet data [22]. This method or architecture can more

effectively protect network communication.

3. THE PROPOSED METHOD DESIGN OF NETWORK AND SECURITY

This study employed a top-down design approach [23] to design the network. High-level staff, such

as the Head of the Department, were targeted from the financial service enterprises in Indonesia to

understand the business constraints and goals. Meanwhile, the manager-level staff contributed to give

knowledge on the technical goals and limitations to produce a proposed design. Then, the lab environment

was built to ensure that all technical requirements had been achieved. The requirements were based on the

enterprises’ business requirements to collect the technical requirements. The container network connectivity

from and to existing external physical networks was tested by dynamic-routing protocols to conduct route

redistribution. By default, all of the traffics were considered unsecured or untrusted, unless they had been

stated. In other words, the network security was configured to only allow intended traffic between containers.

In detail, the plan, design, implement, operate, and optimize (PDIOO) network life-cycle was

adopted [23] to design a secure network. As shown by Figure 1, the methods were classified into three major

steps: i) collecting requirements, ii) designing a network, and iii) evaluating the design. The results of this

analysis are as follows.

3.1. First stage: requirement gathering

The process of requirement gathering contains several steps, such as defining business goals,

translating the business goals into technical constraints and goals, and ultimately evaluating the currently

existing network. The outputs of every process are outlined. The analysis focuses on both business and

technical aspects. XYZ Bank’s current network topology and configuration is required, to understand how

the container networks shall be integrated into the existing networks.

3.1.1. Business goals

The IT security head expects shorter product development cycles because the released cycle could

be adjusted to the business requirement. To mitigate problems, a new secure network design should be able

to solve inconsistent policies and causes of misconfigurations. The network and security design should

leverage the dedicated technology for the container system, instead of using hardware-based technology. To

accommodate such a request, the containers should run with a consistent scale that is parallel to its host and

prefers network virtualization.

3145 Bulletin of Electr Eng & Inf ISSN: 2302-9285 

A case analysis for Kubernetes network security of financial service industry in Indonesia … (Nico Surantha)

Figure 1. Research method

3.1.2. Technical goals

The technical team was interviewed to technically translate the goals by seeking their expectations

and technical perspectives. The technical goals provided by the network team are i) aligning with the existing

IP address schemes, ii) redistributing authentic and intended routing information through a routing protocol,

and iii) preventing reconnaissance attacks (e.g., port scanning) and network-based attacks (e.g., route

hijacking). Hence, internal network communications could be protected. The translation from business goals

to technical goals is outlined in Table 1.

Table 1. The mapping of the business goals into technical goals
Available business goals Translation of technical goals

Shortening life-cycles of the product
development

Planning IP address for containerized application networks
Ensuring the connectivity to the existing IPv4 networks

Mitigating problems due to security and

network (e.g., misconfigurations and
inconsistent policies)

Protecting the internal container-to-container communications

Ensuring only intended and authentic-routing information advertised in the networks
Implementing network security to combat network-based attacks, including

reconnaissance-based and route hijacking attacks.

Modernizing container technology-
specific technologies

Protecting the internal communications between containers

Implementing network security to prevent network-based attacks, such as route

hijacking and reconnaissance-based attacks

Properly recording traffic

3.1.3. Technical constraints

The IT security head expects a conformable design with the existing data center environment of the

enterprise without additional hardware. Hence, VMware’s virtualization is deployed to virtualize the

infrastructure, while any required virtual network components can be supported by the available hardware

resources. The network team is also put in another constraint because the OSPF must be used in its networks

as a dynamic routing protocol to avoid any configuration changes that might impact the existing systems; for

example, changing routing protocols or migrating network gateways. All of the prerequisites for

configuration changes are provided in Table 2.

3146  ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 12, No. 5, October 2023: 3142-3152

Table 2. Necessary requirements prior to configuration change
Pre-requisite design decision Realization of design

Minimal having three different port groups in the
VDS in the form of overlay, management, and data

Traffic differentiation and routing among physical servers in
physical networks

Reusing the existing subnets and VLAN ID of the

management network

Aligning the security policy of XYZ Bank and putting the

management IP address of all components under the out-of-band
subnet

Provisioning a new overlay traffic network Traversing devices and links to increase the MTU size by 1580

bytes or above ue to the additional 80 bytes of payload in the
original packet by overlay

Provisioning a new network for external traffic data

path

Isolating the high-security risk of rating in- and outgoing traffic of

the container networks from management and overlay’s network

3.2. Second stage: proposed design of network

This section discusses the network design while the next section discusses the security design. In

this study, all of the required components of the design are virtual-based to avoid any additional hardware.

Additional configuration changes are still required to implement the design in the existing devices.

To set up a lab simulation for designing the study, the minimum requirements defined in the

Kubernetes documentation [3] are used since the size and number of workloads performing in a Kubernetes

cluster are unique for each enterprise. Kubernetes pods use the application programming interface (API) server

in master to worker nodes within the cluster because each Kubernetes cluster ran with one worker and one

master node [3]. Configuration changes are required when installing the underlying equipment. For example,

the addition of VLAN and IP addressing network and the increase of maximum transmit unit (MTU) size are

needed to add the IP packet header of the overlay network since generic network virtualization encapsulation

(GENEVE) [24] is used to overlay encapsulation. Table 2 summarizes the configuration changes for the

design recommendations, which relate to the design of the existing logical network.

Figure 2 depicts that the setup of the logical container network is outlined and a high-level

visualization of the network design is provided. Through VMware’s NSX [21], each namespace in the cluster

provides a logical switch, and a Tier-1 router is constructed. Before being connected to the external virtual

router, the namespaces are routed and aggregated to a Tier-0 router [21]. To set up the logical network as

shown in Figure 2, several steps are followed, such as making a design decision based on the IP address

planning as well as routing the protocol option and security considerations. Table 3 summarizes

recommendations for the logical network design.

Figure 2. Proposed design of logical network

3147 Bulletin of Electr Eng & Inf ISSN: 2302-9285 

A case analysis for Kubernetes network security of financial service industry in Indonesia … (Nico Surantha)

Table 3. The recommendation for logical network design
Logical network design decisions Realization of the design

Pre-allocating the 16 prefixes of network
address spaces for the container

environment

256 subnets are reserved for new namespaces.

Providing at least one logical switch for
each namespace [25]

Ensuring pod-to-pod network connectivity [25]

Using BGP as the protocol for dynamic

routing [26]
Proving dynamic routing protocols for >100,000

endpoints to deploy large-scale data centers [26]
Enabling authentication of a routing

protocol between routing peers [27]
Avoid unauthorized access or/and routing information

tampers and attacks, such as route hijacking

Enabling route filtering for containers of
internal networks [27]

Not advertising container networks without access from or
to external networks outside the domain of BGP routing

Enterprise probably has various space availability allocations of network addresses. It is

recommended to allocate a large prefix per cluster to aid the subnet assignment for each newly created

namespace. Using this setup, a prefix allocation of/16 becomes a sample instead of a definitive requirement.

Moreover, 256 namespaces could be served in a Kubernetes cluster, and 254 pods could be instantiated for

each namespace. The modification of prefix and subnet allocations could be performed when required.

Container podscouldbe dramaticallycompared to virtual or physical machines since the container

pods could be easily escalated. To accommodate the dynamic networking behavior, a scalable dynamic

routing protocol is preferred. Border gateway protocol (BGP), as a proven dynamic routing protocol, is

reported in IETF RFC 7938, supporting “large-scale” data centers with over 100,000 servers [26]. In the

design, the container pods are assumed as endpoints, which are similar to traditional servers and have their

unique IP address. Kubernetes could be considered “large-scale” since it supports >100,000 pods within a

cluster. Cisco suggests that the security mechanism of BGP in an enterprise environment (e.g., filtering and

routing protocol authentication) could diminish the risks of attacks from the router’s perspective, such as

route hijacking [27]. To reduce risks from reconnaissance attacks, the routes (i.e., internal pods or namespace

networking) are not necessarily and externally advertised because they can be filtered out at the Tier-0 router.

3.3. Third stage: proposed design of network security

The zero trust model considers that all traffic is untrusted or unsecured [9], [19]. The inspection is

required, and the traffic is only allowed when needed, for example when the application or service requires

the traffic to function properly [9], [19]. Moreover, all traffic could be denied by default and only allow a

required or legitimate traffic communication.

The network security recommendations based on the zero trust model are summarized in Table 4. To

inspect network traffic, the firewall could be deployed [28]. The incoming traffic from or to external

networks could be inspected and protected by the perimeter-based firewall [9]. The firewall must be able to

recognize the incoming traffic from the pods to execute the internal firewall at the container pod level. To

map the pods as security objects in the firewall, Kubernetes’ label is utilized as an identifier [21], and the

label is assigned using Kubernetes API-server to the pods after or while the pods are instantiated [3], [21].

The firewall policies should have been configured and defined before the pod labeling process to protect and

inspect the incoming traffic from pods [21]. The firewall policies deny all traffic by default and only allow

the required communications. The policies include routing protocol of the traffic, legitimate workload traffic

or users, and the management of traffic from workloads’ or users’ requirements. Then, all traffic that has

been analyzed is reported to an external Syslog server in order to store connectivity information.

Table 4. The recommendation for security design
Decision on security design Realization of the design

Using zero trust as a model Treating all traffic as untrusted or unsecured without considering its direction or location but
complying with the requirement of the respondents to protect external elements (at the

perimeter) and internal elements (i.e., between container pods) [9], [19]
Inspecting all traffics [19] Attacking unauthorized personnel mitigation in accordance with the zero trust model [19]

Logging all traffic [19] Troubleshooting, analyzing, and/or forensic testing based on the zero trust model [19]

4. RESULTS AND DISCUSSION

The conformability of the proposed design with the technical requirements has been evaluated.

Table 5 shows that six requirements have been evaluated from the security or network perspectives.

Therequirement analysis is done to state the technical requirements as shown in Table 1. A lab simulation

was performed using a computer with a core 4 processor, x86, 500 GB disk capacity, 32 GB RAM, and a

3148  ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 12, No. 5, October 2023: 3142-3152

network interface card (NIC) for network connectivity. Figure 3 shows the design of the logical network for

the lab simulation.

A vSphere ESXi is installed to run all the required components on the computer. As a virtual

machine in a VMware vSphere environment, a Kubernetes cluster with 2 worker nodes and 1 master node [3]

is installed by following the setup installation guide. To set up the NSX environment and components,

VMware’s installation guide is also followed along with Kubernetes nodes. A virtual router (CSR1Kv) is

incorporated into the environment to simulate the layers of three devices, which are the enterprise’s

checkpoint firewall appliances. To evaluate the design, the configurations following the proposed and

recommended design are made. The design was evaluated using the performed connectivity tests and the

design verifications. The results and the technical requirements are finally mapped, as presented in Table 1.

The design evaluation is summarized in Table 5.

Table 5. Summary of the design evaluation
Design

category
Technical specification Method

Status (successful

or failed)
Description

Network Planning IP address to

apply container networks

Producing several new

namespaces in
Kubernetes clusters

[21]

Successful Large network address space should be

synchronized with the number of
namespaces, and every new namespace

is supplied with a /24 network.

Network Securing connectivity to
the existing IPv4 networks

Redistributing BGP
routes into OSPF

networks

Successful BGP to OSPF redistributions are
needed at the existing layers of three

devices that become checkpoints of
firewall appliances because the

container networks use BGP.

Network Ensuring only intended and
authentic routing

information advertised in

networks

Conducting BGP
authentication and

filtering out internal

routes from being
externally advertised

[27]

Successful The BGP authentications should be
configurated at the checkpoint firewall

appliances. The internal route of

namespaces is only added manually
into the lists of prefixes by denying the

policy at the container’s perimeter (i.e.,

Tier-0) router and restricting it from
being broadcasted to the external

networks.

Security Preventing penetration
from external routes to the

environment of the

application container
network

Nmap port scanning of
the container pods

from the external

network [29]

Successful A perimeter-based firewall is required
to inspect outgoing and incoming traffic

from the container networks' external

routes.

Security Considering all of the

traffic as unsecured and
only allowing required

container communications

Testing ICMP between

container pods in the
same namespace and

network [21]

Successful Allocating Kubernetes labels to every

instantiated pod is compulsory to apply
the firewall policy.

Moreover, proper configuration and

documentation are needed for the
firewall policy.

Security Properly logging and

recording traffic

Verifying the logging

of inspected traffic to a
Syslog serve

Successful External or third-party Syslog servers

should store the firewall's logged traffic
inspection logs.

Figure 3. Design of logical network for lab environment

3149 Bulletin of Electr Eng & Inf ISSN: 2302-9285 

A case analysis for Kubernetes network security of financial service industry in Indonesia … (Nico Surantha)

The first step of proposed design evaluations is to ensure the advertised information in the networks

is only for the intended routing and authentic information. A new namespace is created to verify whether a

subnet is allocated from the pre-allocated prefix and justified its external and internal connectivity. The

external connectivity is verified using route redistribution, which refers to the virtual router of this setup and

is performed at the external router peer. Alternatively, it can be done through the checkpoint firewalls in the

enterprise’s environment. Moreover, BGP message digest 5 (MD5) authentication is deployed to confirm the

authenticity of the BGP peers and filter out certain internal namespace networks. Therefore, the BGP MD5

authentication is not acknowledged from the virtual router’s routing table. Figure 4 shows the BGP routing

table from the virtual router before the traffic filter.

The routing information from its peer is listed. The namespace’s subnet contains the 10.1.6.0/24

network in the Kubernetes cluster. Figure 4 presents that the route could be filtered out by using and mapping

the prefix lists to the outgoing interface at the BGP configuration of the Tier-0 (T0) router, supposing that the

subnet is only internal and does not need external connectivity [27]. The 10.1.6.0/24 route would be excluded

at the T0 router after the prefix lists are mapped to the router. Figure 5 shows that the 10.1.6.0/24 could not

be found in the virtual router’s routing table. To sum up, the external BGP authentication and filtration of the

“internal” routes are successfully advertised.

Figure 4. Screenshot of BGP routing table from virtual router prior to traffic filter

Figure 5. Screenshot of BGP routing table from route after traffic filter

3150  ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 12, No. 5, October 2023: 3142-3152

The second step is the penetration test of the design from the external route to the application of the

container network environment. To simulate a reconnaissance attack on the container pods, a port scanning is

performed with the Nmap tool, initiated from the outside of Kubernetes’ network. The perimeter firewall

policy is configured according to the zero-trust model. All of the traffic is denied by default and allows only

web traffic, internet control message protocol (ICMP), and BGP communication traffic for testing purposes.

Figure 6 signifies that the Nmap scan result is shown in four pods: 1 pod runs MYSQL service with

the IP address of 10.1.5.1, and 3 pods run the NGINX service with TCP 80 port opened. The port of MYSQL

pod is opened at TCP 3306. Nonetheless, it results in closed and unidentified status. Since the TCP 3306 port

communication or the MYSQL service is not allowed by the policy, such a testing result is expected.

Meanwhile, the MYSQL pod in the actual scenario would not be attained or allowed from any external

networks because the MYSQL pod should be for the internal route only. Moreover, the MYSQL pod is

reachable because ICMP communication traffic from the external route to the pod’s network is only allowed

for testing purposes.

Figure 6. Screenshot of port scanning from external to container network

The third step is to evaluate the conformability of the proposed design to the other four technical

requirements. Table 5 summarizes all of the evaluation results, which provide a better perspective of this

particular work. To evaluate the internal network security, the label assignment to the pods verifies the

container’s pod-to-pod communication. Although the two pods are in the same network segment and

namespace, the ICMP test traffic can be inspected and denied due to undefined communication in the

distributed internal firewall’s policy. The default firewall policy is configured to deny all traffic in the zero

trust policy. In other words, communication would not be permitted without permission from the firewall

policy. The traffic inspection was implemented by Kubernetes label that identifies the pods of incoming

traffic to logical switch in the NSX networking. The policy only allows a legitimate pod-to-pod

communication traffic so that the built-in internal firewall is identified and inspected. By default, pods could

not communicate with another pod since they are not allowed and denied. Then, the logs of the inspected

traffic are forwarded to an external Syslog server, and the ejected logs by the firewall are displayed.

3151 Bulletin of Electr Eng & Inf ISSN: 2302-9285 

A case analysis for Kubernetes network security of financial service industry in Indonesia … (Nico Surantha)

5. CONCLUSION

A simulation of the design was built to evaluate the secure network design and validate network

security following the zero trust model. To ensure proper implementation of firewall policy at the perimeter,

penetration testing of network security, such as external network scanning and route hijacking, was

conducted. The results show that the network is not penetrated. To examine the internal security, the internal

traffic was identified using Kubernetes’ labels, which allow the internal security to flow in the environment.

The default has restricted non-legitimate or unidentified traffic. All of the traffic is examined by the firewall

so that the traffics are logged to an external Syslog server to store the connectivity information. Then, the

traffics could be repurposed for troubleshooting, forensics, and analysis. For future work, several aspects

could be considered to improve the design. First, the role-based access controls could be implemented to

provide strict control and the least privilege for authorized users. Second, identity management systems could

be applied by unauthorized users and the next possible security-related users and would prevent unauthorized

access.

REFERENCES
[1] S. P and N. G. Cholli, “An analysis of software aging in cloud environment,” International Journal of Electrical and Computer

Engineering (IJECE), vol. 10, no. 6, pp. 5985-5991, Dec. 2020, doi: 10.11591/ijece.v10i6.pp5985-5991.
[2] C. Pahl, “Containerization and the PaaS Cloud,” IEEE Cloud Computing, vol. 2, no. 3, pp. 24–31, May 2015, doi:

10.1109/mcc.2015.51.

[3] K. Hightower, B. Burns, and J. Beda, Kubernetes: Up and Running: Dive into the Future of Infrastructure, 1st edition.
Sebastopol, CA: O’Reilly Media, 2017.

[4] F. Rossi, V. Cardellini, and F. L. Presti, “Hierarchical Scaling of Microservices in Kubernetes,” in 2020 IEEE International

Conference on Autonomic Computing and Self-Organizing Systems (ACSOS), pp. 28-37, Aug. 2020, doi:
10.1109/acsos49614.2020.00023.

[5] L. A. Vayghan, M. A. Saied, M. Toeroe, and F. Khendek, “Microservice Based Architecture: Towards High-Availability for

Stateful Applications with Kubernetes,” in 2019 IEEE 19th International Conference on Software Quality, Reliability and
Security (QRS), pp. 176-185, Jul. 2019, doi: 10.1109/qrs.2019.00034.

[6] A. A. Khaleq and I. Ra, “Agnostic Approach for Microservices Autoscaling in Cloud Applications,” in 2019 International

Conference on Computational Science and Computational Intelligence (CSCI), pp. 1411-1415, Dec. 2019, doi:
10.1109/csci49370.2019.00264.

[7] N. Mateus-Coelho, M. Cruz-Cunha, and L. G. Ferreira, “Security in Microservices Architectures,” Procedia Computer Science,

vol. 181, pp. 1225–1236, 2021, doi: 10.1016/j.procs.2021.01.320.
[8] J. Becker, “Trust No One: A Gap Analysis of Moving IP-Based Network Perimeters to A Zero Trust Network Architecture |

SANS Institute,” Global Information Assurance Certification Paper, pp. 1–23, 2017.

[9] J. Kindervag, “No More Chewy Centers: The Zero Trust Model of Information Security,” Forrester, 2016. [Online]. Available:
https://www.forrester.com/report/No-More-Chewy-Centers-The-Zero-Trust-Model-Of-Information-Security/RES56682

[10] Y. Tao, Z. Lei, and P. Ruxiang, “Fine-Grained Big Data Security Method Based on Zero Trust Model,” in 2018 IEEE 24th

International Conference on Parallel and Distributed Systems (ICPADS), pp. 1040-1045, Dec. 2018, doi:
10.1109/padsw.2018.8644614.

[11] M. Samaniego and R. Deters, “Zero-Trust Hierarchical Management in IoT,” in 2018 IEEE International Congress on Internet of

Things (ICIOT), Jul. 2018, doi: 10.1109/iciot.2018.00019.
[12] I. Ahmed, T. Nahar, S. S. Urmi, and K. A. Taher, “Protection of Sensitive Data in Zero Trust Model,” in Proceedings of the

International Conference on Computing Advancements, Jan. 2020, doi: 10.1145/3377049.3377114.
[13] A. Alagappan, S. K. Venkatachary, and L. J. B. Andrews, “Augmenting Zero Trust Network Architecture to enhance security in

virtual power plants,” Energy Reports, vol. 8, pp. 1309–1320, Nov. 2022, doi: 10.1016/j.egyr.2021.11.272.

[14] S. Mehraj and M. T. Banday, “Establishing a Zero Trust Strategy in Cloud Computing Environment,” in 2020 International
Conference on Computer Communication and Informatics (ICCCI), pp. 1-5, Jan. 2020, doi: 10.1109/iccci48352.2020.9104214.

[15] D. D’Silva and D. D. Ambawade, “Building A Zero Trust Architecture Using Kubernetes,” in 2021 6th International Conference

for Convergence in Technology (I2CT), Apr. 2021, doi: 10.1109/i2ct51068.2021.9418203.
[16] N. Surantha and F. Ivan, “Secure Kubernetes Networking Design Based on Zero Trust Model: A Case Study of Financial Service

Enterprise in Indonesia,” in Innovative Mobile and Internet Services in Ubiquitous Computing, Springer International Publishing,

2019, pp. 348–361, doi: 10.1007/978-3-030-22263-5_34.
[17] P. S. S. P, S. V. Soudri, R. K. P, and S. Bailuguttu, “Enhancement of observability using Kubernetes operator,” Indonesian

Journal of Electrical Engineering and Computer Science, vol. 25, no. 1, pp. 496-503, Jan. 2022, doi:

10.11591/ijeecs.v25.i1.pp496-503.
[18] M. Elkholy and M. A. Marzok, “Light weight serverless computing at fog nodes for internet of things systems,” Indonesian

Journal of Electrical Engineering and Computer Science, vol. 26, no. 1, pp. 394-403, Apr. 2022, doi:

10.11591/ijeecs.v26.i1.pp394-403.
[19] V. Sucasas et al., “A privacy-enhanced OAuth 2.0 based protocol for Smart City mobile applications,” Computers

&\mathsemicolon Security, vol. 74, pp. 258–274, May 2018, doi: 10.1016/j.cose.2018.01.014.

[20] L. A. Vayghan, M. A. Saied, M. Toeroe, and F. Khendek, “Deploying Microservice Based Applications with Kubernetes:
Experiments and Lessons Learned,” in 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 970-973,

Jul. 2018. doi: 10.1109/cloud.2018.00148.

[21] “IBM X-Force Threat Intelligence Index 2017,” Security Intelligence, Mar. 29, 2017. [Online]. Available:
https://securityintelligence.com/ibm-x-force-threat-intelligence-index-2017/ (accessed Mar. 09, 2023).

[22] T. Chuan, Y. Lv, Z. Qi, L. Xie, and W. Guo, “An Implementation Method of Zero-trust Architecture,” Journal of Physics:

Conference Series, vol. 1651, no. 1, pp. 1-6, Nov. 2020, doi: 10.1088/1742-6596/1651/1/012010.
[23] P. Oppenheimer, Top-Down Network Design, 3rd Edition, 3rd ed. Cisco Press, 2010. [Online]. Available:

http://www.teraits.com/pitagoras/marcio/gpi/b_POppenheimer_TopDownNetworkDesign_3rd_ed.pdf Accessed: Mar. 09, 2023.

3152  ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 12, No. 5, October 2023: 3142-3152

[24] J. Gross, I. Ganga, and T. Sridhar, “Geneve: Generic Network Virtualization Encapsulation,” RFC Editor, Nov. 2020. doi:

10.17487/rfc8926.
[25] A. Gangil, J. Shen, D. Han, S. Orlando, S. Chaitanya, Y. Fauser, G. Kotton, Translating PAAS/CAAS abstractions to logical

network topologies, US20180375728, 2018. [Online]. Available:

https://patentscope.wipo.int/search/en/detail.jsf?docId=US235228914&tab=NATIONALBIBLIO. accessed: Mar 30, 2023.
[26] P. Lapukhov, A. Premji, and J. Mitchell, “Use of BGP for Routing in Large-Scale Data Centers,” RFC Editor, Aug. 2016, doi:

10.17487/rfc7938.

[27 J. Stuppi, G. Schudel, T. Sammut, Protecting Border Gateway Protocol for the Enterprise, Cisco Secure (n.d.). [Online].
Available: https://tools.cisco.com/security/center/resources/protecting_border_gateway_protocol. accessed: Mar 30, 2023.

[28] M. E. Whitman and H. J. Mattord, Principles of Information Security, 4th edition. Boston, MA: Cengage Learning, 2011.

[29] P. Engebretson, The Basics of Hacking and Penetration Testing: Ethical Hacking and Penetration Testing Made Easy, 2nd
edition. Amsterdam  Boston: Syngress, 2013.

BIOGRAPHIES OF AUTHORS

Nico Surantha (Member, IEEE) received the B.Eng. and M.Eng. degrees from

the Institut Teknologi Bandung, Indonesia, in 2007 and 2009, respectively, and the Ph.D.

degree from the Kyushu Institute of Technology, Japan, in 2013. He currently works as a full-

time Lecturer with the Department of Electrical, Electronic and Communication Engineering,

Tokyo City University, Japan. He is also a lecturer at the Department of Computer Science,

BINUS Graduate Program, Bina Nusantara University, Indonesia. His research interests

include ubiquitous computing, intelligent systems, the internet of things, health monitoring,

and system on chip. He can be contacted at email: nico.surantha@binus.ac.id.

Felix Ivan received the bachelor’s degree from the Department of Computer

Science, Bina Nusantara University, Jakarta, in 2010. Received Master degree with the

Department of Computer Science, BINUS Graduate Program—Master of Computer Science,

Jakarta, in 2016. His research interests include cloud computing, network security and

network design. He can be contacted at email: felix.ivan@binus.ac.id.

Ritchie Chandra received the bachelor’s degree from the Department of

Computer Science, Bina Nusantara University, Jakarta, in 2018. He is currently pursuing the

degree with the Computer Science Department, BINUS Graduate Program—Master of

Computer Science. His research interests include health monitoring and the internet of things.

He can be contacted at email: ritchie.chandra@binus.ac.id.

https://patentscope.wipo.int/search/en/detail.jsf?docId=US235228914&tab=NATIONALBIBLIO.
https://tools.cisco.com/security/center/resources/protecting_border_gateway_protocol.
https://orcid.org/0000-0002-7500-3199
https://scholar.google.co.jp/citations?user=rMaJdXYAAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=37119419800
https://researcherid.com/rid/AAB-8181-2021
https://orcid.org/0009-0003-3646-9599
https://orcid.org/0009-0002-5299-8856

