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 The state of charge (SOC) is a battery residual capacity crucial assessment 

metric. The need for a precise SOC estimate is very important to ensure the 

safe functioning of a Li-ion battery and to prevent overload and over-

depletion. However, the renewable energy-based standalone application has 

become a key problem to determine the exact capacity of SOC of the Li-ion 

battery. To estimate the capacity over time, the battery management system 

calculates the SOC of a Li-ion battery. This allows for the implementation of 

intelligent control systems. This paper presents an enhanced radial basis 

function (RBF) of the SOC battery estimate following the limits and 

weaknesses of the back propagation (BP) neural network (NN) in estimating 

battery SOC, such as sluggish convergence speed, poor generalization and 

can increase the accuracy of the network but it takes time to iterate. Train the 

enhanced RBF with experimental data in real-time. The trained NN of SOC 

is compared to actual values and the MATLAB is used to simulate the 

method to evaluate its accuracy. 
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1. INTRODUCTION 

One of the most critical issues for battery systems is the estimate of the energy availability of the 

battery. Batteries are energy systems stored chemically which have no direct access to stored electricity. This 

problem predicts that the energy available is a tough challenge [1]. The factors which provide information on 

the energy available and aging of a battery is state of charge (SOC). In comparison with nominal capacity Qn 

[2], the SOC is often specified as a percentage of current capacity Q(t) by (1). 

 

𝑆𝑂𝐶(𝑡) = 𝑄(𝑡) 𝑄𝑛⁄  (1) 

 

SOC can't be measured directly. Only a few testable parameters can be expected. The widely used 

SOC power battery prediction technique is used to monitor voltage level, amperage, impedance, warmth, and 

other parameters [3]. The SOC of a lead-acid battery and the open circuit voltage (OCV) are typically linear 

[4]. In contrast to a lead-acid battery, the link seen between OCV and SOC in a Li-ion battery is not linear 

[5]. The conventional SOC power battery prediction techniques include open-circuit voltage, discharge, and 

time integer and conduction method [6], [7]. This executive summary examines the estimate challenge for 

electrochemical batteries' SOC. Just use an electrical circuits design of the battery that has been published in 

the literature [8], it is demonstrated how, provided the battery current is sufficiently varied, the open-circuit 

voltage, which is directly related to the SOC, may be determined only from junction voltage or current 
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observations. In this paper, common state of charge assessment techniques, together with their benefits and 

drawbacks, are presented [4]. The time integral technique offers high precision, easy computation, and can 

estimate online SOC, but the original value cannot be estimated and the cumulated error has been found in 

this method. The technique is better at evaluating the battery's residual power whether the battery is low or 

high, but it does not have linear properties and the change in battery size is quite big. Calman filtering, fuzzy 

logic, and neural network (NN) are the latest SOC prediction techniques for power battery products. The 

Calman technique of filtering can better represent the battery dynamics. The computation is, however, quite 

high and the precision are dependent on the correctness of the power battery equivalent circuit model [9]. The 

robust generalisation ability of the NN allows it to recognise the connection between the variables of 

complex input. Input and output nodes are not constrained and cannot depend on the non-linear characteristic 

and intrinsic process of the battery, hence the SOC predicting model does not account for accumulating 

errors caused by batteries [10], [11]. The NN model, which is more precise and complex in comparison to 

other approaches, requires a huge quantity of training data. The model's accuracy depends on the exactness of 

the training data. The network model is chosen for predicting the present SOC based on the vast number of 

data gathered from experiments. Four batteries of the same rating 2 Ah were utilized in this research. 

Advance NN method are used in recent area with more advantages in determine the battery aging [12], [13]. 

The ageing of Li-ion batteries often involves a deterioration that depends on consumption and usage. Both 

contribute to capacity loss and an increase in internal resistance. The end of life is characterized primarily as 

a 20% loss in capability or a 100% increase in resistance [14]. To investigate the impact of porous electrodes 

on fade behavior, numerical simulations are employed [15], [16]. The effectiveness of the suggested model is 

verified using data collected from four Li-ion phosphate battery packs as the target dataset, and its 

performance is evaluated in comparison to other NN models. The suggested model can at any time carry out 

rapid online capacity estimation [17]. In combination to volts, ampere, or temperatures as input data, the 

prediction model also takes into account the impact of the battery deterioration process, which includes 

charging and discharging durations as well as the most recent discharge charge [18]. An electrochemical-

thermal-neural-network (ETNN) model is developed to predict the battery's condition of charge and state of 

heat under these circumstances [19]–[22]. Battery based water pumping system along with photovoltaic (PV) 

is discussed as battery application [23]. In this research, therefore, suggests a SOC model based on the NN 

back propagation (BP) and radial basis function (RBF). The superiority of the RBF approach is 

simultaneously proven, which can enhance battery efficiency and extend battery service lives. This article 

gives a brandnew idea for the PV standalone application design battery management system. 

 

 

2. PRINCIPLE OF BACK PROPAGATION ALGORITHM 

The BP algorithm includes backward and forward transmission. The sample is processed for forward 

transmitting from the input layer and the caching layers to the output layer when the output of every neuron 

layer affects just the states of the following layer. If the network output differs from the expected output 𝑄𝑧, 

the algorithm enters the backward transmission. In backward transmission, the error signals are in opposition 

to the direction of the forward transmission and modify the neuron layer weight coefficient in the negative 

gradient direction of the error function, therefore reducing the predicted error function. The general 

architecture of a BP and RBF neural network (RBF-NN) is shown in Figure 1. 

 

 

 
 

Figure 1. Architecture of NN 
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2.1.  Back propagation algorithm training framework 

The setting of the samples mode counters s and frequency counters p to 1. Introductory value for 

weight matrix z and y. Set zero to error and 0 to 1 for decimal acquisition efficiency and Qmin to positive 

decimal network training accuracy. Calculate each layer's output and input sample training. Assign ns and ms 

to vector x and d as the current sample. Compute x and n components using (1) and (2). 
 

𝑥𝑗 = 𝐹(𝑉𝑗
𝑢𝑋), 𝑗 = 1,2, … , 𝑛 (2) 

 

𝑛𝑘 = 𝐹(𝑀𝑗
𝑢, 𝑦), 𝑘 = 1,2, … . . , 𝑙 (3) 

 

Network output error analysis: consider that the training sample is s-pairs. Error 𝐸𝑎varies from one 

sample to another. The root mean error square can be used either 𝐸𝑚𝑎𝑥, the highest value of the error or (4). 
 

𝐸𝑟𝑚𝑠√1 ∑ 𝐸𝑠𝑠
𝑠−1⁄  (4) 

 

Compute each layer's error signal: 𝛿𝑝
𝑛 and 𝛿𝑤

𝑦
 with a calculate (5) and (6). 

 

𝛿_𝑝^𝑛 = (𝑑_𝑝 − 𝑛_𝑝 ) 𝑛_𝑝, 𝑝 = 1,2, … . , 𝑙 (5) 
 

𝛿_𝑤^𝑦 = (∑𝛿_𝑘^(𝑛 @𝑛) 𝑔_𝑤𝑘 )(1 − 𝑦_𝑤 )𝑤, 𝑤 = 1,2, … . . , 𝑚 (6) 
 

Updating each layer's weight: compute the Z, Y and components (7) and (8). 
 

𝑍_𝑝𝑤 ← 𝑍_𝑝𝑤 + 𝜀𝛿_𝑤^𝑛 𝑥_𝑗 (7) 
 

𝑌𝑗𝑤 ← 𝑌𝑗𝑤 + 𝜖𝛿𝑤.
𝑦
𝑛𝑘 (8) 

 

Check to confirm whether all samples in rotation are finished: if 𝑠 < 𝑆, counter s, padd 1, return step 

(3) or step to (8). There are two techniques for adjusting weight in the present applications. This weight 

adjustment technique for rotating each sample is also known as the single sample training and the input 

samples should yield mistakes, as can be observed in the above steps. 
 

𝐸 = 1 ⁄ (2 ∑_(𝑠 − 1)^𝑠∑_(𝑝 − 1)^𝑙(𝑑_𝑝^𝑠 ) − 𝑁_𝑝^𝑠)^2 (9) 
 

As one-piece practice is short on "selfish departmentalism," only the mistakes are adjusted for each 

sample it creates, so that the number of exercises is doubled and the convergence speed is too sluggish. The 

network errors after all sample inputs are also calculated. This batch form of cumulative errors can be 

referred to as batch training or epoch training, then calculating layer errors based on the total error and 

adjustment of weight (9). The training in batch has been carried out according to the 'collectivism' concept to 

reduce global error, ensuring a change in overall error in the direction of decrease. Batch training over 

convergence speed is quicker with large numbers of samples than single-sample training. 

 

2.2.  Principle of radial basis function algorithm 

The RBF-NN is a successful and globally approximated future network model [24]. A RBF-NN has 

nodes termed RBF units in its buried layer. The length and center of each RBF unit are governed by two 

fundamental variables [25]. For unreliable information systems, the RBF-NN is a useful tool. The 

relationships among one pattern and further analogous sequences in a given collection can be investigated 

[26]. The creation of a RBF-NN is demonstrated in Figure 1. Without using linear mapping, this approach 

efficiently transfers the input vector from Rq to the output space, Rw. The following function serves as the 

foundation for the mapping relationship between the input and the output vector of the RBF-NN: 
 

𝑅𝐵𝐹 − 𝑁𝑁: {𝑅𝑞 → 𝑅𝑤 , 𝑚⃗⃗ → 𝑧  (10) 
 

where the 𝑚⃗⃗ = {𝑚𝑗 , 𝑓𝑜𝑟 𝑗 = 1, 2, 𝑏} and 𝑧 = {𝑧𝑗 , 𝑓𝑜𝑟 𝑗 = 1,2, … , 𝑛} (10). A Gaussian function is calculated 

using the ith hidden neuron of the RBF neural system: 
 

𝑑𝑖  (𝑚⃗⃗ ) = 𝑒𝑥𝑝(−(𝑚⃗⃗ ) + 𝜇𝑖)^2│ 2𝜎𝑖
2), 𝑓𝑜𝑟 𝑖 = 1, 2, … . 𝑟 (11) 

 

where the centre and duration of the ith neuron's hidden state of the feasible Gaussian function are μi and σi 

respectively (11). The lth receiver node of the RBF-NN computes a linear function using the presented in 

Figure 1: 
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𝑧_𝑙 = ∑_(𝑖 − 1)^𝑟. 𝑣_𝑙𝑖 . 𝑑_𝑖 (𝑚⃗⃗ ) (12) 

 

where𝑧𝑙 is an output in the output layer of the lth node, 𝑣𝑙𝑖is the output between the ith node in the hidden 

layer and the output layer in the ith node and di(𝑚⃗⃗ ) is aith node output from the hidden layer (12). 

Number of times neurons in the hidden layer cover the input vector space is a difficult question to 

answer. The optimal number of nodes for the hidden layer is calculated using several methods, although this 

problem has not yet been resolved. The classic RBF-NN training procedure modifies a number of weights, 

centres, and widths using the stochastic gradient technique. The main drawback of the stochastic gradient is 

that the learning algorithm is at least partially constrained. The Levenberg-Marquardt approach is used in this 

article's RBF-NN training stage to attain the following three parameters: weight should be adjusted so that 

the error function can be promptly reduced. 

 

 

3. RESEARCH PREDICTION 

3.1.  Data 

The experimental data of the NN provided in this paper obtained from c3.nasa.gov. Three distinct 

operating profiles (charge, discharge and impedance) were used for four Li-ion batteries at room temperature. 

In continuous current (CC) mode charging was performed at 1.5 A up to 4.2 V battery voltage and then the 

current of charge fell to 20 mA in constant voltage (CV) mode. The battery voltage was depleted at a 

constant existing level (CC) of 2 A until it reached 2.7 V, 2.5 V, 2.2 V, and 2.5 V (5, 6, 7, and 18 batteries) 

respectively. To measure impedances, a spectroscopy of electrochemical impedance was employed. Between 

0.1 Hz and 5 kHz, the frequency sweep electrical impedance spectroscopy (EIS), is located. Impedance tests 

can shed light on the intrinsic battery properties that vary as batteries age, whereas repeated charging and 

discharging cycles cause batteries to age quickly. The trials came to a conclusion when the final (end-of-life) 

criteria were satisfied, with a 30% drop in rating capacity (from 2 hr to 1 hr 40 min). Table 1 shows 

properties of a Li-ion battery. The overall flow chart for the SOC estimation technique based on the NN is 

given in Figure 2. In the following phases the proposed technique of estimation is briefly described: 

- Stage 1: create the dataset for battery discharge, which should include information on terminal volts, 

discharge amperage, temperature, and SOC. 

- Stage 2: to standardise all battery discharge data. 

- Stage 3: create the training data for the RBF-NN. 

- Stage 4: the RBF-NN hidden layer's optimum number of neurons is chosen. 

- Stage 5: utilize L-M training to create the RBF SOC estimate NN. 

- Stage 6: put an end to the training process to safeguard the Gaussian function center, widths, and link 

weights between the output and hidden layers of the created RBF-NN. 

 

 

Table 1. Properties of a Li-ion battery 
CC mode (charging) CV mode Discharging mode CC mode Frequency sweep 

1.5 A to 4.2 V 20 mA 2.2 V to 2.5 V 0.1 Hz to 5 kHz 

 

 

3.2.  Neural network training 

Due to variation in voltage, current, and SOC. To achieve an equal weight of the sample 

components and in the same critical network training role. Signals should be standardized for input (13). 

 

∝= (∝𝑘−∝𝑚𝑖𝑛) (∝𝑚𝑎𝑥−∝𝑚𝑖𝑛)⁄  (13) 

 

The BP and RBF network modeling software MATLAB is utilized. Implement the training 

programed for the network. 

 

 

4. RESULTS AND DISCUSSION 

Figure 1 shows, set of maximal training goal for SOC estimation. Figure 2 show the training 

procedure. After 2 epochs, the network satisfies the criterion for accuracy training steps and the tracking curve 

error converges to 0.0027 as shown in Figure 3. The battery voltages were discharged at a CC level of 2 A up 

to 2.6 V, 2.5 V, 2.2 V and 2.5 V correspondingly for batteries 1-4 as shown in Figures 4(a)-(d). 

The NN training error may be viewed in real time with the performance Figure 5. Error reaches 

7.32e-30, which is less than the limit error value, following 15 epochs Figure 5 illustrates the performance. 

Figure 6 shows regression plot, with high linear correlation and regression constant over 0.2 seen in the 
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training information, validation data and test data predicted response and simulation output. It is more accurate 

for RBF than for BP. To calculate data, BP takes more time. Table 2 shows results simulation results. 
 
 

 
 

Figure 2. Flow chart for SOC estimation technique 
 

 

Table 2. Simulation results 
Parameter BP RBF 

Mean squared error (MSE) 0.0027 7.32e-30 

Number of iterations 2 15 

Amount of hidden neuron 10 10 

 
 

 
 

Figure 3. Performance curve for BP 
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(a) 

 
(b) 

  

  
(c) (d) 

 

Figure 4. Error vs. SOC (a) first battery, (b) second battery, (c) third battery, and (d) fourth battery 

 

 

 
 

Figure 5. Performance curve for RBF 
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Figure 6. Regression plot 

 

 

5. CONCLUSION 

Temperature should be kept low to reduce calendar ageing in the case of Li-ion battery storage 

periods. In cycling, a greater temperature should be established, especially while charging the battery, as the 

result of the lithium plating reduces the ageing. In lower temperatures, current rates should be modest when 

charging a battery for a long time, in order to decrease lithium plate. The SOC level also significantly 

impacts ageing in addition to the temperature. High amounts of SOC have been harmful to calendar and 

cyclic life. 

A high SOC should thus be avoided as much as possible in order to reduce battery ageing. In 

addition, the major driver of lithium placing was found as long-lasting charge durations. This reduces battery 

ageing by decreasing the discharge depth while cycling. This research explained the 2 Ah Li-ion battery 

estimate SOC with artificial intelligence technique BP and RBF approach for identifying the battery's SOC 

are proposed. The prior SOC information helps to plan solar energy for domestic application and stand-alone 

application. From results it is noted that with MSE=7.32e-30, RBF requires 15 epochs require to obtain more 

SOC estimate accuracy than BP. 
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