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The state of charge (SOC) is a battery residual capacity crucial assessment
metric. The need for a precise SOC estimate is very important to ensure the
safe functioning of a Li-ion battery and to prevent overload and over-
depletion. However, the renewable energy-based standalone application has
become a key problem to determine the exact capacity of SOC of the Li-ion
battery. To estimate the capacity over time, the battery management system
calculates the SOC of a Li-ion battery. This allows for the implementation of
intelligent control systems. This paper presents an enhanced radial basis
function (RBF) of the SOC battery estimate following the limits and
weaknesses of the back propagation (BP) neural network (NN) in estimating
battery SOC, such as sluggish convergence speed, poor generalization and
can increase the accuracy of the network but it takes time to iterate. Train the
enhanced RBF with experimental data in real-time. The trained NN of SOC
is compared to actual values and the MATLAB is used to simulate the
method to evaluate its accuracy.
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1. INTRODUCTION

One of the most critical issues for battery systems is the estimate of the energy availability of the
battery. Batteries are energy systems stored chemically which have no direct access to stored electricity. This
problem predicts that the energy available is a tough challenge [1]. The factors which provide information on
the energy available and aging of a battery is state of charge (SOC). In comparison with nominal capacity Qn
[2], the SOC is often specified as a percentage of current capacity Q(t) by (1).

S0C(t) = Q(t)/Qn @

SOC can't be measured directly. Only a few testable parameters can be expected. The widely used
SOC power battery prediction technique is used to monitor voltage level, amperage, impedance, warmth, and
other parameters [3]. The SOC of a lead-acid battery and the open circuit voltage (OCV) are typically linear
[4]. In contrast to a lead-acid battery, the link seen between OCV and SOC in a Li-ion battery is not linear
[5]. The conventional SOC power battery prediction techniques include open-circuit voltage, discharge, and
time integer and conduction method [6], [7]. This executive summary examines the estimate challenge for
electrochemical batteries' SOC. Just use an electrical circuits design of the battery that has been published in
the literature [8], it is demonstrated how, provided the battery current is sufficiently varied, the open-circuit
voltage, which is directly related to the SOC, may be determined only from junction voltage or current
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observations. In this paper, common state of charge assessment techniques, together with their benefits and
drawbacks, are presented [4]. The time integral technique offers high precision, easy computation, and can
estimate online SOC, but the original value cannot be estimated and the cumulated error has been found in
this method. The technique is better at evaluating the battery's residual power whether the battery is low or
high, but it does not have linear properties and the change in battery size is quite big. Calman filtering, fuzzy
logic, and neural network (NN) are the latest SOC prediction techniques for power battery products. The
Calman technique of filtering can better represent the battery dynamics. The computation is, however, quite
high and the precision are dependent on the correctness of the power battery equivalent circuit model [9]. The
robust generalisation ability of the NN allows it to recognise the connection between the variables of
complex input. Input and output nodes are not constrained and cannot depend on the non-linear characteristic
and intrinsic process of the battery, hence the SOC predicting model does not account for accumulating
errors caused by batteries [10], [11]. The NN model, which is more precise and complex in comparison to
other approaches, requires a huge quantity of training data. The model's accuracy depends on the exactness of
the training data. The network model is chosen for predicting the present SOC based on the vast number of
data gathered from experiments. Four batteries of the same rating 2 Ah were utilized in this research.
Advance NN method are used in recent area with more advantages in determine the battery aging [12], [13].
The ageing of Li-ion batteries often involves a deterioration that depends on consumption and usage. Both
contribute to capacity loss and an increase in internal resistance. The end of life is characterized primarily as
a 20% loss in capability or a 100% increase in resistance [14]. To investigate the impact of porous electrodes
on fade behavior, numerical simulations are employed [15], [16]. The effectiveness of the suggested model is
verified using data collected from four Li-ion phosphate battery packs as the target dataset, and its
performance is evaluated in comparison to other NN models. The suggested model can at any time carry out
rapid online capacity estimation [17]. In combination to volts, ampere, or temperatures as input data, the
prediction model also takes into account the impact of the battery deterioration process, which includes
charging and discharging durations as well as the most recent discharge charge [18]. An electrochemical-
thermal-neural-network (ETNN) model is developed to predict the battery's condition of charge and state of
heat under these circumstances [19]-[22]. Battery based water pumping system along with photovoltaic (PV)
is discussed as battery application [23]. In this research, therefore, suggests a SOC model based on the NN
back propagation (BP) and radial basis function (RBF). The superiority of the RBF approach is
simultaneously proven, which can enhance battery efficiency and extend battery service lives. This article
gives a brandnew idea for the PV standalone application design battery management system.

2. PRINCIPLE OF BACK PROPAGATION ALGORITHM

The BP algorithm includes backward and forward transmission. The sample is processed for forward
transmitting from the input layer and the caching layers to the output layer when the output of every neuron
layer affects just the states of the following layer. If the network output differs from the expected output Q,,
the algorithm enters the backward transmission. In backward transmission, the error signals are in opposition
to the direction of the forward transmission and modify the neuron layer weight coefficient in the negative
gradient direction of the error function, therefore reducing the predicted error function. The general
architecture of a BP and RBF neural network (RBF-NN) is shown in Figure 1.

SocC

Output layer

Input layer

Hidden layer

Figure 1. Architecture of NN

Analysis of a Li-ion battery state of charge by artificial neural network (Sumithara Arunagirinathan)



794 a ISSN: 2302-9285

2.1. Back propagation algorithm training framework

The setting of the samples mode counters s and frequency counters p to 1. Introductory value for
weight matrix z and y. Set zero to error and 0 to 1 for decimal acquisition efficiency and Qmin to positive
decimal network training accuracy. Calculate each layer's output and input sample training. Assign ns and ms
to vector x and d as the current sample. Compute x and n components using (1) and (2).

xj=F(V'X),j=12..,n 2)
nk = F(M},y),k =12,....,1 (3)

Network output error analysis: consider that the training sample is s-pairs. Error E,varies from one
sample to another. The root mean error square can be used either E,, 4., the highest value of the error or (4).

Ermsy/1/X5 1 E° (4)

Compute each layer's error signal: 8, and &, with a calculate (5) and (6).
dpnm=({dp—-np)npp=12..,1 (5)
Swry=Q6k "n@n)gwk)l-ywww=12...,m (6)

Updating each layer's weight: compute the Z, Y and components (7) and (8).

Z_pw « Z_pw + e5_wn x_j (7
Yiw < Y + €6, 1 8

Check to confirm whether all samples in rotation are finished: if s < S, counter s, padd 1, return step
(3) or step to (8). There are two techniques for adjusting weight in the present applications. This weight
adjustment technique for rotating each sample is also known as the single sample training and the input
samples should yield mistakes, as can be observed in the above steps.

E=1/Q2YX(6-D%Y (p—-D"(dps)—Np"s)"2 9)

As one-piece practice is short on "selfish departmentalism,” only the mistakes are adjusted for each
sample it creates, so that the number of exercises is doubled and the convergence speed is too sluggish. The
network errors after all sample inputs are also calculated. This batch form of cumulative errors can be
referred to as batch training or epoch training, then calculating layer errors based on the total error and
adjustment of weight (9). The training in batch has been carried out according to the ‘collectivism' concept to
reduce global error, ensuring a change in overall error in the direction of decrease. Batch training over
convergence speed is quicker with large numbers of samples than single-sample training.

2.2. Principle of radial basis function algorithm

The RBF-NN is a successful and globally approximated future network model [24]. A RBF-NN has
nodes termed RBF units in its buried layer. The length and center of each RBF unit are governed by two
fundamental variables [25]. For unreliable information systems, the RBF-NN is a useful tool. The
relationships among one pattern and further analogous sequences in a given collection can be investigated
[26]. The creation of a RBF-NN is demonstrated in Figure 1. Without using linear mapping, this approach
efficiently transfers the input vector from Rq to the output space, Rw. The following function serves as the
foundation for the mapping relationship between the input and the output vector of the RBF-NN:

RBF — NN:{R? » R¥, 7 — 7 (10)

where the 71 = {m;, for j = 1,2,b} and Z = {z;, for j = 1,2, ...,n} (10). A Gaussian function is calculated
using the i hidden neuron of the RBF neural system:

d; (i) = exp(—(@) + u) 2| 262, fori=1,2,..7 (11)

where the centre and duration of the ith neuron's hidden state of the feasible Gaussian function are pi and ci
respectively (11). The I receiver node of the RBF-NN computes a linear function using the presented in
Figure 1:
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zI1=Y_(i—D*.vli.d_i (M) (12)

wherez; is an output in the output layer of the I node, vy;is the output between the i" node in the hidden
layer and the output layer in the i node and di(77) is ai™ node output from the hidden layer (12).

Number of times neurons in the hidden layer cover the input vector space is a difficult question to
answer. The optimal number of nodes for the hidden layer is calculated using several methods, although this
problem has not yet been resolved. The classic RBF-NN training procedure modifies a number of weights,
centres, and widths using the stochastic gradient technique. The main drawback of the stochastic gradient is
that the learning algorithm is at least partially constrained. The Levenberg-Marquardt approach is used in this
article's RBF-NN training stage to attain the following three parameters: weight should be adjusted so that
the error function can be promptly reduced.

3. RESEARCH PREDICTION
3.1. Data

The experimental data of the NN provided in this paper obtained from c3.nasa.gov. Three distinct
operating profiles (charge, discharge and impedance) were used for four Li-ion batteries at room temperature.
In continuous current (CC) mode charging was performed at 1.5 A up to 4.2 V battery voltage and then the
current of charge fell to 20 mA in constant voltage (CV) mode. The battery voltage was depleted at a
constant existing level (CC) of 2 A until it reached 2.7 V, 25V, 22 V, and 2.5 V (5, 6, 7, and 18 batteries)
respectively. To measure impedances, a spectroscopy of electrochemical impedance was employed. Between
0.1 Hz and 5 kHz, the frequency sweep electrical impedance spectroscopy (EIS), is located. Impedance tests
can shed light on the intrinsic battery properties that vary as batteries age, whereas repeated charging and
discharging cycles cause batteries to age quickly. The trials came to a conclusion when the final (end-of-life)
criteria were satisfied, with a 30% drop in rating capacity (from 2 hr to 1 hr 40 min). Table 1 shows
properties of a Li-ion battery. The overall flow chart for the SOC estimation technique based on the NN is
given in Figure 2. In the following phases the proposed technique of estimation is briefly described:
- Stage 1: create the dataset for battery discharge, which should include information on terminal volts,

discharge amperage, temperature, and SOC.
- Stage 2: to standardise all battery discharge data.
- Stage 3: create the training data for the RBF-NN.
- Stage 4: the RBF-NN hidden layer's optimum number of neurons is chosen.
- Stage 5: utilize L-M training to create the RBF SOC estimate NN.
- Stage 6: put an end to the training process to safeguard the Gaussian function center, widths, and link
weights between the output and hidden layers of the created RBF-NN.

Table 1. Properties of a Li-ion battery
CC mode (charging) CV mode Discharging mode CC mode  Freguency sweep
15At04.2V 20 mA 22Vto25V 0.1 Hz to 5 kHz

3.2. Neural network training
Due to variation in voltage, current, and SOC. To achieve an equal weight of the sample
components and in the same critical network training role. Signals should be standardized for input (13).

= (0 —%nin )/ (Kimax = Xmin) (13)

The BP and RBF network modeling software MATLAB is utilized. Implement the training
programed for the network.

4. RESULTS AND DISCUSSION

Figure 1 shows, set of maximal training goal for SOC estimation. Figure 2 show the training
procedure. After 2 epochs, the network satisfies the criterion for accuracy training steps and the tracking curve
error converges to 0.0027 as shown in Figure 3. The battery voltages were discharged at a CC level of 2 A up
t02.6 V,2.5V, 2.2V and 2.5 V correspondingly for batteries 1-4 as shown in Figures 4(a)-(d).

The NN training error may be viewed in real time with the performance Figure 5. Error reaches
7.32e-30, which is less than the limit error value, following 15 epochs Figure 5 illustrates the performance.
Figure 6 shows regression plot, with high linear correlation and regression constant over 0.2 seen in the
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training information, validation data and test data predicted response and simulation output. It is more accurate
for RBF than for BP. To calculate data, BP takes more time. Table 2 shows results simulation results.

Mean Squared Error (mse)

| Set variables for networks |

Pre-processing

Determine the input and output predicted

;

|__

| The hidden layer output and SOC value is calculated

|

| The error of hidden layer and SOC value is calculated

I Fine tune thresholds and weights |

Traning

completed

Error in the
limit range?

Update weights

Figure 2. Flow chart for SOC estimation technique

Table 2. Simulation results

Parameter BP RBF
Mean squared error (MSE)  0.0027  7.32e-30
Number of iterations 2 15
Amount of hidden neuron 10 10

Best Validation Performance is 0.0027076 at epoch 25
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Figure 3. Performance curve for BP
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Figure 4. Error vs. SOC (a) first battery, (b) second battery, (c) third battery, and (d) fourth battery
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Figure 5. Performance curve for RBF
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5. CONCLUSION

Temperature should be kept low to reduce calendar ageing in the case of Li-ion battery storage
periods. In cycling, a greater temperature should be established, especially while charging the battery, as the
result of the lithium plating reduces the ageing. In lower temperatures, current rates should be modest when
charging a battery for a long time, in order to decrease lithium plate. The SOC level also significantly
impacts ageing in addition to the temperature. High amounts of SOC have been harmful to calendar and
cyclic life.

A high SOC should thus be avoided as much as possible in order to reduce battery ageing. In
addition, the major driver of lithium placing was found as long-lasting charge durations. This reduces battery
ageing by decreasing the discharge depth while cycling. This research explained the 2 Ah Li-ion battery
estimate SOC with artificial intelligence technique BP and RBF approach for identifying the battery's SOC
are proposed. The prior SOC information helps to plan solar energy for domestic application and stand-alone
application. From results it is noted that with MSE=7.32e-30, RBF requires 15 epochs require to obtain more
SOC estimate accuracy than BP.
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