
Bulletin of Electrical Engineering and Informatics
Vol. 13, No. 1, February 2024, pp. 453~464
ISSN: 2302-9285, DOI: 10.11591/eei.v13i1.5841  453

Journal homepage: http://beei.org

The scheduling techniques in the Hadoop and Spark of smart
cities environment: a systematic review

Nada Masood Mirza1,2, Adnan Ali1, Mohamad Khairi Ishak1,3
1School of Electrical and Electronic Engineering, Universiti Sains Malaysia (USM), Pulau Pinang, Malaysia

2College of Engineering, United Arab Emirates University, Al Ain, United Arab Emirates
3Department of Electrical and Computer Engineering, Ajman University, Ajman, United Arab Emirates

Article Info ABSTRACT

Article history:

Received Jan 23, 2023
Revised Jul 13, 2023
Accepted Aug 30, 2023

 Processing extensive and diverse data in real-time is a significant challenge
in the context of smart cities. Timely access to information and efficient
analytics is essential for smart city services to make data-driven decisions
and enhance urban living. Scheduling algorithms play a crucial role in
ensuring the prompt delivery of services and efficient task completion. This
paper explores various scheduling techniques, including static, dynamic, and
hybrid schedulers, and compares their objectives and performance.
Additionally, the study examines two prominent data processing
frameworks, Hadoop and Spark, and compares their capabilities in handling
big data in smart cities. With its ability to process large amounts of data
quickly and efficiently, Spark has shown superiority over Hadoop in real-
time data processing and performance optimization. The paper concludes by
highlighting the strengths and limitations of each framework. It discusses the
need for further research in optimizing scheduling techniques and exploring
hybrid artificial intelligence scheduling for Spark. Overall, the findings
contribute to a better understanding of data processing in real-time and
provide insights for researchers and practitioners in smart cities.

Keywords:

Big data
Hadoop
Scheduling
Smart city
Spark

This is an open access article under the CC BY-SA license.

Corresponding Author:

Mohamad Khairi Ishak
School of Electrical and Electronic Engineering, Universiti Sains Malaysia (USM)
Nibong Tebal, Pulau Pinang, 14300, Malaysia
Email: khairiishak@usm.my

1. INTRODUCTION

In today’s world, data growth is reaching new highs based on the recent statistics that by the year
2050, almost 70% of the world population will live in cities. Due to this very reason development of smart
cities is extremely necessary. It will be possible to provide smart, efficient, and enhanced solutions by
building these smart cities. This all can be done by a smart structure built up. As the towns are getting
converted into smart domain form and there is advent in other forms of modern technology, that leads to the
rise of the smart city (SC) is gaining much attention; it is now being seen as a new paradigm of intelligent
city development and sustainable socio-economic growth [1], [2]. To enhance the quality of life, smart city
proposes a novel approach to the design and operation of urban infrastructure, including infrastructure for
housing, transportation, public services, utilities, health care, and more.

Smart cities are those in which human capital and information and communication technology
investments lead to long-term economic development and good quality of life [3]. Cities are therefore
necessary for tackling significant public and financial challenges, such as low carbon expansion, emission
reduction, energy efficiency, shared energy resources, economic development, and more [4]. The reason
behind moving to smart cities is that they can provide services on a citizen-demand basis. In this way, their

  ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 13, No. 1, February 2024: 453-464

454

needs are responded to in a better way by the organizations and businesses. Two basic requirements to attain
these personalized services include the ability to understand the user’s current needs and to adapt later on
concerning changes in the user’s behavior. To serve this purpose, data analysis is needed. However, the
precise timing in the placement and occurrence of this analysis is highly crucial. This smart setup must
become a reality by appropriately utilizing internet-embedded devices. These devices include sensors and
electronics capable of communicating with each other via a network. However, these devices generate a
massive amount of heterogeneous data named big data [5]–[7].

The number of devices that are data-producing in smart cities has expanded dramatically throughout
the globe, and it will not be wrong to mention that smart cities are one of the primary sources [8]. Since then,
the world's information output has skyrocketed, leading to a new phenomenon known as big data. Big data is
a term used to describe very massive and complicated datasets that cannot be processed using conventional
methods [9]. Such an extensive data set is a significant barrier to traditional data processing methods. Google
launched one of the practical frameworks for processing massive data, MapReduce, in 2004 [10], [11]. It is
scalable, dependable, and has excellent fault tolerance. In addition, Apache Hadoop is a free, open-source
software framework. This framework has dominated big data analysis due to its popularity in many areas,
such as the utilization of all the possible hardware resources available regardless of the computing resource
from a single server to thousands of serves, a Huge amount of data processed in parallel, fault tolerance, and
network load balancing. Companies such as Google, Facebook, and Amazon, have a vast amount of data that
require processing to filter out valuable data. Handling this massive amount of data from smart cities is a
byword in the current computing area. Since conventional boundaries of the smart city have expanded,
allowing for predicting emergency events and real-time management using new technology in an innovative
city system, both of which were previously impossible to achieve. Because competent resources are so
crucial in the aftermath of an incident, the effectiveness with which they are allocated and scheduled is a
critical indicator of any response capability [12], [13]. Many researchers are working to find ways and means
to handle this big data efficiently.

This paper's significant contribution is to examine scheduling techniques in Hadoop and Spark that
may be applied in a Smart Cities Environment. This review will fulfill the following objectives: i) provide an
overview of smart cities, including their significance and benefits; ii) discuss and analyze the challenges of
processing the massive amounts of data smart cities generate; iii) a detailed comparison of Hadoop and Spark
scheduling techniques for big data analysis; iv) identify research gaps in current data processing techniques,
future research directions and open research issues in real-time big data processing scheduling techniques.
The scientific significance of this review paper is that it will help the researchers understand the need to
develop algorithms and techniques that can help in the prosperity of smart cities and similar systems,
eventually leading to the betterment of humanity.

The division for the rest of the paper is as follows; section 2 explains the smart city and its few
characteristics. Section 3 presents the processing of real-time data techniques. The Spark and its comparison
with the Hadoop are discussed in section 4. Finally, the paper is concluded along with future
recommendations in section 5.

2. SMART CITY

A smart city should be able to optimize the utilization of all of its assets, both the material (such as
transportation systems, energy distribution networks, and natural resources) and immaterial (such as human
capital, the intellectual capital of companies, and organizational capital in public administration bodies) in
real-time Flood, fire, earthquake emergency rescue and disaster relief, anti-terrorism, remote control of
hazardous areas, and so on are some of the many potential uses [14]. In contrast to renewable resources (such
as solar, wind, and geothermal energy), nonrenewable resources (such as petroleum) will finish over time
because of the concept of depletion. In recent decades, experts have promoted the ideas of smart energy [15],
green energy [16], and sustainable energy [17] to raise awareness of challenges and develop the best energy
usage practices. A smart city has several characteristics, including the transfer of technological,
infrastructural, and managerial procedures from rural to urban settings.

2.1. Characteristics of smart cities

Specific characteristics, keynotes, and organizational frameworks characterize smart cities; the idea
behind this theme is the foundation of a modern, technologically advanced metropolis. A few of the smart
city services are given in Figure 1. The figure highlights various features of a smart city, including the
education system, health system, daily utility management, smart transportation, government sector, and
public sector. The explanations below elaborate on these features, showcasing how technology and data-
driven solutions enhance urban life.

Bulletin of Electr Eng & Inf ISSN: 2302-9285 

The scheduling techniques in the Hadoop and Spark of smart cities environment: a … (Nada Masood Mirza)

455

Figure 1. Smart city services

2.1.1. Smart energy (sustainable resources)
The concept of sustainability has maintained its prominence throughout the development of the

smart city [18]–[20]. Preserving energy and natural resources is critical for a smart city to function
sustainably [21]–[23]. In the early days of the smart city movement, enhancing residents' comfort was a
primary focus. To address these issues, various cities throughout the world ran trials. Intelligent lighting has
been the attention of specific studies. Citizens may adjust the brightness of the ten thousand sensor-equipped
streetlights to suit their needs. The goal is to reduce power consumption by approximately 70% [24].

Smart energy is appealing more since it promotes an all-encompassing approach to coordinating
environmentally friendly power, maintainable energy, and a sustainable power source. The goal of eco-
friendly energy is to use fuel with minimal environmental impact and the least negative natural
consequences. An alternative energy source that does not deplete the planet's resources over time is the best
option for meeting the world's energy needs. Increased focus on energy needs has led to a rise in the
popularity of renewable energy sources. Much research is going on to integrate renewable energy sources
into intelligent buildings. Smart buildings may use renewable energy, or the existing infrastructure can
incorporate renewable energy plants. There is a proposal for a microgrid control framework that integrates a
photovoltaic (PV) power source with a significant energy storage unit [25]. Similarly, Jia et al. [26] propose
combining solar and wind power to decrease the dependency on critical energy resources.

2.1.2. Smart transportation

Accessibility at regional and international levels and the availability of cutting-edge,
environmentally friendly transportation technologies all fall under the term smart transportation [27], [28].
The need for reliable modes of transportation dates back to the dawn of civilization. As technology has
progressed, all modes of transportation, including land, sea, rail, and air, must follow the same stipulation.
Neither the world's traditional transportation strategy nor its components were linked or interlinked. A
cutting-edge linked system has replaced the conventional transportation system due to the concept of
everyday interfacing devices. Therefore, modern automobiles are part of various communication and route
frameworks. All the automobiles that participate in a particular transmission are linked together. Several
standalone transporters are connected to form a global transportation system by increasing the connections
inside a single transporter. Intelligent transportation systems (ITS) have given much thought to the ad hoc
vehicle network (VANET) [29]. VANET has widely used vehicle-to-vehicle (VV) and VV-to-infrastructure
(VI) communication capabilities to manage rural traffic. Using the new transportation framework metrics to
ensure the metropolitan area's viability comes at the expense of the residents' happiness [30].

2.1.3. Smart healthcare

The present healthcare system is struggling to keep up with the demands of a rapidly expanding
population. Furthermore, the issue worsens because medical staff numbers have not increased with
population growth. As a result, the healthcare expectations and the delivery gap widen due to a lack of
resources and high demand. To meet the need and improve the quality of administration, current innovative
well-being administrations use sensor organizations, ICT, distributed computing, computer fog, cell phone
applications, and incredible information handling systems [31]. Integrating electronic clinical records (ECRs)
further allows for timely decisions with the most up-to-date information [32]. Another method of achieving
satisfactory portable well-being in metropolitan areas was given by [33].

Smart City

Education
System

Health System

Daily Utilities
Management

Smart
Transportation

Governement
Sector

Public Sector

  ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 13, No. 1, February 2024: 453-464

456

2.1.4. Waste management
Rapid urbanization and increased manufacturing have contributed to a rise in waste production.

Effective waste management is possible via the cooperation of the workforce, municipal authorities, and
private businesses [34]. There are four main phases of waste management, and they are as follows: waste
collection, waste removal, waste reuse, and waste recovery. Poor and unmanaged waste management
generates challenges in human health and the environment [35], making trash management essential for the
economic development of smart urban areas.

3. THE PROCESSING OF DATA IN REAL-TIME
The problem of processing extensive data becomes increasingly difficult as data volume and

diversity both rise. For efficient analytics, it is necessary to have access to the information within this time
frame. For instance, real-time data processing is essential in a traffic monitoring system that constantly tracks
millions of cars. This processing helps in locating alternative routes and calculating arrival times. Timeliness
is of the utmost significance in this context since a mistake or delay might result in the misrouting of an
ambulance, putting lives at risk. With more and more people needing access to decision-making tools in real-
time, timeliness has emerged as a crucial indicator of data quality. Therefore, having enough time to handle
massive amounts of data in real-time is vital. As a bonus, the timely nature of big data might aid in analyzing
event streams to enable real-time decision-making. Therefore, the diverse data sets provided by many data
sources must be integrated into a unified analytical platform to minimize potential delays in real-time
processing [36]–[39]. The flowchart of data processing in real-time is given in Figure 2. It begins with real-
time data collection from various sources in the city. A framework is then selected to handle the collected
data efficiently. Big data analysis is conducted to derive insights and identify patterns. Finally, optimized
smart city services, such as smart transportation, energy management, waste management, and more, are
implemented based on the analysis. This systematic approach leverages technology and data to improve
urban living.

Real-time data processing is essential for maximizing the effectiveness of smart city services.
However, effective scheduling becomes crucial to guarantee the prompt delivery of services and the effective
completion of tasks. Tasks are prioritized and efficient timetables for various processes are created using
scheduling algorithms and policies. In complex real-time operations, scheduling is especially important for
ensuring punctuality and meeting requirements. A schedule that meets most requirements for a particular set
of processes is considered optimal in this context.

Figure 2. Real-time data processing flow chart

3.1. Scheduling
A scheduler will prioritize the tasks using an algorithm or policy. The job of a scheduler is to create

a timetable for a group of processes. A process set is realistic if it can timetable itself to meet specific
requirements. Complex real-time periodic operations often need a guarantee of punctuality. An optimum

Real-time data
collection

Selection of
framework

Big Data
analysis

Optimized Smart
City sevices

Bulletin of Electr Eng & Inf ISSN: 2302-9285 

The scheduling techniques in the Hadoop and Spark of smart cities environment: a … (Nada Masood Mirza)

457

schedule is a schedule that meets most of the specified requirements for a given set of processes. In most
cases, a scheduler is optimum if it can schedule every possible collection of operations [40]. Static and
dynamic [41] are two ways to categorize scheduling algorithms.

3.1.1. Static scheduler

Static scheduling, in which a schedule is generated offline. All scheduling decisions, such as when
to execute each operation or send each message, are contained in the program. During runtime, a simple
dispatcher distributes jobs based on the schedule. Static scheduling is sometimes known as time-triggered
scheduling [42]. All scheduling choices are stored in a table for usage at runtime. It is only possible to do this
with previous information on how the process works. Therefore, this plan can only function if all operations
are genuinely periodic. Although it demands insight into a process's traits beforehand, the overhead it
imposes during execution is negligible. Real-time shortest job first (SJF) and rate monotonic (RM) are
appropriate algorithms for static process scheduling. In both algorithms, priority is allocated depending on
the deadline and time required to finish the task [43].

3.1.2. Dynamic scheduler

On the other hand, a dynamic approach establishes schedules during execution, providing a more
adaptable system capable of handling unanticipated occurrences. It is plausible to claim that in safety-critical
systems, all events should be predictable, and stimulability should be the primary concern before any action;
this means it needs a scheduling method that is entirely unchanging across time. Online schedulers make
scheduling choices while the system is actively running. It can be both static and active. These choices are
grounded in the process context's past and present state—the current systemic condition. The term
clairvoyant refers to a planner or scheduler. Two commonly used dynamic schedulers in real-time systems
are the least slack time first (LST) and the earliest deadline first (EDF). In these algorithms, priority is
decided based on slack time and deadlines of the given processes. These both are considered more suitable
for soft real-time operating systems [43]. The objectives for the few static and dynamic scheduler algorithms
are discussed in Table 1.

Table 1. Static and dynamic scheduler algorithms
Category Algorithm Objectives achieved

Static Highest level first with estimated
Time [44]

Minimized running time
It simplified the list scheduling algorithm

Critical path on a processor [44] They limited the cost of computation and time consumed
Constrained earliest finish time [45] Reduction in implementation time
Multipriority queueing genetic [46] It decreased the execution time for subtasks
Parallelism-based earliest finish time [47] It reduced the finish time

Dynamic

Dynamic level scheduling [48] It decreased scheduled time
Dynamic task scheduling [49] Less complicated, and less time is taken to finish the tasks
Dynamic load balancing using genetic algorithms
[50]

Optimized load balancing and processor consumption along
with high speed

New response time bounds for fixed priority [51] Better response time
Load-based schedulability [52] Scheduling based on priority

3.1.3. Hybrid scheduler

Schedulers may be either preemptive or non-preemptive. In most cases, pre-emption happens when
a process with a higher priority becomes executable. As a result of pre-emption, a procedure might go on
hold without the participant's consent. It is not the practice of non-preemptive schedulers to temporarily
suspend running tasks; however, it can manage concurrency for processes running inside a resource with
mutually exclusive access [53].

It's also feasible to use a hybrid system. A scheduler can have a pre-emptive design while allowing
processes to work in less time and then put them on hold; it may define an immutable block of code that
another method cannot bypass. For instance, the program may poll the system clock for the current time, use
that to determine how much of a delay is required, and then implement that delay. If the process could pause
between reading the clock and performing the hold, it would be impossible to write such code. Using caution
while implementing code that uses delayed pre-emption primitives is essential. The ensuing blocking must be
limited and minor-often of the same order of magnitude as the overhead of context switching. The computer's
scheduler uses this strategy to enable a rapid context switch; the switch operates up to 50 processor cycles to
postpone itself; as a result, the context to be moved is short, and only ten additional cycles can accommodate
the modified context [54].

  ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 13, No. 1, February 2024: 453-464

458

3.2. Previous works
Numerous studies have been conducted on task scheduling, exploring various algorithms and

models. One notable study by Liu and Layland in 1973 [55] focused on the earliest-deadline-first (EDF)
scheduling algorithm and fixed priority (FP) scheduling. They investigated these algorithms using the
ordinary periodic job model, without self-suspensions and demonstrated that EDF is an optimum approach to
meeting commitments. Additionally, they established the superiority of the rate-monotonic (RM) scheduling
algorithm among FP techniques.

Another study in [56], [57] centered around configuring and scheduling emergency resources during
fire catastrophes. They developed a dynamic model to analyze and address this critical aspect. Similarly,
constructed emergency resource scheduling models, considering factors such as arbitrary initial time for
rescue operations and a fixed number of rescuers [57], [58]. In 2010 Sandholm and Lai [59] proposed a
dynamic proportional share scheduler. This scheduler is an enhancement to Hadoop schedulers that gives the
volume quality of service (QoS) to diverse users based on priority. This process allows the handler to choose
tasks and schedule them according to their preference. Change in the allocated resources based on the work
requirements is also doable. This scheduler becomes fair in case of no users and resource requirements.

In 2016, Zacheilas and Kalogeraki [60] introduced a cost-effective scheduling technique. This
strategy aims to meet financial constraints while also improving task completion time. This method
implements the Pareto approach. This scheduler aids in decreasing completion time and giving better
throughput. One aspect that influences a cluster's overall performance is Job response time. This aspect
inspires Zaharia et al. [61] to suggest a longest approximate time to end (LATE) scheduling algorithm to
improve response time. This method processes the backup task of a slow task on a separate node. Various
factors, including increased CPU usage and the sluggishness of background tasks, are the reason behind the
task's slow progress.

Locality-aware reduced task scheduling (LARTS) [62]. This algorithm aims to enhance data
localization, and as a result, there is minimum network traffic. This study also addressed premature shuffle
concerns. Although early shuffle improves performance and reduces turnaround time, it also burdens the
network. Therefore, LARTS requested that the shuffle begins once the specific addressing processing is
done; the sweet spot is the name for the beginning point of the shuffle. In 2012, Guo et al. [63] proposed
delay scheduling, which addresses the disadvantage of the fair scheduler by attempting to remove the
difficulties of locating the tasks. When a request for a new task enters delay scheduling, it finds the job that
meets the equality constraints and does not assign the job if conditions are not fulfilled.

Table 2 presents a comprehensive comparison of the discussed techniques with other approaches.
The table provides a detailed evaluation of various factors, such as performance metrics, scalability, resource
utilization, and adaptability. By comparing the discussed techniques with alternative methods, this analysis
offers insights into the strengths and limitations of each approach, aiding researchers and practitioners in
selecting the most suitable scheduling technique for their specific requirements.

Table 2. Scheduler techniques comparison table
 Resolved issues Throughput

Response
time

Execution
time

Energy
efficient

Dynamic proportional share scheduler [59] Fairness ✗ ✗ ✓ N/A
Longest approximate time to end (LATE) [61] Speculative

execution ✗ ✓ ✗ N/A

Delay scheduling [63] Data locality and
fairness ✓ ✓ ✗ N/A

Cost-effective scheduling technique [60] Data locality ✓ ✗ ✗ N/A
Locality-aware reduces task scheduling (LARTS) [62] Data locality ✗ ✓ ✗ N/A
Parental prioritization-based task scheduling algorithm [64] Fairness N/A N/A ✓ ✗
Modified particle swarm optimization algorithm [63] N/A N/A N/A ✓ ✗
A hybrid of genetic and particle swarm optimization [65] N/A ✗ N/A ✓ ✓

3.3. Computable and decidable

The computational cost and complexity of scheduling for intricate systems are a genuine concern.
Online scheduling methods should avoid using scheduling algorithms with exponential complexity because
of their severe influence on the amount of time spent on application software. Furthermore, some scheduling
considerations are computationally intractable, making them inappropriate for offline scheduling. Therefore,
computability and decidability must be considered two aspects of computational complexity. The
computability of a schedule determines if a given schedule is feasible. At the same time, decidability helps to
assess whether a possible schedule exists [40].

Bulletin of Electr Eng & Inf ISSN: 2302-9285 

The scheduling techniques in the Hadoop and Spark of smart cities environment: a … (Nada Masood Mirza)

459

4. DATA PROCESSING FRAMEWORKS
In big data analytics, efficient data processing frameworks serve as the backbone of handling and

analyzing vast amounts of information, which includes the data generated by smart cities. These frameworks
provide the necessary tools and infrastructure to extract valuable insights from diverse data sources, enabling
cities to make data-driven decisions and optimize urban life. Hadoop and Spark are two prominent data
processing frameworks that have revolutionized the field and found extensive applications in smart cities.

4.1. Spark framework

Spark is an open-source framework for processing large amounts of data quickly and easily. This
approach debuted in 2009 at Berkeley and was officially adopted by Apache the following year. Iterative
algorithms in machine learning, interactive data analysis tools, and graph algorithms are all examples of
recursive systems that benefit from repetition [66]. As a result, the programmers developed the Spark
framework [67] to accommodate these programs while providing scalability and fault tolerance in the
MapReduce framework. Parallel operations on these datasets (referring to providing a function to utilize a
dataset) and resilient distributed datasets [68] are Spark's two primary abstractions for parallel scheduling.
Resilient distributed datasets were first made possible by Spark (RDDs). Distributed read-only datasets
(RDDs) are groups of read-only items kept on many computers but can quickly reassemble in case of
partition removal. It allows the user to store the RDD in the machines' memory and run the parallel process,
such as MapReduce, many times. As a result, Spark excels in processing recursive algorithms on
datasets [69], [70].

4.2. Hadoop vs Spark

Aziz et al. [71] analyzed Twitter data using the Spark platform in 2018. It took one second to
explore all the tweets on Spark. This research has centered on the author's examination of the actual
execution and completion of the standard Hadoop MapReduce framework, as well as the implementation of
the Apache Spark framework. Experiment simulations are also run to determine actual-time data utilizing
Spark and Hadoop. In addition, there is a discussion of Hadoop's constraints and benefits when it comes to its
implementation in the real-time process. Finally, there is a simulation comparison regarding speed for both
frameworks. All that shows that Spark is a powerful tool for processing real-time data streams.

In 2017 Hazarika et al. [72] evaluated the theoretical and practical differences between the Spark
and Hadoop systems. From what they've seen in their studies, Spark's cache benefits from repeated queries
like logistic regression and makes them significantly quicker. On the other hand, Spark's performance is
weak for nonrepetitive queries because of the small cache size. Small iterations, however, benefit
considerably from Hadoop's speed.

In 2015, Gopalani and Arora [73] examined two large data processing frameworks, Hadoop and
Spark. To put it another way, they used Hadoop and Spark to apply the K-means algorithm, a fundamental
machine learning technique, using a dataset comprised of sensor data and then comparing the two platforms'
respective execution times. Data showed that Spark performed better than Hadoop in real-world scenarios.
Furthermore, Gu and Li [74] conducted another comparison of memory needs and processing times for the
Hadoop and Spark systems. The PageRank algorithm was implemented in several network datasets in the
same study. According to the findings, Spark used more memory while simultaneously taking less time to
execute, as impressive is the fact that Spark is 73% faster than Hadoop when dealing with massive datasets.

In 2013 Zaharia et al. [75] used logistic regression to examine the Hadoop and Spark frameworks.
The author of this study focused on a subset of software programs that recycle data from an active, dynamical
database using a multi-threaded, parallel architecture. These include many iterative machine-learning
algorithms and interactive data analysis tools. Spark introduces an abstraction known as resilient distributed
datasets (RDDs) to help achieve these objectives. Spark can beat Hadoop by a factor of ten in repeated
machine learning tasks, and it can be used interactively on a 39 GB query dataset with a response time of less
than one second. According to the findings of this article, Spark is the preferable option.

Liang et al. [76] compared Hadoop, Spark, and big dataMPI in terms of execution speed, memory
footprint, and central processing unit consumption in 2014. The author uses Big Data Bench, a benchmark
suite for large data sets, to conduct in-depth analyses of Spark, DataMPI, and Hadoop's resource use
characterizations and performance. In these investigations, DataMPI delivered a 57% improvement over
Spark. Furthermore, it has improved Hadoop by 50% regarding job implementation time. DataMPI's main
advantages were its efficient communication mechanisms and its high throughput. In addition, DataMPI
makes better use of its resources (disc, CPU, network I/O, and memory) than the other two structures and
frameworks. As a result, the MPI platform outperformed both Spark and Hadoop, and Spark even surpassed
Hadoop.

Mavridis and Karatza [77] assessed the performance of log file analysis using both Hadoop and
Spark. They have looked at log file analysis using the cloud computing frameworks Apache Hadoop® and

  ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 13, No. 1, February 2024: 453-464

460

Apache Sparks. The authors have enhanced the log file analysis in both frameworks so that they can handle
real-world data from the Apache Web Server. They have also conducted other tests with varied parameters to
evaluate and contrast the two frameworks and structures. Im and Moseley [78] used MapReduce to examine
conditional lower bounds on graph connectedness. This research discovered the possible problems that don't
allow efficient external algorithms to integrate into MapReduce. This study also answers a fundamental
research question: how to tell whether a graph has a closed cycle. In particular, they examine the issue of
designing an algorithm to determine whether or not two unconnected processes exist in a given network. This
challenge aims to verify the graph's global structure so that all local graph parts are equivalent. They identify
the natural class of algorithms that can only transfer/store/process data and information in paths, proving that
no random algorithm can answer the question in a sublogarithmic number of rounds. Kodali et al. [79] work
on a k-NN-based method using MapReduce for meta-path categorization in heterogeneous information
networks. The authors of this study used the Passim similarity measure in a Heterogeneous Information
Network to classify the meta-paths uncovered by applying the well-known MapReduce paradigm to the
problem of locating k-nearest neighbors. Moreover, they figured out the classification technique to deal with
the massive data found in HINs using MapReduce.

Wang et al. [80] conducted a study on MapReduce task programming with excessive energy
consumption in heterogeneous clusters; as a result, there was a task programming framework for
heterogeneous groups that considered resource utilization, deadlines, and data locality to keep energy costs to
a minimum. The framework includes updates to the slot list, new task lists, and scheduling. In addition, a
proposal for a novel job sequence to create a rational list of jobs and tasks based on factors like expected
work processing times, available job slots, and due dates. Wei et al. [81] introduced a MapReduce-centric
clustering method for handling large datasets. Their study compared and contrasted the MapReduce
implementation of the Canopy method with the widely used K-means algorithm. By evaluating their
performance and effectiveness in clustering large datasets, Wei et al. [81] shed light on the advantages and
limitations of these approaches.

In a related study, Roger et al. [82] proposed a preemptive fair scheduler strategy for the disco
MapReduce architecture. They explored how the Preemptive Fair Scheduler Policy impacted job execution
times in both experimental production and research settings. While the strategy proved beneficial in reducing
execution times for production jobs, it had a negative impact on research jobs. The author provided insights
into the trade-offs and considerations of implementing the Preemptive Fair Scheduler Policy.

Jang et al. [83] proposed investigating k-nearest neighbor input initialization for neural network
inversion. This study reveals a fresh way of initializing the input variables of neural networks, centered on
the k-nearest neighbor technique (k-NN). The proposed method finds inputs that generate an outcome near a
target output within a training dataset and combines them to form the starting input variables. Chen et al. [84]
performed quick peak density clustering for large-scale data emphasizing kNN. The proposed methodology,
computed using a fast kNN algorithm like a cover tree, significantly improves over the previous method of
computing density using kNN-density. It uses kNN-density and a quick form to differentiate between local
and nonlocal density peaks.

Janardhan and Samuel [85] investigated the optimal parallelism in the Spark architecture on Hadoop
yet another resource negotiator (YARN) to get the most out of the cluster's resources. This research suggests
the best parallelism conformation and configuration for an Apache Spark architecture deployed on a Hadoop
YARN cluster. However, the concepts depend on the studies' findings that examine the reliance on
parallelism at each level of Spark application performance. A zone-based resource allocation technique called
Zebras enhances Spark's efficiency in a heterogeneous cluster and has also been proposed; by proposing and
implementing this technique, optimizing resource utilization and allocation within the Spark cluster
ultimately improves its overall performance.

According to Hussain and Surendran [86], efficient content-based fast-response picture retrieval is
explored using the MapReduce and Spark model framework. The authors leverage the MapReduce model
structure to sign efficiently and index massive volumes of photos, enabling fast retrieval based on content.
Furthermore, in 2021, Mostafaeipour et al. [87] adopted Spark as a proportional method for recovering the
index, operating on the upper layer of the MapReduce framework and utilizing the Hadoop distributed file
system (HDFS). Their work focuses on efficient index recovery using Spark's capabilities within the
MapReduce ecosystem.

In addition to the insights provided, Table 3 further reinforces the key differences between Spark
and Hadoop. The table highlights specific research gaps and indicates whether each gap is present in Spark or
Hadoop. This comprehensive comparison aids in understanding the unique strengths and limitations of each
framework, enabling researchers and practitioners to make informed decisions regarding their data
processing needs in the context of smart cities.

Bulletin of Electr Eng & Inf ISSN: 2302-9285 

The scheduling techniques in the Hadoop and Spark of smart cities environment: a … (Nada Masood Mirza)

461

Table 3. Data processing aspects comparison table
Aspect Spark Hadoop

Performance optimization ✓ ✗
Cache and query optimization ✓ ✗
Memory usage and processing time ✓ ✗
Machine learning performance ✓ ✗
Resource utilization ✓ ✗
Log file analysis performance ✓ ✗
Mapreduce efficiency ✗ ✓
Energy efficiency ✓ ✗

5. CONCLUSION
As the world merges toward the era of smart cities highly dependent on IoT and Web Apps. Smart

cities are gaining popularity as they positively impact a country’s economy. Intelligent and rapid decision-
making are critical requisites of a sophisticated smart city system. At the same time, this system generates
multiple files known as big data that revolve around the characteristics of the 3 V’s, which has led to the
recognition of a great problem. New ideologies, strategies, and frameworks must be introduced to
constructively overcome the issue of handling and scheduling big data. This article provides an overview of a
thorough study of work done for scheduling techniques in the Hadoop and Spark environments. Dynamic
Scheduling is crucial to achieving high performance in extensive data processing. Data volume, diversity,
data velocity, security and privacy, cost, connectivity, and data sharing are just a few of the difficulties with
big data. From the conducted review, it can be easily said that the baseline is adequate for processing if the
data is static, and it is possible to wait until batch processing is finished. However, Spark has had an
advantage regarding real-time data processing in parallelism. It still needs extensive research to conclude that
Spark is the only solution for analyzing real-time streaming data.

Additionally, as demonstrated in the study, Spark could evaluate data quickly. Spark is a top-notch
memory processing technology that enables real-time streaming data processing on massive amounts of data.
Compared to Hadoop, Apache Spark is far more sophisticated. It supports several needs, including batch,
streaming, and real-time processing. In the future, schedule optimization can be done for Hadoop. For Spark,
it can be done by modifying various default parameter configuration settings, introducing new scheduling
techniques, and hybrid artificial intelligence scheduling.

ACKNOWLEDGEMENTS

The authors would like to acknowledge the School of Electrical and Electronic Engineering,
Universiti Sains Malaysia (USM).

REFERENCES
[1] J. M. Shapiro, “Smart Cities: Quality of Life, Productivity, and the Growth Effects of Human Capital,” Review of Economics and

Statistics, vol. 88, no. 2, pp. 324–335, May 2006, doi: 10.1162/rest.88.2.324.
[2] A. Luberg, T. Tammet, and P. Järv, “Smart City: A Rule-based Tourist Recommendation System,” in Information and

Communication Technologies in Tourism 2011, Vienna: Springer Vienna, 2011, pp. 51–62, doi: 10.1007/978-3-7091-0503-0_5.
[3] A. Caragliu, C. Del Bo, and P. Nijkamp, “Smart cities in Europe,” Journal of Urban Technology, vol. 18, no. 2, pp. 65–82, 2013,

doi: 10.4324/9780203076224.
[4] X. Gong, F. Dong, M. A. Mohamed, O. M. Abdalla, and Z. M. Ali, “A Secured Energy Management Architecture for Smart

Hybrid Microgrids Considering PEM-Fuel Cell and Electric Vehicles,” IEEE Access, vol. 8, pp. 47807–47823, 2020, doi:
10.1109/ACCESS.2020.2978789.

[5] J. Chin, V. Callaghan, and I. Lam, “Understanding and personalising smart city services using machine learning, The Internet-of-
Things and Big Data,” in 2017 IEEE 26th International Symposium on Industrial Electronics (ISIE), IEEE, Jun. 2017, pp. 2050–
2055, doi: 10.1109/ISIE.2017.8001570.

[6] M. M. Rathore, A. Ahmad, and A. Paul, “IoT-based smart city development using big data analytical approach,” in 2016 IEEE
International Conference on Automatica (ICA-ACCA), IEEE, Oct. 2016, pp. 1–8, doi: 10.1109/ICA-ACCA.2016.7778510.

[7] A. Z. Abualkishik, “Hadoop and big data challenges,” Journal of Theoretical and Applied Information Technology, vol. 97, no.
12, pp. 3488–3500, 2019.

[8] Q. Duan et al., “Optimal Scheduling and Management of a Smart City Within the Safe Framework,” IEEE Access, vol. 8, pp.
161847–161861, 2020, doi: 10.1109/ACCESS.2020.3021196.

[9] M. Chen, S. Mao, and Y. Liu, “Big Data: A Survey,” Mobile Networks and Applications, vol. 19, no. 2, pp. 171–209, Apr. 2014,
doi: 10.1007/s11036-013-0489-0.

[10] J. Dean and S. Ghemawat, “MapReduce,” Communications of the ACM, vol. 51, no. 1, pp. 107–113, Jan. 2008, doi:
10.1145/1327452.1327492.

[11] A. Ali, N. M. Mirza, and M. K. Ishak, “A New Merging Numerous Small Files Approach for Hadoop Distributed File System,” in
2022 19th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information
Technology (ECTI-CON), IEEE, May 2022, pp. 1–4, doi: 10.1109/ECTI-CON54298.2022.9795369.

  ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 13, No. 1, February 2024: 453-464

462

[12] N. Komninos, H. Schaffers, and M. Pallot, “Developing a Policy Roadmap for Smart Cities and the Future Internet,” eChallenges
e2011, pp. 1–8, 2011.

[13] A. Jones and A. Kovacich, Emergency Management, 2nd Edition. New York: Routledge, 2012, doi: 10.1201/b11887.
[14] T. Nam and T. A. Pardo, “Smart city as urban innovation,” in Proceedings of the 5th International Conference on Theory and

Practice of Electronic Governance, New York, NY, USA: ACM, Sep. 2011, pp. 185–194, doi: 10.1145/2072069.2072100.
[15] H. Lund, B. Vad Mathiesen, D. Connolly, and P. A. Østergaarda, Renewable energy systems - A smart energy systems approach

to the choice and modelling of 100 % renewable solutions, vol. 39, no. Special Issue. 2014, doi: 10.3303/CET1439001.
[16] O. B. Mora-Sanchez, E. Lopez-Neri, E. J. Cedillo-Elias, E. Aceves-Martinez, and V. M. Larios, “Validation of IoT Infrastructure

for the Construction of Smart Cities Solutions on Living Lab Platform,” IEEE Transactions on Engineering Management, vol. 68,
no. 3, pp. 899–908, Jun. 2021, doi: 10.1109/TEM.2020.3002250.

[17] S. Chu and A. Majumdar, “Opportunities and challenges for a sustainable energy future,” Nature, vol. 488, no. 7411, pp. 294–
303, Aug. 2012, doi: 10.1038/nature11475.

[18] G. C. Lazaroiu and M. Roscia, “Definition methodology for the smart cities model,” Energy, vol. 47, no. 1, pp. 326–332, Nov.
2012, doi: 10.1016/j.energy.2012.09.028.

[19] L. Guan, “Smart steps to a battery city,” Government News, vol. 32, no. 2, pp. 24–27, 2012.
[20] J. Yang, Y. Kwon, and D. Kim, “Regional Smart City Development Focus: The South Korean National Strategic Smart City

Program,” IEEE Access, vol. 9, pp. 7193–7210, 2021, doi: 10.1109/ACCESS.2020.3047139.
[21] S. P. Mohanty, U. Choppali, and E. Kougianos, “Everything you wanted to know about smart cities: The Internet of things is the

backbone,” IEEE Consumer Electronics Magazine, vol. 5, no. 3, pp. 60–70, Jul. 2016, doi: 10.1109/MCE.2016.2556879.
[22] F. Herraiz Faixó, F. J. Arroyo-Cañada, M. P. López-Jurado, and A. M. Lauroba Pérez, “Digital assets Horizon in smart cities:

Urban congestion management by IoT, Blockchain/DLT and human reinforcement,” Advances in Intelligent Systems and
Computing, vol. 894, pp. 63–82, 2020, doi: 10.1007/978-3-030-15413-4_6.

[23] R. Kitchin, “The real-time city? Big data and smart urbanism,” GeoJournal, vol. 79, no. 1, pp. 1–14, Feb. 2014, doi:
10.1007/s10708-013-9516-8.

[24] L. Sanchez et al., “SmartSantander: Experimentation and service provision in the smart city,” International Symposium on
Wireless Personal Multimedia Communications, WPMC, pp. 1–6, 2013.

[25] D. Puiu et al., “CityPulse: Large Scale Data Analytics Framework for Smart Cities,” IEEE Access, vol. 4, pp. 1086–1108, 2016,
doi: 10.1109/ACCESS.2016.2541999.

[26] G. Jia, G. Han, J. Jiang, N. Sun, and K. Wang, “Dynamic Resource Partitioning for Heterogeneous Multi-Core-Based Cloud
Computing in Smart Cities,” IEEE Access, vol. 4, pp. 108–118, 2016, doi: 10.1109/ACCESS.2015.2507576.

[27] J. Ha, M. Kambe, and J. Pe, Data Mining: Concepts and Techniques, 3rd editio. Amsterdam: Morgan Kaufmann is an imprint of
Elsevier, 2011, doi: 10.1016/C2009-0-61819-5.

[28] J. Han, C. Choi, W. Park, I. Lee, and S. Kim, “Smart home energy management system including renewable energy based on
ZigBee and PLC,” IEEE Transactions on Consumer Electronics, vol. 60, no. 2, pp. 198–202, May 2014, doi:
10.1109/TCE.2014.6851994.

[29] V. Fernandez-Anez, J. M. Fernández-Güell, and R. Giffinger, “Smart City implementation and discourses: An integrated
conceptual model. The case of Vienna,” Cities, vol. 78, pp. 4–16, Aug. 2018, doi: 10.1016/j.cities.2017.12.004.

[30] I. Ahmed, H. Karvonen, T. Kumpuniemi, and M. Katz, “Wireless Communications for the Hospital of the Future: Requirements,
Challenges and Solutions,” International Journal of Wireless Information Networks, vol. 27, no. 1, pp. 4–17, Mar. 2020, doi:
10.1007/s10776-019-00468-1.

[31] A. Stratigea, C.-A. Papadopoulou, and M. Panagiotopoulou, “Tools and Technologies for Planning the Development of Smart
Cities,” Journal of Urban Technology, vol. 22, no. 2, pp. 43–62, Apr. 2015, doi: 10.1080/10630732.2015.1018725.

[32] A. Ojo, E. Curry, T. Janowski, and Z. Dzhusupova, “Designing Next Generation Smart City Initiatives: The SCID Framework,”
2015, pp. 43–67, doi: 10.1007/978-3-319-03167-5_4.

[33] V. Stepaniuk, J. Pillai, B. Bak-Jensen, and S. Padmanaban, “Estimation of Energy Activity and Flexibility Range in Smart Active
Residential Building,” Smart Cities, vol. 2, no. 4, pp. 471–495, Nov. 2019, doi: 10.3390/smartcities2040029.

[34] J. Engelbert, L. van Zoonen, and F. Hirzalla, “Excluding citizens from the European smart city: The discourse practices of
pursuing and granting smartness,” Technological Forecasting and Social Change, vol. 142, pp. 347–353, May 2019, doi:
10.1016/j.techfore.2018.08.020.

[35] D. Wang, B. Bai, K. Lei, W. Zhao, Y. Yang, and Z. Han, “Enhancing Information Security via Physical Layer Approaches in
Heterogeneous IoT With Multiple Access Mobile Edge Computing in Smart City,” IEEE Access, vol. 7, pp. 54508–54521, 2019,
doi: 10.1109/ACCESS.2019.2913438.

[36] C. L. P. Chen and C.-Y. Zhang, “Data-intensive applications, challenges, techniques and technologies: A survey on Big Data,”
Information Sciences, vol. 275, pp. 314–347, Aug. 2014, doi: 10.1016/j.ins.2014.01.015.

[37] Z. Zheng, P. Wang, J. Liu, and S. Sun, “Real-time big data processing framework: Challenges and solutions,” Applied
Mathematics and Information Sciences, vol. 9, no. 6, pp. 3169–3190, 2015, doi: 10.12785/amis/090646.

[38] A. Katal, M. Wazid, and R. H. Goudar, “Big data: Issues, challenges, tools and Good practices,” in 2013 Sixth International
Conference on Contemporary Computing (IC3), IEEE, Aug. 2013, pp. 404–409, doi: 10.1109/IC3.2013.6612229.

[39] N. Khan et al., “Big Data: Survey, Technologies, Opportunities, and Challenges,” The Scientific World Journal, vol. 2014, pp. 1–
18, 2014, doi: 10.1155/2014/712826.

[40] N. Audsley, A. Burns, R. Davis, K. Tindell, and A. Wellings, “Real-Time System Scheduling,” in Predictably Dependable
Computing Systems, Berlin, Heidelberg: Springer Berlin Heidelberg, 1995, pp. 41–52, doi: 10.1007/978-3-642-79789-7_3.

[41] S.-C. Cheng and J. A. Stankovic, “Scheduling Algorithms for Hard Real-Time Systems--A Brief Survey,” IEEE Transaction on
Software Engineering, pp. 150–173, 1988.

[42] J. Mäki-Turja, K. Hänninen, and M. Nolin, “Efficient development of real-time systems using hybrid scheduling,” Proceedings of
the 2005 International Conference on Embedded Systems and Applications, ESA’05, pp. 53–59, 2005.

[43] J. Teraiya and A. Shah, “Analysis of Dynamic and Static Scheduling Algorithms in Soft Real-Time System with Its
Implementation,” in Soft Computing: Theories and Applications, Singapore: SpringerLink, 2020, pp. 757–768, doi: 10.1007/978-
981-15-0751-9_69.

[44] H. Topcuoglu, S. Hariri, and Min-You Wu, “Performance-effective and low-complexity task scheduling for heterogeneous
computing,” IEEE Transactions on Parallel and Distributed Systems, vol. 13, no. 3, pp. 260–274, Mar. 2002, doi:
10.1109/71.993206.

[45] M. A. Khan, “Scheduling for heterogeneous Systems using constrained critical paths,” Parallel Computing, vol. 38, no. 4–5, pp.
175–193, Apr. 2012, doi: 10.1016/j.parco.2012.01.001.

Bulletin of Electr Eng & Inf ISSN: 2302-9285 

The scheduling techniques in the Hadoop and Spark of smart cities environment: a … (Nada Masood Mirza)

463

[46] Y. Xu, K. Li, T. T. Khac, and M. Qiu, “A Multiple Priority Queueing Genetic Algorithm for Task Scheduling on Heterogeneous
Computing Systems,” in 2012 IEEE 14th International Conference on High Performance Computing and Communication & 2012
IEEE 9th International Conference on Embedded Software and Systems, IEEE, Jun. 2012, pp. 639–646, doi:
10.1109/HPCC.2012.91.

[47] X. Wu, S. Cheng, S. Yuan, and Z. Wang, “A Parallelism-Based Earliest Finish Time (PBEFT) Algorithm for Workflow
Scheduling in Clouds,” in 2022 7th International Conference on Cloud Computing and Big Data Analytics (ICCCBDA), IEEE,
Apr. 2022, pp. 22–26, doi: 10.1109/ICCCBDA55098.2022.9778917.

[48] G. C. Sih and E. A. Lee, “Dynamic-level scheduling for heterogeneous processor networks,” in Proceedings of the Second IEEE
Symposium on Parallel and Distributed Processing 1990, IEEE Comput. Soc. Press, pp. 42–49, doi: 10.1109/SPDP.1990.143505.

[49] D. J. Lilja, L. Y. Kit, and B. Hamidzadeh, “Dynamic task scheduling using online optimization,” IEEE Transactions on Parallel
and Distributed Systems, vol. 11, no. 11, pp. 1151–1163, 2000, doi: 10.1109/71.888636.

[50] Seong-hoon Lee and Chong-sun Hwang, “A dynamic load balancing approach using genetic algorithm in distributed systems,” in
1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational
Intelligence (Cat. No.98TH8360), IEEE, 1998, pp. 639–644, doi: 10.1109/ICEC.1998.700103.

[51] N. Guan, M. Stigge, W. Yi, and G. Yu, “New Response Time Bounds for Fixed Priority Multiprocessor Scheduling,” in 2009
30th IEEE Real-Time Systems Symposium, IEEE, Dec. 2009, pp. 387–397, doi: 10.1109/RTSS.2009.11.

[52] H. Li and S. Baruah, “Load-based schedulability analysis of certifiable mixed-criticality systems,” Embedded Systems Week 2010
- Proceedings of the 10th ACM International Conference on Compilers, Architecture and Synthesis for Embedded Systems,
EMSOFT’10, pp. 99–107, 2010, doi: 10.1145/1879021.1879035.

[53] H. Tokuda, ‘Real-Time Critical Section: Not Preempt, Preempt or Restart? 1989.
[54] A. Burns and A. Wellings, Real–Time Systems and their programming languages, 4 edition. United States: Addison-Wesley,

1989.
[55] C. L. Liu and J. W. Layland, “Scheduling Algorithms for Multiprogramming in a Hard-Real-Time Environment,” J. ACM, vol.

20, no. 1, pp. 46–61, Jan. 1973, doi: 10.1145/321738.321743.
[56] Z. Guangliang and S. Lian, “Research on Scheduling Models of Emergency Resource,” in 2011 Fourth International Conference

on Intelligent Computation Technology and Automation, IEEE, Mar. 2011, pp. 1110–1113, doi: 10.1109/ICICTA.2011.279.
[57] S. Shan, L. Wang, and L. Li, “Modeling of emergency response decision-making process using stochastic Petri net: an e-service

perspective,” Information Technology and Management, vol. 13, no. 4, pp. 363–376, Dec. 2012, doi: 10.1007/s10799-012-0128-
7.

[58] A. M. Caunhye, X. Nie, and S. Pokharel, “Optimization models in emergency logistics: A literature review,” Socio-Economic
Planning Sciences, vol. 46, no. 1, pp. 4–13, Mar. 2012, doi: 10.1016/j.seps.2011.04.004.

[59] T. Sandholm and K. Lai, “Dynamic Proportional Share Scheduling in Hadoop,” in Part of the Lecture Notes in Computer Science,
Heidelberg: Springer, 2010, pp. 110–131, doi: 10.1007/978-3-642-16505-4_7.

[60] N. Zacheilas and V. Kalogeraki, “ChEsS: Cost-Effective Scheduling Across Multiple Heterogeneous Mapreduce Clusters,” in
2016 IEEE International Conference on Autonomic Computing (ICAC), IEEE, Jul. 2016, pp. 65–74, doi: 10.1109/ICAC.2016.58.

[61] M. Zaharia, A. Konwinsk, A. D. Joseph, R. Katz, and I. Stoica, “Improving MapReduce Performance in Heterogeneous
Environments,” 8th USENIX Symposium on Operating Systems Design and Implementation, pp. 29–42, 2008.

[62] M. Hammoud and M. F. Sakr, “Locality-Aware Reduce Task Scheduling for MapReduce,” in 2011 IEEE Third International
Conference on Cloud Computing Technology and Science, IEEE, Nov. 2011, pp. 570–576, doi: 10.1109/CloudCom.2011.87.

[63] Z. Guo and G. Fox, “Improving MapReduce Performance in Heterogeneous Network Environments and Resource Utilization,” in
2012 12th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (ccgrid 2012), IEEE, May 2012, pp. 714–
716, doi: 10.1109/CCGrid.2012.12.

[64] M. S. Arif, Z. Iqbal, R. Tariq, F. Aadil, and M. Awais, “Parental Prioritization-Based Task Scheduling in Heterogeneous
Systems,” Arabian Journal for Science and Engineering, vol. 44, no. 4, pp. 3943–3952, Apr. 2019, doi: 10.1007/s13369-018-
03698-2.

[65] V. D. Reddy, G. R. Gangadharan, G. S. V. R. K. Rao, and M. Aiello, “Energy-Efficient Resource Allocation in Data Centers
Using a Hybrid Evolutionary Algorithm,” in Machine Learning for Intelligent Decision Science, Singapore: Springer, 2020, pp.
71–92, doi: 10.1007/978-981-15-3689-2_4.

[66] M. Kang and J.-G. Lee, “Effect of garbage collection in iterative algorithms on Spark: an experimental analysis,” The Journal of
Supercomputing, vol. 76, no. 9, pp. 7204–7218, Sep. 2020, doi: 10.1007/s11227-020-03150-z.

[67] Z. Tang, K. Liu, J. Xiao, L. Yang, and Z. Xiao, “A parallel k ‐means clustering algorithm based on redundance elimination and
extreme points optimization employing MapReduce,” Concurrency and Computation: Practice and Experience, vol. 29, no. 20,
pp. 1–18, Oct. 2017, doi: 10.1002/cpe.4109.

[68] W. Xiao and J. Hu, “SWEclat: a frequent itemset mining algorithm over streaming data using Spark Streaming,” The Journal of
Supercomputing, vol. 76, no. 10, pp. 7619–7634, Oct. 2020, doi: 10.1007/s11227-020-03190-5.

[69] M. Massie, B. Li, B. Nicholes, and V. Vuksan, Monitoring with Ganglia, 1 edition. USA: O’Reilly Media, 2012.
[70] I. S. Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy McCauley, Michael J. Franklin, Scott

Shenker, “Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing,” in 9th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 12), 2009, pp. 96–108.

[71] K. Aziz, D. Zaidouni, and M. Bellafkih, “Real-time data analysis using Spark and Hadoop,” in 2018 4th International Conference
on Optimization and Applications (ICOA), IEEE, Apr. 2018, pp. 1–6, doi: 10.1109/ICOA.2018.8370593.

[72] A. V. Hazarika, G. J. S. R. Ram, and E. Jain, “Performance comparision of Hadoop and spark engine,” in 2017 International
Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), IEEE, Feb. 2017, pp. 671–674, doi: 10.1109/I-
SMAC.2017.8058263.

[73] S. Gopalani and R. Arora, “Comparing Apache Spark and Map Reduce with Performance Analysis using K-Means,”
International Journal of Computer Applications, vol. 113, no. 1, pp. 8–11, 2015, doi: 10.5120/19788-0531.

[74] L. Gu and H. Li, “Memory or Time: Performance Evaluation for Iterative Operation on Hadoop and Spark,” in 2013 IEEE 10th
International Conference on High Performance Computing and Communications & 2013 IEEE International Conference on
Embedded and Ubiquitous Computing, IEEE, Nov. 2013, pp. 721–727, doi: 10.1109/HPCC.and.EUC.2013.106.

[75] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica, “Spark : Cluster Computing with Working Sets,” in
HotCloud’10: Proceedings of the 2nd USENIX conference on Hot topics in cloud computing, 2013, pp. 1–7.

[76] F. Liang, C. Feng, X. Lu, and Z. Xu, “Performance Benefits of DataMPI: A Case Study with BigDataBench,” in BPOE 2014: Big
Data Benchmarks, Performance Optimization, and Emerging Hardware, New York: Springer, Cham, 2014, pp. 111–123, doi:
10.1007/978-3-319-13021-7_9.

  ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 13, No. 1, February 2024: 453-464

464

[77] I. Mavridis and H. Karatza, “Performance evaluation of cloud-based log file analysis with Apache Hadoop and Apache Spark,”
Journal of Systems and Software, vol. 125, pp. 133–151, Mar. 2017, doi: 10.1016/j.jss.2016.11.037.

[78] S. Im and B. Moseley, “A Conditional Lower Bound on Graph Connectivity in MapReduce,” in arxiv Computer Science, 2019,
doi: 10.48550/arXiv.1904.08954.

[79] S. Kodali, M. Dabbiru, B. T. Rao, and U. Kartheek Chandra Patnaik, “A k-NN-Based Approach Using MapReduce for Meta-path
Classification in Heterogeneous Information Networks,” in Soft Computing in Data Analytics, Singapore: Springer, 2019, pp.
277–284, doi: 10.1007/978-981-13-0514-6_28.

[80] J. Wang, X. Li, R. Ruiz, J. Yang, and D. Chu, “Energy Utilization Task Scheduling for MapReduce in Heterogeneous Clusters,”
IEEE Transactions on Services Computing, vol. 15, no. 2, pp. 931–944, Mar. 2022, doi: 10.1109/TSC.2020.2966697.

[81] P. Wei, F. He, L. Li, C. Shang, and J. Li, “Research on large data set clustering method based on MapReduce,” Neural Computing
and Applications, vol. 32, no. 1, pp. 93–99, Jan. 2020, doi: 10.1007/s00521-018-3780-y.

[82] D. Garcia-Roger et al., “5G Functional Architecture and Signaling Enhancements to Support Path Management for eV2X,” IEEE
Access, vol. 7, pp. 20484–20498, 2019, doi: 10.1109/ACCESS.2019.2897843.

[83] S. Jang, Y.-E. Jang, Y.-J. Kim, and H. Yu, “Input initialization for inversion of neural networks using k-nearest neighbor
approach,” Information Sciences, vol. 519, pp. 229–242, May 2020, doi: 10.1016/j.ins.2020.01.041.

[84] Y. Chen et al., “Fast density peak clustering for large scale data based on kNN,” Knowledge-Based Systems, vol. 187, Jan. 2020,
doi: 10.1016/j.knosys.2019.06.032.

[85] P. S. Janardhanan and P. Samuel, “Optimum Parallelism in Spark Framework on Hadoop YARN for Maximum Cluster Resource
Utilization,” in First International Conference on Sustainable Technologies for Computational Intelligence, Singapore: Springer,
2020, pp. 351–363, doi: 10.1007/978-981-15-0029-9_28.

[86] D. M. Hussain and D. Surendran, “RETRACTED ARTICLE: The efficient fast-response content-based image retrieval using
spark and MapReduce model framework,” Journal of Ambient Intelligence and Humanized Computing, vol. 12, no. 3, pp. 4049–
4056, Mar. 2021, doi: 10.1007/s12652-020-01775-9.

[87] A. Mostafaeipour, A. J. Rafsanjani, M. Ahmadi, and J. A. Dhanraj, “Investigating the performance of Hadoop and Spark
platforms on machine learning algorithms,” The Journal of Supercomputing, vol. 77, no. 2, pp. 1273–1300, Feb. 2021, doi:
10.1007/s11227-020-03328-5.

BIOGRAPHIES OF AUTHORS

Nada Masood Mirza currently serves as an Instructor in the College of
Engineering at United Arab Emirates University (UAEU), United Arab Emirates. She received
her BE and MS degrees in Mechatronics Engineering from the College of Electrical and
Mechanical Engineering, National University of Sciences and Technology (NUST), Pakistan.
Her post-graduate research was mostly focused on applying artificial intelligence, robotics,
and wireless monitoring of renewable energy systems. She worked for a few years in academia
in Pakistan, where her research focused mostly on autonomous wireless intelligent robotic
systems. Since 2014 she has been involved in academic activities related to control and
electronics engineering in United Arab Emirates. She is currently a Ph.D. student at Universiti
Sains Malaysia (USM). Her research focuses on robotics, artificial intelligence, IoT, and
control systems. She can be contacted at email: nada.mirza@student.usm.my.

Adnan Ali is a highly skilled system developer and web developer based in the
United Arab Emirates. Holding a B. Eng. degree in Software Engineering from Al Ain
University (AAU), he currently works as a web developer, leveraging expertise in
programming languages such as PHP, MySQL, JavaScript, CSS, and HTML. Simultaneously,
he is also pursuing an MS Engineering degree at Universiti Sains Malaysia (USM). With a
keen interest in cutting-edge technologies, his research focuses on big data, IoT, embedded
systems, simulation, and virtual reality. Notably, he has contributed to the academic
community by publishing multiple papers, showcasing his dedication to expanding knowledge
and innovation in his field. He can be contacted at email: adnan14711@gmail.com.

Mohamad Khairi Ishak received a B. Eng degree in Electrical and Electronics
Engineering from the International Islamic University Malaysia (IIUM), Malaysia, an MSc. in
Embedded Systems from the University of Essex, United Kingdom, and a Ph.D. from the
University of Bristol, United Kingdom. He is a member of IEEE and a registered graduate
engineer with the Board of Engineers Malaysia (BEM). He is an Associate Professor, Lecturer
in Mechatronics Engineering at the School of Electrical and Electronic Engineering, Universiti
Sains Malaysia (USM) and Ajman University, United Arab Emirates. His research interests
are embedded systems, real-time control communications, and the internet of things (IoT).
Emphasis is given to developing theoretical and practical methods that can be practically
validated. Recently, significant research has been directed toward important industrial issues
of embedded networked control systems and IoT. He can be contacted at email:
khairiishak@usm.my and m.ishak@ajman.ac.ae.

