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A micro grid system with renewable source operation control is a complex
part as each source operates at different parameters. This renewable micro
grid with multiple sources like solar plants, wind farm, fuel cell, battery
backup has to be operated in both grid connected and standalone condition.
During grid connection the micro grid, inverter has to inject power to the
grid and compensate load in synchronization to the grid voltages. And
during standalone condition the inverter is controlled with droop control
module which stabilizes the voltage and frequency of the system even during
grid disconnection. The droop control module is further updated with new
advanced controllers like fuzzy inference system (FIS) and adaptive neuro-
fuzzy inference system (ANFIS) replacing the traditional proportional
integral derivative (PID) and proportional integral (PI) controllers improving
the response rate and for achieving better stabilization. This paper has
comparative analysis of the micro grid system with different droop
controllers under various operating conditions. Parameters like voltage
magnitude (Vmag), frequency (F), load and inverter powers (Pioad and Piny) of
the test system are compared with different controllers. A numeric
comparison table is given to determine the optimal controller for the inverter
operation. The analysis is carried out in MATLAB/Simulink software with
graphical and parametric validations.
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1. INTRODUCTION

Micro grid systems (MGS) in today’s technological advancements are very efficient and robust to
the disturbances and sudden variations of load. These MGS are becoming an integral part of main grid
system sharing a very huge power to the grid. In the MGS many small or large sources can be included which
can accumulate the power and compensate the load. These MGS sources can be renewable or non-renewable,
but due to the present day scenario of climatic disasters due to global warming [1] it is preferable to have
renewable sources MGS. These renewable sources can be wind farms, fuel cell plants, photovoltaic (PV)
plants, tidal energy, and biogas plants, which produce power from available natural sources like blowing
wind, tidal waves, biomass, and solar irradiation [2].

As per the source these modules do not reproduce any hazardous gases or residue which causes
pollution and hence they are considered as green energy sources. The power from these source can be
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extracted which can be shared to the loads and also can be injected to grid [3]. However the power produced
from these sources are capricious as the availability of the natural sources is unpredictable. There are many
researches done for maximum and optimal power extraction from these sources with stabilized voltages. As
per previous researches considering optimization of the control modules in power electronic converters
makes the source more stable and operates at maximum power extraction.

There is also a major hurdle of making these sources operate in standalone conditions as these
sources are not much recommendable for individual operation because of their unpredictable power
generation [4], [5]. All the sources need to be connected to common power sharing point at a DC bus as DC
reduces the complexity for control. The common DC bus needs to be connected with a heavy rating inverter
which has the capability of converting the huge DC power to AC power. The DC bus voltage stabilization is
very crucial as it has to be maintained at specific value even during wide range of natural parameters
variations. The control of the inverter is also very vital as the operation of the inverter has to be synchronized
to the grid [6], [7] and also must be operated in standalone condition. The test system with renewable sources
connection to the grid through 3-ph inverter can be shown in Figure 1.
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Figure 1. Micro grid test system with renewable sources

In section 1 of this paper the introduction to the test system with selected renewable sources for the
analysis are discussed. The configuration of the renewable modules micro grid system with internal
stabilizing converters modeling is given in section 2. The control modules for the 3-ph inverter operating in
both grid connection and standalone modes are also included in section 2. The section 3 has configuration of
droop control module update with fuzzy inference system (FIS) and adaptive neuro-fuzzy inference system
(ANFIS) controllers replacing conventional proportional integral derivative (PID) controller. The
comparative analysis and graphical validations with results generated by different controllers using Simulink
tool is done is section 4. The final section 5 the conclusion to this paper is given with parametric value
comparison table between PID, FIS and ANFIS droop controllers determining best controller, followed by
references used in this paper.

2. SYSTEM CONFIGURATION

As per the test system introduced in section 1 Figure 1, the renewable source micro grid is integrated
with three renewable sources solar plant, fuel cell plant, and wind farm. Along with these renewable sources
a battery backup module [8] is also included which supports the renewable micro grid. In the given test
system the primary priority renewable sources are wind farm and solar plant from which the complete power
is extracted and is either consumed by load, or injected to grid or stored in battery backup module [9].

There are two possible operating conditions; i) grid connected condition-where the loads are
compensated by solar, wind plants and grid if needed. In this condition during excess power generation by
the renewable sources it is injected to grid after compensating the load and ii) standalone condition-where the
grid is not available for the support of the load, therefore the renewable micro grid need to compensate the
load [10], [11]. Therefore a battery backup module is activated in the micro grid which supports the load
during deficit renewable power conditions. The same battery backup module stores power from the
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renewable source during excess generation due to abundant availability of natural sources (solar and wind)
[12]. In standalone mode when the battery backup module also fails due to lower state of charge or any other
internal failure, another backup renewable source fuel cell is activated [13]. The fuel cell supports the load
during battery backup module failure. The test system internal circuit configuration is shown in Figure 2.
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Figure 2. Circuit configuration of renewable micro grid system

As per the given configuration the PV source and fuel cell are connected to booster converter which
boosts the source voltages. The boost converter also stabilizes the voltage at specific magnitude even during
variable input voltage conditions. The boost converter switch of the PV source is switched by maximum
power point tracking (MPPT) module which takes feedback from the PV source current and voltage. A
modified P&O MPPT module [14] is adopted to control the duty cycle of the boost switch making the
converter to extract maximum power from the source and also maintaining the voltage magnitude at specific
value. On the other hand, the fuel cell boost converter switch is controlled by constant voltage oriented
controller which generates duty cycle for the switch. The measured output voltage is compared to a reference
voltage value generating voltage error [15]. The voltage error is converted to duty cycle by PID controller
with tuned Kp and Ki values. The reference voltage of the converter is set as per the system requirement for
injection of power to AC side.

The wind farm is permanent magnet synchronous generator (PMSG) connected to a 3-ph rectifier
converting AC voltage of the PMSG to DC. The rippled DC is stabilized by buck-boost converter where the
switch of the converter is controlled by power signal feedback control MPPT [16]. This MPPT module takes
feedback from PMSG rotor speed for generation of reference power. From the reference power the duty cycle
for the switch is calculated by torque calculation and Pl controller. The buck-boost converter extracts
maximum power from the machine as per the available wind speed. The battery backup module is integrated
to a two switch bidirectional converter which can charge and discharge the battery as per the given
conditions. The battery backup module is activated with respect to availability of 3-ph grid. An islanding
detection algorithm [17] with voltage magnitude, frequency and power exchange parameters of the 3-ph grid
are considered for the activation of battery backup module. As per these parameters given threshold ranges
the triggering of the battery backup module breaker is done. The circuit breaker is turned ON when the
detection parameters are not in given range indicating grid failure or disconnection condition creating micro
grid standalone mode. The fuel cell source [18] is activated when the battery backup module fails to
compensate the load during standalone mode due to low state of charge or battery fault.
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All these renewable and backup sources are connected to a common DC link where a 3-ph inverter
is interconnected between the 3-ph grid and DC link. The 3-ph inverter is controlled by two different control
structures which are selected as per the grid availability. During grid connection the inverter is operated with
synchronous reference frame (SRF) control structure [19] which makes the inverter to operate in
synchronization to the grid voltages. The SRF control module is a conventional controller which takes inputs
of the inverter currents, DC link voltage and voltages of the grid. Many researches are done on this controller
where multiple DC sources are interconnected to grid with reduced harmonics. During standalone mode a
novel droop control module is switched in for controlling the inverter. The switching between the controllers
is done by the islanding detection algorithm which was used for the battery backup module.

The droop controller [20] controls the inverter so as to make it operate with stabilized AC voltage
and frequency injecting the renewable power to the load. The conventional droop control module with
voltage and frequency control can be observed in Figure 3. As per Figure 3 the voltage (V) and angular
frequency (o) PID controllers are replaced with FIS or ANFIS controllers for faster and reduced disturbance
operation of the control module [21]. This makes the inverter to operate more stable with reduced response
rate and reduced ripple in the voltages. As per the new controllers the load power compensation is accurately
achieved and the frequency oscillations are also reduced. The configuration of the FIS and ANFIS controllers
for the voltage and frequency regulators are done in next section.
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Figure 3. Droop control module with different controllers

3. CONTROLLER MODULES

As per the droop control module [22] in Figure 3 the reference current components iod* and iog*
are generated by the current regulators. With a PID controller in the regular place the current expression are
given as (1) and (2):

i;d =" - Um)(Kp + fKi .dt) (1)

ivg = W —wy) (K, + [ K;.dt) (2)

The Kp and Ki are the proportional and integral gains which are tuned as per the response time.
Here v, and w,, are the measured voltage magnitude on the AC side and frequency of the inverter. The v*
and w* are the reference voltage magnitude and frequency generated by the droop control with inputs taken
from active and reactive power (P&Q) of the inverter. The reference parameters v* and w* with respect to
P&Q are given as (3) and (4):

vt =v, —k,Q 3)

w* =w, —k,P 4

In the given expressions (3) and (4) v, and w,, are the fundamental voltage and frequency taken as 1 pu and
314 rad/sec. The k, and k,, are the voltage and frequency constants expressed as (5) and (6):
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kv — 17'n‘La.Qx_17'n‘Lin (5)
max

k,, = w (6)
max

where v, and v,,;, are the maximum and minimum permitted voltages taken as 1.05 and 0.95
respectively. wy,,, and w,,;, are the maximum and minimum permitted frequency taken as 317 and 310.
Prax and Q4. are the maximum injected active and reactive powers given as per the availability of
renewable power. In (1) and (2) are updated replacing PID with FIS and ANFIS controller improving the
iod* and iog* signals response and reducing oscillations. This improves the droop controller performance
[23] where the impact is observed on reference controlling signals vd* and vg*.

3.1. FIS control module

The FIS control module is advancement to the conventional PID controller where the output
response is a bit faster and also with reduced disturbances. This makes the FIS controller [24] to operate the
droop controller with faster response to the changes in the grid system. The FIS controller needs two inputs
which are denoted as error ‘E’ and change in error ‘CE’. The E signal is the comparison of either voltage or
frequency parameters as per (1) and (2). The CE is generated by comparison of the present value of E
considered as E(k) and previous value of E considered as E(k-1) expressed as (7):

CE=E(k)— E(k—1) )

The FIS structure considered is ‘mamadani’ where the membership functions are set in specific
range as per the input parameters. The output of the FIS control modules will either be iod* or iog* as per the
given input ‘ev’ or ‘ew’ respectively [25]. The input and output membership functions are shown in Figure 4.
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Figure 4. Membership functions of E, CE and O variables in FIS control module

The names of the functions are defined as; PB is positive big, PM is positive medium, PS is positive
small, ZE is zero, NB is negative big, NM is negative medium, and NS is negative small. The ‘E’ range in set
between -100 and 100, ‘CE’ range is set between -1 to 1 and the output ‘O’ range is set between -50 to 50.
The input functions are gauss type and output functions are triangular type. These types are taken for faster
converging of the output variable. As per the given 7 functions in each parameter, the rule base is given in
Table 1. As per given rule table the FIS controllers of voltage and frequency regulators generate iod* and
iog* in the specific given ranges.
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Table 1. FIS rule base

e NB NM NS ZE PS PM PB
NB NB NB NB NB NM NS ZE
NM NB NB NB NM NS ZE PS
NS NB NB NM NS ZE PS PM
ZE NB NM NS ZE PS PM PB
PS NM NS ZE PS PM PB PB
PM NS 4 PS PM PB PB PB
PB z PS PM PB PB PB PB
NB NB NB NB NB NM NS ZE

3.2. ANFIS control module

For further improvement of the droop control structure the FIS module is replaced with ANFIS
control module [26] which is more advanced to the conventional fuzzy control. The conventional fuzzy
functions are trained and tuned further using optimization algorithm for more fast response rate and reduced
disturbances. The structure considered for ANFIS control is ‘Sugeno’ where the input functions type will be
same as FIS (gauss) but the output parameter type will be set to ‘constant’ with the same range of FIS. The
input signal is only ‘E’ which is the either voltage or frequency error. The Figure 5 are the output functions in

the ANFIS control module.
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Figure 5. Output parameter with constant functions
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These input and output functions are trained from the data taken from input and output of
conventional PID controller. The data is imported into the ANFIS tool for training the functions using
‘back-propagation’ optimization algorithm [27]. The new trained data and previous data can be seen in

Figure 6.

QOutput
o

Training data : o FIS output : *

0 200 400 600

Index

800

1000

1200

Load data ]
Type: From:
O Training
(I Testing
( | Checking o worksp.

file

() Demo

Load Data ‘ Clear Data ‘

Generate FIS

o Load from file
() Load from worksp.
) Grid partition

[ Sub. clustering

Load

Train FIS

Optim. Method:

backpropa

v

Error Tolerance:

Epochs:

10

Train Now

Figure 6. ANFIS training from PID data
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With the new trained data the input parameter functions are updated as shown in Figure 7. The
updated Sugeno functions of both voltage and frequency regulators are inserted replacing FIS controller and
a comparative analysis is done [28]. The analysis includes different measuring signals of the micro grid
parameters with PI, PID, FIS and ANFIS controller updated in droop control module during standalone
operating mode. The results are compared and validated in further sections.

Membership function plots ™™™~ 181
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Figure 7. New ANFIS trained input parameter ‘E’

4.  SIMULATION RESULTS

As per the given configuration of each source and control modules for extraction of power from
these source the modeling of the complete grid system with renewable sources is done in Simulink. Each
renewable source has it is own individual control for maximum power injection to the grid or load. The
battery backup module is activated with islanding detection algorithm which also switches the control of the
inverter between SRF to droop control. The 3-ph inverter droop control in standalone mode is updated with
different controllers (FIS and ANFIS) and the simulation is run with different operating conditions. The
modeling of the test system with the given source modules and grid system can be seen in Figure 8.
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Figure 8. Test system modeling

The total simulation time is considered to be 5 sec where the grid is connected until 0.5 sec. After
grid disconnection at 0.5 sec the battery backup module is activated by trigging ON the circuit breaker of the
battery module. At 1.2 sec the solar irradiation is dropped to 500 W/mt? from 1,000 W/mt?, at 2 sec the load
is increased from 30 to 50 kW. At 3.5 sec the battery module is failed and disconnected, activating the fuel
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cell source replacing the battery. The battery compensation power is replaced by the fuel cell source which is
the final backup to the micro grid. The parameter configuration of the complete grid is given in Table 2.

Table 2. System configuration parameters

Name of the parameter Values
Grid rating 11 kV 50 Hz 100 MVA
Load parameters L1-30 kW, L2-20 kW
PV module Vmp=54.7 V, Inp=5.58 A, Vc=64.2 V, 15:=5.96 A, N;=10, Ns=5. Py 10a=15 KW,
Boost converter—L,=1 mH, Ci;=100 uF, Cox=12 mF.
Wind farm module PMSG-67N-mt, 560 Vdc, 1,700 rpm

Turbine-12 kW, Base wind speed=12 m/s, base rotational speed=1.2 pu
Boost converter—L,=100 uH, Cij»=1,000 pF, Co,=1,000 pF

BESS module Lithium-lon V,,m=250 V, Capacity=100 Ah
Bidirectional converter-L,=161.95 pH, Co=220 uF

Fuel cell module Viom=300 V, lnom=133.3 A, Vens=220 V, l¢ng=225 A.
Boost converter—Lb=1 mH, Cin=100 pF, Cout=12 mF.

VSI LC filter L+=250 mH, C=2.6 kVAR

Islanding detection limits ~ 0.88<Vmy<1.1, -1>Q>1, 49.3<f<50.5

SRF controller gains DC voltage gains-K,=7, K;=800

Current controller gains—K,=0.3, K;=20
Droop controller gains V & w controller gains—K,=0.05, K;=0.01
Current controller gains—K,=0.3, K;=20

As per the given system parameters and the operating conditions in total simulation time of 5 sec the
results of each module are present in Figure 9. All the graphs are generated with different controllers (PI,
PID, FIS and ANFIS) in the droop control modules with comparisons done in the same graph with respect to
time.

Figure 9 is a comparison of the DC bus voltage between all controllers. This voltage is set at 500 V
reference as per the voltage requirement on the AC side. As per the graphical comparison the DC bus voltage
with ANFIS controller is more stable and reduced ripple. The value is also near to 500 V as that of FIS
controller. The lower peak generation during battery failure at 3.5 sec is also eliminated. The Figure 10 is the
PV source power extraction comparison between conventional P&O and modified P&O MPPT.
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Figure 9. DC bus voltage comparison Figure 10. PV source injected power comparison

As per the comparison in Figure 10 of the PV power (Ppv) the modified MPPT control is more
stable and settles faster. The power extraction is also increased by 500 W during the initial state with solar
irradiation 1,000 W/mt?, In Figure 11 the magnitudes of inverter 3-ph AC voltage comparisons are taken
which determine the ANFIS controller advantage. The new controller eliminates the upper and lower peak
value generations during battery failure maintaining the voltage near to 1 pu in any operating condition.

As the voltage peaks are eliminated the peaks of power injection by micro grid are also eliminated
which can be observed in Figure 12. Figure 13 is the frequency evaluation of the point of common coupling
(PCC) voltages. As seen in Figure 13 the frequency with ANFIS controller is more stable and with lower
peak value generations during changing operating conditions. As the micro grid power is stabilized with
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lower ripple and peak generations the load power is also stable and is compensated as per the requirement
shown in Figure 14. The final validations and parametric comparisons of different measurements are noted in
Table 3 considering different variables of the graphs Figures 13 and 14.
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Figure 13. PCC frequency comparison Figure 14. Total load power comparison

Table 3. Comparative analysis
Name of the parameter Pl PID FIS ANFIS

P-MG (kW) 46 46 50 50
Vdc ripple (%) 492 492 081 052
Vdc magnitude (V) 470 470 490 492
Vpcc magnitude (pu) 1.05 0.97 097 0.99
F settling time (sec) 0.9 0.9 05 0.3
F ripple (%) 0.5 0.2 0.2 0.15

5. CONCLUSION

The implementation of the complete grid system with renewable micro grid in achieved. The system
is tended to operate in different operating modes which include grid connected mode, standalone mode,
battery support mode, battery failure mode. A comparative analysis is carried out on the system operated with
all these modes and different parameters are compared by changing the controllers. The voltages and powers
at specific locations are compared when the micro grid is operated in standalone mode where the 3ph inverter
is operated by droop controller. As per the given parametric comparison the ANFIS controller is considered
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to be a best choice for generating the current references in the droop controller. With reduced ripple and
oscillations in the current signals the inverter operates more stable and the grid parameters are improved. The
ANFIS droop controllers has lower ripple and faster settling times for any changes in the grid. Therefore, this
control module is determined to be optimum for the operation of the micro grid inverter.
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