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ABSTRACT

In this paper, we consider effective performance transmission under generalized
α− κ− µ the fading distribution. The source-user links are assumed to be non-
orthogonal multiple access (NOMA) channels through a downlink power do-
main. Two users are selected to service in a situation with perfect channel state
information (CSI) in accordance with the NOMA protocol. The closed-form ex-
pressions of outage probability (OP) and bit error rate (BER) are derived with
the effect of power allocation coefficient, target rate, and channel fading param-
eters. In addition, we calculate numerical results to demonstrate the asymptotic
expansion in the high signal-to-noise ratio (SNR) analysis. Finally, Monte Carlo
simulations are provided to validate and assess the accuracy of the analytical
framework proposed.
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1. INTRODUCTION
The degradation of signal quality in wireless networks, commonly referred to as fading channels, has

the potential to significantly impact transmission performance. Wireless downlink channels are of significant
importance in the design of wireless communication systems. Moreover, the presence of wireless fading chan-
nels, which are responsible for shadowing effects, holds significant importance in the communication between
the transmitter and receiver. Additional significant phenomena may be taken into account in order to effectively
depict the deteriorating environment. Signal variation can be characterized by several probability distributions,
including Hoyt, Rayleigh, Rice, Nakagami-m, and Weibull distributions. These distributions account for fac-
tors such as the characteristics of the propagation medium, the power of the dominating signal components, and
the power of the dispersed waves. The key to a more detailed description is to understand the assumptions com-
ing from the previous distributions. The study conducted by Moualeu et al. [1] and Lei et al. [2] investigates
the performance and physical layer security (PLS) of wireless systems in the presence of generalized α−κ−µ
and α−η−µ fading channels. In a similar vein, wireless-powered cooperative networks (WPCNs) are utilized
in scenarios including a malevolent eavesdropper, while also serving as a benevolent jamming entity. The re-
searches in [3], [4] have conducted an analysis on the transmit channels α− κ− µ and α− η− µ, considering
arbitrary fading parameters. The objective of their study is to investigate the impact of these channels on the
performance of wireless networks. The utilization of spectrum sensing in wireless sensor networks (WSNs)
has been extensively studied, particularly in relation to the aggregated α−η−µ/gamma and α−κ−µ/gamma
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fading channels [5], [6].
The phenomenon known as the internet of things (IoT) encompasses a multitude of interconnected

devices engaged in communication, hence presenting the challenge of limited availability of radio frequency
spectrum. Spectrum sensing is a fundamental operation within the realm of cognitive radio, with power de-
tectors serving as the prevailing method employed for this purpose. The issue at hand has been addressed in
many scholarly articles that have examined the performance of the energy detector (ED) in the context of the
α − η − µ fading channel [7]–[10]. In the cited works by [11]–[13], the authors examined the application of
non-orthogonal multiple access (NOMA) in a scenario where multiple users were considered. Specifically, two
users were chosen to be served using the NOMA principle, assuming complete channel state information. The
fading channels studied in this study were η − µ and κ − µ channels. The outage probability (OP), bit error
rate (BER), and ergodic capacity (EC) were computed in previous studies [14]–[17].

The utilization of NOMA techniques has garnered significant interest due to its potential to enhance
the throughput of wireless networks. These approaches are particularly important in the realm of communica-
tion system control. Moreover, through an examination of the encoding and decoding procedures employed in
existing NOMA studies, it is shown that the technique of success interference cancellation (SIC) is utilized for
signal demodulation, representing a significant demodulation approach inside the NOMA framework. Wu et
al. [18] conducted extensive simulations to evaluate the block-error-rate performance of the NOMA schemes.
These simulations align with the theoretical analysis presented in the paper. In relation to the aforementioned
study, the researchers also conducted an analysis on the attainable rate of NOMA system. Their findings indi-
cate that the achievable rate of the NOMA system can surpass that of the orthogonal multiple access (OMA)
scheme [19], [20]. The study conducted by [21] investigates the impact of fixed power allocation on fading
Nakagami-m channels for affected users in the reference scenario. The metric known as quality of service
(QoS) holds significant importance as a performance indicator inside cellular networks. The study conducted
an examination of indoor NOMA systems that utilize intelligent reflecting surfaces (IRS) in the context of gen-
eralized fading channels, as reported in the research article by [22], [23]. Qiu et al. [24] introduced a novel
NOMA system wherein all user signals are allocated to block-fading channels. This allocation is directly linked
to the symbol error rate for receivers that decode a user’s signal.

This research has utilized the cooperation approach of a NOMA protocol and SIC technique, drawing
inspiration from the aforementioned studies. The objective is to enhance the OP performance and conduct a
BER analysis for the wireless network under consideration. In order to achieve the aforementioned objectives,
our study aims to develop a wireless network architecture that operates in the presence of generalized α−κ−µ
fading channels. This design will incorporate considerations such as target rate and the distance between the
ground and the base station. The present study aims to elucidate the contribution of this paper in the following
manner:

− The closed-form equations for the OP and BER for users are derived.
− The asymptotic analysis of the OP in the high signal-to-noise ratio (SNR) regime is examined.
− The performance of the system and the BER are validated using numerical simulations in generalized

α− κ− µ fading channels with NOMA protocol.
The subsequent sections of the paper are structured in the following manner: section 2 provides an

overview of the system model for NOMA in the downlink scenario, specifically focusing on generalized chan-
nels. Section 3 provides a performance study utilizing the suggested system model and the algorithms under
analysis. Section 4 asymptotic analysis of the system under high SNR conditions, analysis of throughput and
BER. Section 5 validation of numerical findings using Monte Carlo simulation. Section 6 provides a summary
of the findings and outcomes obtained in this paper.

2. SYSTEM MODEL
Consider the concept of a downlink. The NOMA transmission method is employed in Figure 1 in

scenarios when a solitary base station (BS) serves two active users simultaneously. In this system, the BS
transmits signals for both users concurrently, utilizing the same frequency and time slots. In the context of
a downlink scenario, the transfer signals originating from the near user (Dn) and distant user (Df ) will be
assigned a designated power allocation and subsequently combined to form a unified stream for propagation.
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Figure 1. System model of NOMA for downlink with generalized α− κ− µ fading

The received signal of each user’s terminal can be represented by a mathematical model:

ȳDi
= hDi

(√
a1PS

dβ
i

x̄1 +
√

a2PS

dβ
i

x̄2

)
+ n̄i , i ∈ (f, n) (1)

where hDi
denotes the α − κ − µ fading channel between BS and two users, i ∈ (f, n) means the parameter

belongs to the far user and near the user, PS is the transmit power at the BS, β refers to the path-loss factor, while
di shows the distance between the user and the BS, x̄1 and x̄2 are the superimposed signal vector satisfying the
total power constraint E

{
x̄2
1

}
= E

{
x̄2
2

}
= 1. The relevant power allocation coefficients are a1 and a2. We

assume that a1 < a2 with a1+a2 = 1 to ensure better user fairness and n̄i denotes the additive white Gaussian
noise (AWGN) with n̄i ∼ CN (0, N0).

Based on the above, we can obtain the Euclidean distance from BS to Dn and BS to Df , respectively
as [25]:

dn =
√
H2 + d2SDn

(2a)

df =
√
H2 + d2SDf

(2b)

where dSDn is the distance between the ground and near user, dSDf
is the distance between the ground and far

user. The distance between the ground and the height of BS is denoted by H .
When Dn first notices that Df has a higher transmit power and less inference signal, it can activate the

SIC. Then, using the superposed signal, the signal of Df may be found. The received signal-to-interference-
plus-noise ratio (SINR) at Dn is therefore given by:

γ̄x2

Dn
=

PSa2|hDn |
2

PSa1|hDn
|2 + dβnN0

=
ρSa2|hDn |

2

ρSa1|hDn
|2 + dβn

(3)

where ρS = PS/N0 is the transmit SNR.
Following SIC, Dn is given the received SINR to identify its own message x̄1 by:

γ̄x1

Dn
=

ρSa1|hDn |
2

νρSa2|hDn
|2 + dβn

(4)

where ν, 0 ≤ ν ≤ 1 represents the efficiency of SIC for x̄2 at the Dn. The cases ν = 0 and ν = 1 correspond
to perfect SIC and imperfect SIC, respectively.

In contrast, Df decodes its desired signal x̄2 by considering x̄1 as interference. Thus, the SINR at Df

is:

γ̄x2

Df
=

ρSa2
∣∣hDf

∣∣2
ρSa1

∣∣hDf

∣∣2 + dβf
(5)
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3. PERFORMANCE ANALYSIS
This portion of the study summarizes how well each user performed throughout outages in terms of

outage likelihood. The chance that the message cannot be decoded at the intended receiver is quantified by such
an outage indicator in more detail. Assume that all receivers are capable of receiving specific channel values.

3.1. The α− κ− µ fading distribution
The small-scale fluctuation of the fading channel with a line-of-sight (LoS) component can be shown

by the general distribution known as the α − κ − µ. As special examples, it contains Rayleigh, Nakagami-m,
Rice, Weibull, one-sided Gaussian, and the fading distributions channel. The instantaneous SNR’s PDF may
be expressed as [1] (3):

fγi (x) =
α

eκµ

∞∑
l=0

µµ+2lκl(1 + κ)
µ+l

l!Γ (µ+ l)
xα(µ+l)−1e−µ(1+κ)xα

(6)

where γi
∆
= |hDi |

2
, i ∈ {f, n}, α, κ and µ is so-called non-negative real shape parameters. Γ (.) is the Gamma

function [26] (8.310.1).
Then, the cumulative distribution function (CDF) of α−κ−µ distribution of SNR is given as [1] (7):

Fγi
(x) =

∞∑
l=0

µlκle−κµ

l!Γ (µ+ l)
Υ (µ+ l, µ (1 + κ)xα) (7)

where Υ(., .) represents the lower incomplete Gamma function [26] (8.350.1).

We make use of the equalities [27] (2.6) as Υ(a, x) = G1,1
1,2

(
x

∣∣∣∣ 1
a, 0

)
, in which Gm,n

p,q [.] is the

Meijer G-function. After a few transformation steps (7) is rewritten as (8):

Fγi
(x) =

∞∑
l=0

µlκle−κµ

l!Γ (µ+ l)
G1,1

1,2

(
µ (1 + κ)xα

∣∣∣∣ 1
µ+ l, 0

)
(8)

3.2. Outage probability of Dn

According to NOMA protocol, the complementary events of outage at Dn can be explained as: Dn

can detect x̄2 as well as its own message x̄1. From the description, the outage probability of Dn with imperfect
SIC is expressed as (9):

OPDn
= 1− Pr

(
γ̄x2

Dn
> γth2, γ̄

x1

Dn
> γth1

)
= 1− Pr

(
|hDn

|2 > ϑ2, |hDn
|2 > ϑ1

)
= 1− Pr

(
|hDn

|2 > ϑmax

)
= F|hDn |2 (ϑmax)

(9)

where the threshold SNRs are γth1 = 22R1 − 1 with R1 being the target rate at Dn to detect x̄1, γth2 =

22R2 − 1 with R2 being the target rate at Dn to detect x̄2, ϑ1 =
γth1d

β
n

ρS(a1−γth1νa2)
, ϑ2 =

γth2d
β
f

ρS(a2−γth2a1)
and

ϑmax = max (ϑ1, ϑ2).
With the help of CDF in (7), the closed-form expression for the outage probability of Dn with imper-

fect SIC is given by:

OPDn
=

∞∑
l=0

µlκle−κµ

l!Γ (µ+ l)
G1,1

1,2

(
µ (1 + κ)ϑα

max

∣∣∣∣ 1
µ+ l, 0

)
(10)

3.3. Outage probability of Df

Similar to this, the likelihood that x̄2 cannot be effectively received by Df (sometimes referred to as
the OP of Df ) is as (11):

OPDf
= 1− Pr

(
γ̄x2

Df
> γth2

)
= 1− Pr

(∣∣hDf

∣∣2 >
γth2d

β
f

ρS(a2−γth2a1)

)
= F|hDf |

2 (ϑ2) (11)

Similar to how OPDf
may be solved to produce OPDn

. So, the considered system OPDf
is defined

as (12):

OPDf
=

∞∑
l=0

µlκle−κµ

l!Γ (µ+ l)
G1,1

1,2

(
µ (1 + κ)ϑαi

2

∣∣∣∣ 1
µ+ l, 0

)
(12)

Bulletin of Electr Eng & Inf, Vol. 13, No. 2, April 2024: 963–972



Bulletin of Electr Eng & Inf ISSN: 2302-9285 ❒ 967

4. ASYMPTOTIC ANALYSIS AT HIGH SNR, ANALYSIS OF THROUGHPUT, AND BIT ERROR
RATE

Even though we have obtained the closed-form OP expression of the system under consideration, it
is challenging to evaluate the system’s variety and coding gain directly. So, we consider the OP’s asymptotic
behavior in the high SNR zone. Based on (7), the moment as ρS → ∞, one may use [1] (15) to estimate the
CDF of Fγi (x) as (13):

F∞
γi

(x) ≈ µµ−1(1 + κ)
µ
xαµ

Γ (µ) eκµ
(13)

By making a substitution (13) into (11) and (9) we have the asymptotic OP behavior of Dn and Df

are given by:

OP∞
Dn

=F∞
|hDn |2 (ϑmax) =

µµ−1(1 + κ)
µ
ϑαµ
max

Γ (µ) eκµ
(14a)

OP∞
Df

=F∞
|hDf |

2 (ϑ2) =
µµ−1(1 + κ)

µ
ϑαµ
2

Γ (µ) eκµ
(14b)

In a delay-limited transmission mode, each user’s system throughput may be assessed by its OP. A
two-user NOMA system’s associated outage throughput is therefore stated as (15a) and (15b):

τDn
= (1−OPDn

)R1 (15a)

τDf
=
(
1−OPDf

)
R2 (15b)

Additionally, we substitute (10) and (12) into (15a) and (15b), respectively. So, we obtain the through-
put of all legitimate users.

The following is the BER closed-form expression of the near user (Dn) [28] (20):

PBER
Dn

=E
{
Q
(√

vγ̄x1

Dn

)}
=

√
v

2
√
2π

∞∫
0

e−
v
2 x

√
x

Fγ̄
x1
Dn

(x) dx (16)

where Q (·) is the Gaussian error function, and v denotes the modulation method, with v = 1 implies binary
phase-shift keying (BPSK) modulation and v = 2 means quadature phase shift keying (QPSK) modulation.

Next, from (9) we let t = 2νa2

a1
x− 1 → a1(t+1)

2νa2
= x → a1

2νa2
dt = dx and with the help of Gaussian-

Chebyshev quadrature [29] (25.4.38). The closed-form approximation of PBER
Dn

can be given as (17):

PBER
Dn

=

√
v

2
√
2π

∞∑
l=0

µlκle−κµ

l!Γ (µ+ l)

a1
νa2∫
0

e−
v
2 x

√
x

G1,1
1,2

(
µ (1 + κ)

[
xdβn

ρS (a1 − xνa2)

]α ∣∣∣∣ 1
µ+ l, 0

)
dx

=
a1
√
v

4νa2
√
2π

∞∑
l=0

µlκle−κµ

l!Γ (µ+ l)

1∫
−1

e−
v
2G(t)√
G (t)

G1,1
1,2

(
µ (1 + κ)

[
G (t) dβn

ρS (a1 − G (t) νa2)

]α ∣∣∣∣ 1
µ+ l, 0

)
dt

≈ a1π
√
v

4Qνa2
√
2π

∞∑
l=0

Q∑
q=1

µlκle−κµ− v
2G(ϕq)

√
1− ϕ2

q

l!Γ (µ+ l)
√
G (ϕq)

G1,1
1,2

(
µ (1 + κ)

[
G (ϕq) d

β
n

ρS (a1 − G (ϕq) νa2)

]α ∣∣∣∣ 1
µ+ l, 0

)
(17)

where G (t) = a1(t+1)
2νa2

and ϕq = cos
(

2q−1
2Q π

)
.

Similarly, by solving PBER
Dn

and after few steps, the closed-form approximation of the of PBER
Df

can
be obtained as (18):

PBER
Df

≈ a2π
√
v

4Qa1
√
2π

∞∑
l=0

Q∑
q=1

µlκle−κµ− v
2Λ(ϕq)

√
1− ϕ2

q

l!Γ (µ+ l)
√
Λ (ϕq)

G1,1
1,2

(
µ (1 + κ)

[
Λ (ϕq) d

β
f

ρS (a2 − Λ (ϕq) a1)

]α ∣∣∣∣ 1
µ+ l, 0

)
(18)
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where Λ (t) = a2(t+1)
2a1

and ϕq = cos
(

2q−1
2Q π

)
.

5. NUMERICAL RESULTS
In this paper, we illustrate outage performance by numerically simulating different theoretical findings

from several metrics. The primary system parameters are set at a1 = 0.1, a2 = 0.9, R1 = R2 = 1, H = 50 m,
dSDn

= 10 m, dSDf
= 50 m, β = 2, and ν = 0.01. These distributions may be obtained from the α − κ− µ

fading distributions, as shown in Table 1. In addition, the Gauss-Chebyshev parameter is selected as Q = 30
to yield a close approximation.

Table 1. Distribution α− κ− µ and the other fading distributions [3]
Channels Parameters of the ᾱ− κ̄− µ̄ distribution
Rayleigh ᾱ = 2, κ̄ = 0, µ̄ = 1
Nakagami-m ᾱ = 2, κ̄ = 0, µ̄ = m

Rician with parameter K ᾱ = 2, κ̄ = K, µ̄ = 1

κ− µ ᾱ = 2, κ̄ = κ, µ̄ = µ
α− µ ᾱ = α, κ̄ = 0, µ̄ = µ

Weibull ᾱ = α, κ̄ = 0, µ̄ = 1

In Figure 2, the curves depicting the traditional fading channels are presented. Based on the visual
representation, it is apparent that there is a significant enhancement in the performance of Nakagami-m. The
impact of augmenting the SNR results in a discernible enhancement in the overall performance of the system.
This performance is analogous to the one depicted in Figure 3. This example demonstrates the variation in out-
age likelihood across different levels of ipSIC (ν). When comparing the performance of OPDn

using NOMA
and OMA techniques, this figure demonstrates a more significant improvement.
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Figure 2. Comparison of classic channel the outage
probability versus ρS
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Figure 3. Outage probability versus ρS for different ν,
with R1 = R2 = 1. α = 2, κ = 0, and µ = 1

The optimal outage performance may be observed by modifying the power allocation factor a2, as
depicted in Figure 4. It can be understood that in (3)-(5), the SINRs are influenced by the power allocation
variables. Consequently, the behavior of outages is determined by these power allocation factors. The observed
variation in performance between the two users can be attributed to the power constraint. Regrettably, the task
of establishing the optimal outage probability for a remote user is likely to present significant challenges. A
higher SNR at the source, denoted as ρS = 10 dB, is commonly seen as a more favorable scenario.

The Figure 5 illustrates the throughput performance for both nearby users and distant users. The
proposed methods, namely, provide increased data transfer rates under conditions of high SNR. However, due
to the fact that the value of ρS exceeds 30 dB, the throughput attains its maximum limit. The throughput is
determined exclusively by the intended goal rates at high levels, which is the underlying cause for the high
value of ρS .
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Figure 5. Throughput in delay-limited transmission
mode versus ρS with different values of R1 and R2

Figure 6 depicts the OP vs distance between BS-dSDn
(Figure 6 (a)) and BS-dSDf

(Figure 6(b)) at
various heights. The OP of the two users is significantly different at a wider distance, however the outage
performance of the two users is high when they are closer to the BS. Furthermore, we estimate that the height
of the BS has a significant impact on the outage likelihood failure when it is too high, namely H = 50 (m) and
H = 75 (m).

(a)

(b)

Figure 6. OP versus; (a) dn at Dn and (b) df at Df , with R1 = 1, R2 = 2, β = 3, α = 2, κ = 0, µ = 3, and
ρS = 74 (dB)

Figure 7 depicts the BER of the NOMA communication system under consideration versus the average
SNR for BPSK (v = 1) and QBSK (v = 2) modulations. In Figure 7, ν = 0.01, α = 2, κ = 0, and µ = 1 is
used. It is clear that in the low SNR zone, the BERs of the near and far users differ only little. However, in the
high SNR zone, the BER of the distant user degrades significantly more than that of the close user. When BER
= 102, the gains in the average BER of the near user relative to the distant user are approximately 10 (dB) for
BPSK and 20 (dB) for QPSK, respectively. The BER of a distant user, on the other hand, approaches saturation
at ρS = 25 (dB), while the BER of near user continuously decreases.
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Figure 7. The BER performance varies with transmitting power, with α = 2, κ = 0 and µ = 1

6. CONCLUSION
This study included an analysis of the performance of NOMA in downlink communication networks.

The closed-form expression of OP and throughput are calculated, in which the BER of the NOMA communica-
tion system is considered versus the average SNR to evaluate the transmission efficiency of the system. Monte
Carlo simulations used to validate analytical findings. In this study, we present numerical findings pertaining
to diverse performance metrics across many parameters, including power allocation factor, target rate, and the
influence of generalized α − κ− µ fading channels. It has been determined that the downlink NOMA system
offers equitable treatment to users within the proposed system paradigm. Our theoretical analyses are con-
structed to analyze the performance of NOMA downlink systems over generalized fading channels. We want
to examine the impact of different parameters on the system’s performance. In the future, the efficacy of the
NOMA system is anticipated to be enhanced by the integration of transmission, energy harvesting, and secrecy
analysis.
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