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1. INTRODUCTION

Unmanned aerial vehicles (UAVSs) are widely used and important in our lives because of their
ability to operate in challenging and dangerous areas, particularly in the military and industrial sectors.
Planning a route from a starting point to a target location while avoiding environmental obstacles is critical to
the mission's success [1], [2]. Path planning is generally divided into two types: when the environment is
known, path planning is said to be offline, and when it can adjust a path in reaction to environmental
changes, it is said to be online [3], [4].

On the other hand, five categories have been established for UAV 3D route planning algorithms.
Each category differs from the others in terms of compatibility with specific characteristics [1]-[5]. The first
category is node-based algorithms, including the A*, dijkstra algorithms [6], [7], and the D-star algorithm
[8]. The second type of algorithm is sample-based, such as the rapidly exploring random tree (RRT)
algorithm [9], probabilistic road maps (PRM) [10], and others. The third category is based on a mathematical
model [5], [11]. The fourth type is bio-inspired algorithms, including fuzzy logic (FL) [12], the improved
artificial bee colony (IABC) algorithm [13], genetic algorithm (GA) [14], [15], the improved ant colony
optimization (IACO) [16], particle swarm optimization (PSO) [17], flower pollination algorithm (FPA) [18],
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and modified particle swarm optimization (MPSO) [3]. The fifth category is multi-fusion-based algorithms,
which combine two or more algorithms; these algorithms seek to solve and enhance route planning problems
by increasing their quality, stability, and convergence performance [19]. Examples include a probabilistic
roadmap based on ant colony optimization [20], improved particle swarm optimization (IPSO), grey wolf
optimizer (GWO) [19], a hybrid flower pollination and genetic algorithm (FPA-GA) [21], (BAS-GA) is a
combination of the genetic algorithm and the beetle antennae search algorithm [22], and others. Depending
on the situation, each of these algorithms has advantages and disadvantages. These algorithms, in particular,
look for the shortest route length, minimize the overall time, and avoid obstacles.

Many researchers have used various techniques to generate global path planning with obstacle
avoidance. The researchers combined the third-order B-spline curve, ACO, and PRM in a 2D environment
[20]. This strategy can find a smooth, straight path but has not been tested in 3D environments. While the
authors in [6], depending on the chosen nodes, used both the A* and dijkstra algorithms in a realistic 3D
environment. The selected route was not smooth, and the procedure did not find the optimal one. Athira et al.
[23] used an improved artificial potential field (APF) technique with a sampling-based bidirectional RRT
algorithm to create an offline route plan. This approach combines two local route planning algorithms; hence,
it cannot determine the ideal path between the beginning and goal places. In paper [24], [25] improved global
path-planning systems were constructed using the A* algorithm paired with the ACO and GA. They covered
a 2D situation only; a 3D scenario was not addressed. A hybrid approach [26] is suggested that combines the
grasshopper optimization algorithm (GOA) with an improved multinomial logistic regression algorithm.

Furthermore, Alabdalbari and Abed [27] proposed a hybrid gray wolf-particle swarm optimization
(HGWO-PSO). Both hybridization algorithms increased the range of choices and assisted in avoiding
stagnation in 2D environments. While Zhao et al. [28] used PSO and improved whale optimization (IWOA)
to quicken convergence, it proposed combining improved whale optimization and particle swarm
optimization (IWOA-PSO). After using an IWOA to prevent the system from settling at the local optimum,
they used the crossover technique for information exchange. The author did not consider the minimum path
length while determining the best route, which resulted in high energy usage for the required operation.

From previous studies, A* is the preferred route planning approach out of all the options mentioned
above due to its ease of use. The shortest local route will always be found using the A* approach on graphs;
however, it cannot find the optimal path in a continuous environment. On the other hand, bio-inspired
algorithms have high computational complexity and low convergence. In this study, we proposed to use the
hybrid algorithm of A* and FPA to find the optimal 3D path of the UAV in a realistic, continuous
environment with reduced computational complexity by balancing exploration and exploitation processes by
exploiting the A* exploration ability, and the FPA exploitation ability and then employing the B-splines
algorithm to smooth the path.

The paper is organized as follows: the issue formulations of quadcopter path planning, the A*, FPA,
and A*-FPA approaches, are described in section 2, which maps A*-FPA to quadcopter path planning, and
section 3 describe outlines the underlying principles of the recommended environmental model and the
B-spline method. The results of numerous well-designed, related simulations are provided and thoroughly
discussed in section 4. In section 5, a conclusion is reached.

2. THE PROPOSED A*- FPA ALGORITHM
This section describes the A* and FPA algorithms' principal operations are then detailed. Finally, a
description of the hybrid A*-FPA algorithm's use in determining the best route planning.

2.1. The principal work of A*

The A* algorithm is a heuristic search route that performs many calculations when determining the
node state and choosing the lowest cost. The A* algorithm offers the benefits of fast search and easy operation
while planning a large environment, and the resulting route comprises several straight-line segments.
Implementing a more advanced A* algorithm does 3D path planning, as shown in Figure 1. By optimizing the
heuristic function, the A* method meets the acceptance requirement and is more suitable for the 3D
environment. The heuristic cost of the A* method is described by the estimated function f(n) [6], [8], [29]:

f(m) =h®m) +gm) @
h(n) = \/(gx —n,)? + (gy - ny)z + (g, — ny)? 2
gn) = \/(nx —S5)% + (le - Sy)z + (n, — s,)? 3)
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Where the least cost from the starting node to the current node (n) is represented by g(n). The least cost
between the current node and the goal node is h(n), the current node's coordinates are n,, n,, and n,, the
target node's coordinates are g,, g,,, and g,, and the starting nodes' coordinates are s, s, and s.

Target point

” A0
'
P
!

Possible Next node

Current search node

Starting point

Figure 1. A* algorithm work in a 3D environment

2.2. The principal work of FPA

Yang in 2012 [30] developed the FPA, a nature-inspired population-based algorithm. Flower
pollination ensures that plants reproduce as efficiently as possible by surviving the finest flowers among flower
plants. A flower's principal function is reproduction via pollination. Pollen transport is typically associated with
flower pollination, and insects, birds, insects, and other animals are frequently involved [30], [31].

Abiotic and biotic pollination are the two primary varieties. Biotic pollination involves pollen
transmission by pollinators such as insects and animals and is used by around 90% of flowering plants. Around
10% of pollination is accomplished by abiotic pollination, which does not need pollinators. On the other hand,
there are two ways to pollinate plants: cross-pollination and self-pollination. Self-pollination occurs when pollen
from the same flower or several flowers of the same plant is used to populate a single flower, as opposed to
cross-pollination, which occurs when pollen from a flower of a different plant is used to nourish a single flower.
The researchers in [30], [31] created the following rules to serve as a model for the FPA:

a. During biotic cross-pollination, a kind of global pollination, pollinators use levy flights to move pollen
from one plant to another. For the significant steps, this distribution is appropriate (s "so>0).

AT = AT + L(Gpese — AD) (4)

_AT(@xsin [

mxsltd

» (Is| = o) ©)
b. Abiotic self-pollination is recognized as local pollination.
ATt = A + e(A] — AD) (6)

Where A; is the variable solution, g,.s; S the best-found solution, T is the number of iterations, € is the
random number, € [0,1], T'(1) is the general gamma function, so is a minimal step, and (AjT and AY) are
members of the same plant species (chosen arbitrarily from the same population). This study will employ
A=1.5, as Yang [30] suggested, as the scaling parameter to control the step size.

c. Itisassumed that flower constancy represents the probability of reproduction.

d. A probability switch (p) is proposed to control the amount of local and global pollination.

2.3. Proposed hybrid A*-FPA algorithm

The hybrid A*-FPA algorithm will be proposed to address the problem of finding the UAV path
planning, avoiding collisions with high computational requirements, avoiding the algorithm falling into local
optimal, and modifying the FPA search space to prevent the algorithm from searching in an insufficient area.
The proposed algorithm begins by defining four layers of nodes, each having 22*13 nodes, as illustrated in
Figures 2(a) and (b). Then the A* technique will be used to determine the optimal route from the identified
nodes and define them as a node sequence. Due to the large number of nodes that can be chosen depending
on the distance between the starting and target nodes, the path length can increase. The best three nodes from
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each node will be chosen to reduce the path length and streamline the computational process, and they will
form the initial population of the FPA. From a distance between the nodes in one layer and the best global
solution, the search space will be improved as follows for each axis:

Upper band = g, + distance between two grid nodes /2 @)

Lower band = gy.5; — distance between two grid nodes/?2 (8)

y-axis (m)

x-axis (m)
(b)

Figure 2. The grid nodes distribution on the environment; (a) 3D view and (b) top view

The FPA is then considered to find the optimal path by minimizing the cost function, as shown in
(9) and (10). To ensure a safe path, the punishment value (P,) is added to the cost function. The suggested
method as a whole may be articulated in Figure 3 (in Appendix).

cost = Path length + P, )

Path length = [ (%41 — %)% + Vis1 — Y1) (Z141 — 2)? (10)

where the current node's coordinates are (x;, y;, z;) and the next node's coordinates are (x;.1, ¥i+1s Zi41)-

3. METHOD
3.1. Environment design

Choose the shortest UAV path based on the delivery system between the beginning and destination
points in a vast, static, and realistic area. We decided to use the University of Technology, Baghdad, Iraq
(UOT) map for this study because of the diversity of building types and the areas with modern buildings. We
created a map of the 560x410 m (229600 m?) area using the website (https://cadmapper.com), a virtual 3D
mapping library that served as a platform for urban construction and architectural activities. Using the 3D
CAD tool autoCAD, as seen in Figure 4. The environment is downloaded as a DXF file, which autoCAD can
access. It is then modified and transformed into an STL file for MATLAB use [6], [21].

3.2. B-spline algorithm

The most common path-planning method produces segments of straight lines. The discontinuity
problem, mechanical wear, localization mistake, and slipping make paths with straight-line segments
unsuitable [20]. Splines are often used as piecewise polynomial functions to approximate functions, curves,
and surfaces or to interpolate collections of data points. A method for computing splines that is very effective
was based on so-called B-splines [32]. The B-splines show how to create a general spline by linearly
combining the appropriate number of basis functions. Where the N control points p, (q=0, 1... N) and the
r order of the B-spline curve as explained in (7) [20], [32].

p(t) = X4 peB; () tren S Stygg (11)

where By (t) is B-spline basis function and the knot vector's r order specified as (ty, ti, ..., ty4r)-
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AutoCAD Map

Figure 4. The UOT environment design at both CAD mapper and autoCAD environments

Can be calculated the B-spline basis function from the following recursive:

1 t, <t <t
BY(t ={ A 12
a(® 0 otherwise (12)
r _ _t-tq r—1 tg+r+e1—t r—1
Bj(t) = po—— By7(t) + tq+r+1—tq+1Bq+1 r>0 (13)
0 qg<r
tq={1+q—r r<q <N (14)
2+N-—-r q>N

4. RESULTS AND DISCUSSION

With the suggested A*-FPA algorithms, the offline route planner can be evaluated between the
beginning and goal points. Next, we will compare the performance to that of the FPA, A*, GA, and PSO
algorithms. To cover all feasible situations with varying degrees of complexity and evaluate the method's
performance in terms of best route length, mean route length, standard deviation, and worst value. Three
distinct scenarios will be examined in the same realistic setting. Ten runs are performed for each scenario to
test the method's robustness and its route length conclusions due to the meta-heuristic methods' random
nature. Table 1 lists the parameters of the hybrid algorithms. Due to the complexity of UAV operations, each
of these situations differs from the others. Table 2 explains each scenario's beginning location and target
point. The simulations are run in MATLAB (R2016a) on a Windows 10 PC equipped with an Intel(R) Core
(TM) i7-1165G7 processor running at 2.80 GHz and 8 GB of RAM.

Table 1. A*-FPA algorithm parameters value

No. Parameter name Values
1 Population size (N) 40
2 Number of generations (T) 50
3 Number of variables 9
4 Switch probability (p) 0.2
5 Number of neighbor nodes 26
6 Number of trails 10

Table 2. The scenarios description for UAV travels

Scenario no. Starting point Target point
1 (110,73,0) (340, 370, 19.5)
2 (110,73,0) (495, 150, 0)
3 (50,330,0) (272,278,0)

Unmanned aerial vehicle path planning in a 3D ... (Abbas Abdulrazzaq Kareem)
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The results show that the hybrid algorithm finds the optimal 3D UAV path in various scenarios. In
contrast, in the first scenario, the A* algorithm determines the best route based on the grid nodes. The found
path using A* passes through 16 nodes, including the starting and target nodes, and the generated path
avoided the obstacles with a length of 467.385 m. The B-spline algorithm smoothed this path, reducing the
path length to 413.009 m. The FPA, GA, and PSO algorithms found the UAV safe path with lengths of
386.205 m, 391.688 m, and 382.283 m, respectively. While the proposed A*-FPA algorithm determines the
optimal value, its length is 380.130 m, as shown in Figures 5(a), (b), and 6. On the other hand, the proposed
algorithm is superior to the other algorithms in the mean value, standard deviation, and worst value, as
explained in Table 3.
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Figure 5. The UAV path determines in the first scenario in; (a) 3D view and (b) top view
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Figure 6. The algorithm's performance in the first scenario

In the second scenario, these algorithms found safe 3D UAV paths of different lengths. The A*
algorithm found a path that passes through 19 grid nodes with a 486.501 m path length; after that, it is
smoothed to reduce the length to 449.83 m. For meta-heuristic algorithms, the proposed hybrid algorithm is
to determine the optimal path with a length equal to 396.192 m, which is superior to other algorithms, as
shown in Figures 7(a), (b), and 8, where the path lengths for FPA, GA, and PSO are 403.803 m, 405.139 m,
and 401.828 m, respectively.
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Table 3. Path planning results in various scenarios

Scenariono.  ltems A* FPA GA PSO A*-FPA
1 Best  413.009 386.205 391.688 382.283  380.130
Mean - 391.079 421.631 393.382  380.688
Std. - 3.824 12.892 21.011 0.337
Worst - 397911 437954 452.071 381.144
2 Best  449.830 403.803 405.139 401.828 396.192
Mean - 409.001 416.526 415239  396.509
Std. - 4.332 7917 25.390 0.220
Worst - 415.378 431.546 482273 396.931
3 Best  285.341 437.170 428810 452.189 251.536
Mean - 525.603 604.110 657.160 253.306
Std. - 109.781 126.504 132.462 1.584
Worst - 733456 772.211 764.794  256.387
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Figure 7. The UAV path planning in the second scenario is in; (a) 3D view and (b) top view
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Figure 8. The algorithm's performance in the second scenario

400

While in the third scenario, only the A* algorithm and the proposed A*-FPA algorithm can find a
collision-avoidance 3D path plan with path lengths equal to 285.341 m and 251.536 m, respectively, as
shown in Figures 9(a), (b), and 10. Where the A* algorithm is found, the path passes through 14 nodes.
While the other algorithm fails after 50 iterations to find a safe path, it requires more iterations to find the

optimal path, increasing the computational process.
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Figure 9. The found path in the third scenario is in; (a) the top view and (b) the 3D view
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Figure 10. The algorithm's performance in the third scenario

The results demonstrate that the recommended hybrid A*-FPA algorithm improved the UAV's route
planning efficiency. The percentages of path best value, mean value, standard deviation value, and worst
value enhancement obtained in Table 4 demonstrate that the suggested hybrid algorithm outperforms all other
compared algorithms. We also notice that the improved values rise in more complicated situations.

Table 4. The percentage enhanced of A*-FPA at the optimal route and mean path in different scenarios

Scenariono. ltems  A* (%) FPA (%) GA (%) PSO (%)
1 Best 8.65 1.546 3.04 0.566
Mean - 2.73 10.755 3.33
2 Best 135 19 2.2 14
Mean - 3.23 5.04 4.7
3 Best 13.4 74.3 70.4 79.3
Mean - 109.1 138.7 147.8

5. CONCLUSION

This work introduced a hybrid global path-planning algorithm called A*-FPA that balanced the
process between the A* exploration ability and the FPA exploitation ability to solve the issue of UAV route
planning and obstacle avoidance. According to four criteria-the "best path,
deviation," and "worst path length"-the suggested algorithm's performance is compared to that of the A*,
FPA, GA, and PSO algorithms. The simulation results of the proposed algorithm improved the values of the
optimum route length, mean path, standard deviation, and worst path length in all scenarios. The best route

mean path," "standard
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length enhancement ratio increased from 0.56% in the first tested scenario to 79.3% in the final one, and the
mean route length enhancement ratio increased from 2.73% in the first scenario to 147.8% in the final one.
On the other hand, the standard deviation and worst path length results showed that the suggested approach
obtained better results than the alternative algorithms. We conclude that the hybrid A*-FPA can be where the
suggested algorithm effectively balances the exploitation and exploration processes and keeps the method's
performance from slipping below the local optimum. The low standard deviation values across all situations
studied ensured that the safest route would be discovered throughout each trial. The hybrid A*-FPA route
planning version may be used in dynamic environments.

APPENDIX
Established the 3D environment From the u.pen l“ft .se-leﬁ three [.)mnts
and setting as initial population
Set the upper and lower search space
Setting FPA parameters based on the selected points and the
distance between grid nodes
Smoothed the path and
Grid the environment with ] moothe e-pa m:l
evaluate the cost function
set of nodes l
¢ Sorting and assign the
\ best solution
Set the starting node as current —
nodes and begin searching l‘
i Generate random number (R)
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Figure 3. The A*-FPA flow chart process
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