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 The optimal unmanned aerial vehicle (UAV) path planning using bio-

inspired algorithms requires high computation and low convergence in a 

complex 3D environment. To solve this problem, a hybrid A*-FPA 

algorithm was proposed that combines the A* algorithm with a flower 

pollination algorithm (FPA). The main idea of this algorithm is to balance 

the high speed of the A* exploration ability with the FPA exploitation ability 

to find an optimal 3D UAV path. At first, the algorithm starts by finding the 

locally optimal path based on a grid map, and the result is a set of path 

nodes. The algorithm will select three discovered nodes and set the FPA's 

initial population. Finally, the FPA is applied to obtain the optimal path. The 

proposed algorithm's performance was compared with the A*, FPA, genetic 

algorithm (GA), and partical swarm optimization (PSO) algorithms, where 

the comparison is done based on four factors: the best path, mean path, 

standard deviation, and worst path length. The simulation results showed 

that the proposed algorithm outperformed all previously mentioned 

algorithms in finding the optimal path in all scenarios, significantly 

improving the best path length and mean path length of 79.3% and 147.8%, 

respectively. 
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1. INTRODUCTION 

Unmanned aerial vehicles (UAVs) are widely used and important in our lives because of their 

ability to operate in challenging and dangerous areas, particularly in the military and industrial sectors. 

Planning a route from a starting point to a target location while avoiding environmental obstacles is critical to 

the mission's success [1], [2]. Path planning is generally divided into two types: when the environment is 

known, path planning is said to be offline, and when it can adjust a path in reaction to environmental 

changes, it is said to be online [3], [4]. 

On the other hand, five categories have been established for UAV 3D route planning algorithms. 

Each category differs from the others in terms of compatibility with specific characteristics [1]–[5]. The first 

category is node-based algorithms, including the A*, dijkstra algorithms [6], [7], and the D-star algorithm 

[8]. The second type of algorithm is sample-based, such as the rapidly exploring random tree (RRT) 

algorithm [9], probabilistic road maps (PRM) [10], and others. The third category is based on a mathematical 

model [5], [11]. The fourth type is bio-inspired algorithms, including fuzzy logic (FL) [12], the improved 

artificial bee colony (IABC) algorithm [13], genetic algorithm (GA) [14], [15], the improved ant colony 

optimization (IACO) [16], particle swarm optimization (PSO) [17], flower pollination algorithm (FPA) [18], 

https://creativecommons.org/licenses/by-sa/4.0/
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and modified particle swarm optimization (MPSO) [3]. The fifth category is multi-fusion-based algorithms, 

which combine two or more algorithms; these algorithms seek to solve and enhance route planning problems 

by increasing their quality, stability, and convergence performance [19]. Examples include a probabilistic 

roadmap based on ant colony optimization [20], improved particle swarm optimization (IPSO), grey wolf 

optimizer (GWO) [19], a hybrid flower pollination and genetic algorithm (FPA-GA) [21], (BAS-GA) is a 

combination of the genetic algorithm and the beetle antennae search algorithm [22], and others. Depending 

on the situation, each of these algorithms has advantages and disadvantages. These algorithms, in particular, 

look for the shortest route length, minimize the overall time, and avoid obstacles. 

Many researchers have used various techniques to generate global path planning with obstacle 

avoidance. The researchers combined the third-order B-spline curve, ACO, and PRM in a 2D environment 

[20]. This strategy can find a smooth, straight path but has not been tested in 3D environments. While the 

authors in [6], depending on the chosen nodes, used both the A* and dijkstra algorithms in a realistic 3D 

environment. The selected route was not smooth, and the procedure did not find the optimal one. Athira et al. 

[23] used an improved artificial potential field (APF) technique with a sampling-based bidirectional RRT 

algorithm to create an offline route plan. This approach combines two local route planning algorithms; hence, 

it cannot determine the ideal path between the beginning and goal places. In paper [24], [25] improved global 

path-planning systems were constructed using the A* algorithm paired with the ACO and GA. They covered 

a 2D situation only; a 3D scenario was not addressed. A hybrid approach [26] is suggested that combines the 

grasshopper optimization algorithm (GOA) with an improved multinomial logistic regression algorithm. 

Furthermore, Alabdalbari and Abed [27] proposed a hybrid gray wolf-particle swarm optimization 

(HGWO-PSO). Both hybridization algorithms increased the range of choices and assisted in avoiding 

stagnation in 2D environments. While Zhao et al. [28] used PSO and improved whale optimization (IWOA) 

to quicken convergence, it proposed combining improved whale optimization and particle swarm 

optimization (IWOA-PSO). After using an IWOA to prevent the system from settling at the local optimum, 

they used the crossover technique for information exchange. The author did not consider the minimum path 

length while determining the best route, which resulted in high energy usage for the required operation. 

From previous studies, A* is the preferred route planning approach out of all the options mentioned 

above due to its ease of use. The shortest local route will always be found using the A* approach on graphs; 

however, it cannot find the optimal path in a continuous environment. On the other hand, bio-inspired 

algorithms have high computational complexity and low convergence. In this study, we proposed to use the 

hybrid algorithm of A* and FPA to find the optimal 3D path of the UAV in a realistic, continuous 

environment with reduced computational complexity by balancing exploration and exploitation processes by 

exploiting the A* exploration ability, and the FPA exploitation ability and then employing the B-splines 

algorithm to smooth the path. 

The paper is organized as follows: the issue formulations of quadcopter path planning, the A*, FPA, 

and A*-FPA approaches, are described in section 2, which maps A*-FPA to quadcopter path planning, and 

section 3 describe outlines the underlying principles of the recommended environmental model and the  

B-spline method. The results of numerous well-designed, related simulations are provided and thoroughly 

discussed in section 4. In section 5, a conclusion is reached. 

 

 

2. THE PROPOSED A*- FPA ALGORITHM 

This section describes the A* and FPA algorithms' principal operations are then detailed. Finally, a 

description of the hybrid A*-FPA algorithm's use in determining the best route planning. 

 

2.1.  The principal work of A* 

The A* algorithm is a heuristic search route that performs many calculations when determining the 

node state and choosing the lowest cost. The A* algorithm offers the benefits of fast search and easy operation 

while planning a large environment, and the resulting route comprises several straight-line segments. 

Implementing a more advanced A* algorithm does 3D path planning, as shown in Figure 1. By optimizing the 

heuristic function, the A* method meets the acceptance requirement and is more suitable for the 3D 

environment. The heuristic cost of the A* method is described by the estimated function f(n) [6], [8], [29]: 

 

𝑓(𝑛) = ℎ(𝑛) + 𝑔(𝑛)  (1) 

 

ℎ(𝑛) = √(𝑔𝑥 − 𝑛𝑥)
2 + (𝑔𝑦 − 𝑛𝑦)

2 + (𝑔𝑧 − 𝑛𝑧)
2 (2) 

 

𝑔(𝑛) = √(𝑛𝑥 − 𝑠𝑥)
2 + (𝑛𝑦 − 𝑠𝑦)

2 + (𝑛𝑧 − 𝑠𝑧)
2 (3) 
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Where the least cost from the starting node to the current node (n) is represented by 𝑔(𝑛). The least cost 

between the current node and the goal node is ℎ(𝑛), the current node's coordinates are 𝑛𝑥, 𝑛𝑦, and 𝑛𝑧, the 

target node's coordinates are 𝑔𝑥, 𝑔𝑦, and 𝑔𝑧, and the starting nodes' coordinates are 𝑠𝑥, 𝑠𝑦 , and 𝑠𝑧. 
 

 

 
 

Figure 1. A* algorithm work in a 3D environment 

 

 

2.2.  The principal work of FPA 

Yang in 2012 [30] developed the FPA, a nature-inspired population-based algorithm. Flower 

pollination ensures that plants reproduce as efficiently as possible by surviving the finest flowers among flower 

plants. A flower's principal function is reproduction via pollination. Pollen transport is typically associated with 

flower pollination, and insects, birds, insects, and other animals are frequently involved [30], [31]. 

Abiotic and biotic pollination are the two primary varieties. Biotic pollination involves pollen 

transmission by pollinators such as insects and animals and is used by around 90% of flowering plants. Around 

10% of pollination is accomplished by abiotic pollination, which does not need pollinators. On the other hand, 

there are two ways to pollinate plants: cross-pollination and self-pollination. Self-pollination occurs when pollen 

from the same flower or several flowers of the same plant is used to populate a single flower, as opposed to 

cross-pollination, which occurs when pollen from a flower of a different plant is used to nourish a single flower. 

The researchers in [30], [31] created the following rules to serve as a model for the FPA: 

a. During biotic cross-pollination, a kind of global pollination, pollinators use levy flights to move pollen 

from one plant to another. For the significant steps, this distribution is appropriate (𝑠 "𝑠0>0). 
 

𝐴𝑖
𝑇+1 = 𝐴𝑖

𝑇 + 𝐿(𝑔𝑏𝑒𝑠𝑡 − 𝐴𝑖
𝑇)  (4) 

 

𝐿 =
𝜆Γ(𝜆)×sin⁡(

𝜋𝜆

2
)

𝜋×𝑠1+𝜆
,   (|𝑠| → ⁡∞)  (5) 

 

b. Abiotic self-pollination is recognized as local pollination . 
 

𝐴𝑖
𝑇+1 = 𝐴𝑖

𝑇 + 𝜖(𝐴𝑗
𝑇 − 𝐴𝑘

𝑇)  (6) 
 

Where 𝐴𝑖 is the variable solution, 𝑔𝑏𝑒𝑠𝑡  s the best-found solution, 𝑇 is the number of iterations,  𝜖 is the 

random number, 𝜖 [0,1], Γ(𝜆) is the general gamma function, s0 is a minimal step, and (𝐴𝑗
𝑇⁡𝑎𝑛𝑑⁡𝐴𝑘

𝑇) are 

members of the same plant species (chosen arbitrarily from the same population). This study will employ  

𝜆=1.5, as Yang [30] suggested, as the scaling parameter to control the step size. 

c. It is assumed that flower constancy represents the probability of reproduction . 

d. A probability switch (ρ) is proposed to control the amount of local and global pollination . 

 

2.3.  Proposed hybrid A*-FPA algorithm 

The hybrid A*-FPA algorithm will be proposed to address the problem of finding the UAV path 

planning, avoiding collisions with high computational requirements, avoiding the algorithm falling into local 

optimal, and modifying the FPA search space to prevent the algorithm from searching in an insufficient area. 

The proposed algorithm begins by defining four layers of nodes, each having 22*13 nodes, as illustrated in 

Figures 2(a) and (b). Then the A* technique will be used to determine the optimal route from the identified 

nodes and define them as a node sequence. Due to the large number of nodes that can be chosen depending 

on the distance between the starting and target nodes, the path length can increase. The best three nodes from 
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each node will be chosen to reduce the path length and streamline the computational process, and they will 

form the initial population of the FPA. From a distance between the nodes in one layer and the best global 

solution, the search space will be improved as follows for each axis: 
 

 𝑈𝑝𝑝𝑒𝑟⁡𝑏𝑎𝑛𝑑 = ⁡𝑔𝑏𝑒𝑠𝑡 + 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒⁡𝑏𝑒𝑡𝑤𝑒𝑒𝑛⁡𝑡𝑤𝑜⁡𝑔𝑟𝑖𝑑⁡𝑛𝑜𝑑𝑒𝑠/2 (7) 
 

 𝐿𝑜𝑤𝑒𝑟⁡𝑏𝑎𝑛𝑑 = ⁡𝑔𝑏𝑒𝑠𝑡 − 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒⁡𝑏𝑒𝑡𝑤𝑒𝑒𝑛⁡𝑡𝑤𝑜⁡𝑔𝑟𝑖𝑑⁡𝑛𝑜𝑑𝑒𝑠/2 (8) 
 

 

 
(a) 

 
(b) 

 

Figure 2. The grid nodes distribution on the environment; (a) 3D view and (b) top view 
 

The FPA is then considered to find the optimal path by minimizing the cost function, as shown in 

(9) and (10). To ensure a safe path, the punishment value (𝑃𝑜) is added to the cost function. The suggested 

method as a whole may be articulated in Figure 3 (in Appendix). 
 

𝑐𝑜𝑠𝑡 = 𝑃𝑎𝑡ℎ⁡𝑙𝑒𝑛𝑔𝑡ℎ⁡ + 𝑃𝑜 (9) 
 

𝑃𝑎𝑡ℎ⁡𝑙𝑒𝑛𝑔𝑡ℎ = √(𝑥𝑙+1 − 𝑥𝑙)
2 + (𝑦𝑙+1 − 𝑦𝑙)

2(𝑧𝑙+1 − 𝑧𝑙)
2 (10) 

 

where the current node's coordinates are (𝑥𝑙 ,⁡𝑦𝑙 ,⁡𝑧𝑙) and the next node's coordinates are (𝑥𝑙+1,⁡𝑦𝑙+1,⁡𝑧𝑙+1). 

 

 

3. METHOD 
3.1.  Environment design 

Choose the shortest UAV path based on the delivery system between the beginning and destination 

points in a vast, static, and realistic area. We decided to use the University of Technology, Baghdad, Iraq 

(UOT) map for this study because of the diversity of building types and the areas with modern buildings. We 

created a map of the 560×410 m (229600 m2) area using the website (https://cadmapper.com), a virtual 3D 

mapping library that served as a platform for urban construction and architectural activities. Using the 3D 

CAD tool autoCAD, as seen in Figure 4. The environment is downloaded as a DXF file, which autoCAD can 

access. It is then modified and transformed into an STL file for MATLAB use [6], [21]. 

 

3.2.  B-spline algorithm 

The most common path-planning method produces segments of straight lines. The discontinuity 

problem, mechanical wear, localization mistake, and slipping make paths with straight-line segments 

unsuitable [20]. Splines are often used as piecewise polynomial functions to approximate functions, curves, 

and surfaces or to interpolate collections of data points. A method for computing splines that is very effective 

was based on so-called B-splines [32]. The B-splines show how to create a general spline by linearly 

combining the appropriate number of basis functions. Where the N control points 𝑝𝑞 (𝑞=0, 1… N) and the 

𝑟⁡order of the B-spline curve as explained in (7) [20], [32]. 
 

𝑝(𝑡) = ∑ 𝑝𝑞𝐵𝑞
𝑟(𝑡)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑡𝑟+1⁡ ≤ 𝑡⁡ ≤ 𝑡𝑁+1⁡⁡

𝑁
𝑞  (11) 

 

where 𝐵𝑞
𝑟(𝑡) is B-spline basis function and the knot vector's r order specified as (𝑡0, 𝑡1, … , 𝑡𝑁+𝑟). 
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Figure 4. The UOT environment design at both CAD mapper and autoCAD environments 

 

 

Can be calculated the B-spline basis function from the following recursive: 
 

𝐵𝑞
0(𝑡) = {

1⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑡𝑞 ≤ 𝑡⁡ ≤ ⁡ 𝑡𝑞+1
0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒⁡⁡⁡⁡⁡

 (12) 

 

𝐵𝑞
𝑟(𝑡) =

𝑡−𝑡𝑞

𝑡𝑞+𝑟−𝑡𝑞
⁡𝐵𝑞

𝑟−1(𝑡) +
𝑡𝑞+𝑟+1−𝑡

𝑡𝑞+𝑟+1−𝑡𝑞+1
𝐵𝑞+1
𝑟−1⁡⁡⁡⁡𝑟 > 0 (13) 

 

𝑡𝑞 = {

0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑞 < 𝑟
1 + 𝑞 − 𝑟⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑟 ≤ 𝑞⁡ ≤ 𝑁
2 + 𝑁 − 𝑟⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑞 > 𝑁

 (14) 

 

 

4. RESULTS AND DISCUSSION 

With the suggested A*-FPA algorithms, the offline route planner can be evaluated between the 

beginning and goal points. Next, we will compare the performance to that of the FPA, A*, GA, and PSO 

algorithms. To cover all feasible situations with varying degrees of complexity and evaluate the method's 

performance in terms of best route length, mean route length, standard deviation, and worst value. Three 

distinct scenarios will be examined in the same realistic setting. Ten runs are performed for each scenario to 

test the method's robustness and its route length conclusions due to the meta-heuristic methods' random 

nature. Table 1 lists the parameters of the hybrid algorithms. Due to the complexity of UAV operations, each 

of these situations differs from the others. Table 2 explains each scenario's beginning location and target 

point. The simulations are run in MATLAB (R2016a) on a Windows 10 PC equipped with an Intel(R) Core 

(TM) i7-1165G7 processor running at 2.80 GHz and 8 GB of RAM. 

 

 

Table 1. A*-FPA algorithm parameters value 
No. Parameter name Values 

1 Population size (N) 40 
2 Number of generations (T) 50 

3 Number of variables 9 

4 Switch probability (ρ)  0.2 
5 Number of neighbor nodes  26 

6 Number of trails 10 

 

 

Table 2. The scenarios description for UAV travels 
Scenario no. Starting point Target point 

1 (110,73,0) (340, 370, 19.5) 

2 (110,73,0) (495, 150, 0) 

3 (50,330,0) (272,278,0) 
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The results show that the hybrid algorithm finds the optimal 3D UAV path in various scenarios. In 

contrast, in the first scenario, the A* algorithm determines the best route based on the grid nodes. The found 

path using A* passes through 16 nodes, including the starting and target nodes, and the generated path 

avoided the obstacles with a length of 467.385 m. The B-spline algorithm smoothed this path, reducing the 

path length to 413.009 m. The FPA, GA, and PSO algorithms found the UAV safe path with lengths of 

386.205 m, 391.688 m, and 382.283 m, respectively. While the proposed A*-FPA algorithm determines the 

optimal value, its length is 380.130 m, as shown in Figures 5(a), (b), and 6. On the other hand, the proposed 

algorithm is superior to the other algorithms in the mean value, standard deviation, and worst value, as 

explained in Table 3. 
 

 

 

  
(a) (b) 

 

Figure 5. The UAV path determines in the first scenario in; (a) 3D view and (b) top view 

 

 

 
 

Figure 6. The algorithm's performance in the first scenario 

 

 

In the second scenario, these algorithms found safe 3D UAV paths of different lengths. The A* 

algorithm found a path that passes through 19 grid nodes with a 486.501 m path length; after that, it is 

smoothed to reduce the length to 449.83 m. For meta-heuristic algorithms, the proposed hybrid algorithm is 

to determine the optimal path with a length equal to 396.192 m, which is superior to other algorithms, as 

shown in Figures 7(a), (b), and 8, where the path lengths for FPA, GA, and PSO are 403.803 m, 405.139 m, 

and 401.828 m, respectively. 
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Table 3. Path planning results in various scenarios 
A*-FPA PSO GA FPA A* Items Scenario no. 

380.130 382.283 391.688 386.205 413.009 Best 1 
380.688 393.382 421.631 391.079 - Mean 

0.337 21.011 12.892 3.824 - Std. 

381.144 452.071 437.954 397.911 - Worst 
396.192 401.828 405.139 403.803 449.830 Best 2 

396.509 415.239 416.526 409.001 - Mean 

0.220 25.390 7.917 4.332 - Std. 
396.931 482.273 431.546 415.378 - Worst 

251.536 452.189 428.810 437.170 285.341 Best 3 

253.306 657.160 604.110 525.603 - Mean 
1.584 132.462 126.504 109.781 - Std. 

256.387 764.794 772.211 733.456 - Worst 

 
 

 
(a) 

 
(b) 

 

Figure 7. The UAV path planning in the second scenario is in; (a) 3D view and (b) top view 
 

 

 
 

Figure 8. The algorithm's performance in the second scenario 
 
 

While in the third scenario, only the A* algorithm and the proposed A*-FPA algorithm can find a 

collision-avoidance 3D path plan with path lengths equal to 285.341 m and 251.536 m, respectively, as 

shown in Figures 9(a), (b), and 10. Where the A* algorithm is found, the path passes through 14 nodes. 

While the other algorithm fails after 50 iterations to find a safe path, it requires more iterations to find the 

optimal path, increasing the computational process. 
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(a) 

 
(b) 

 

Figure 9. The found path in the third scenario is in; (a) the top view and (b) the 3D view 
 

 

 
 

Figure 10. The algorithm's performance in the third scenario 
 
 

The results demonstrate that the recommended hybrid A*-FPA algorithm improved the UAV's route 

planning efficiency. The percentages of path best value, mean value, standard deviation value, and worst 

value enhancement obtained in Table 4 demonstrate that the suggested hybrid algorithm outperforms all other 

compared algorithms. We also notice that the improved values rise in more complicated situations. 
 

 

Table 4. The percentage enhanced of A*-FPA at the optimal route and mean path in different scenarios 
Scenario no. Items A* (%) FPA (%) GA (%) PSO (%) 

1 Best 8.65 1.546 3.04 0.566 

Mean - 2.73 10.755 3.33 

2 Best 13.5 1.9 2.2 1.4 
Mean - 3.23 5.04 4.7 

3 Best 13.4 74.3 70.4 79.3 

Mean - 109.1 138.7 147.8 

 

 

5. CONCLUSION 

This work introduced a hybrid global path-planning algorithm called A*-FPA that balanced the 

process between the A* exploration ability and the FPA exploitation ability to solve the issue of UAV route 

planning and obstacle avoidance. According to four criteria-the "best path," "mean path," "standard 

deviation," and "worst path length"-the suggested algorithm's performance is compared to that of the A*, 

FPA, GA, and PSO algorithms. The simulation results of the proposed algorithm improved the values of the 

optimum route length, mean path, standard deviation, and worst path length in all scenarios. The best route 
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length enhancement ratio increased from 0.56% in the first tested scenario to 79.3% in the final one, and the 

mean route length enhancement ratio increased from 2.73% in the first scenario to 147.8% in the final one. 

On the other hand, the standard deviation and worst path length results showed that the suggested approach 

obtained better results than the alternative algorithms. We conclude that the hybrid A*-FPA can be where the 

suggested algorithm effectively balances the exploitation and exploration processes and keeps the method's 

performance from slipping below the local optimum. The low standard deviation values across all situations 

studied ensured that the safest route would be discovered throughout each trial. The hybrid A*-FPA route 

planning version may be used in dynamic environments.  

 

 

APPENDIX 
 

 
 

Figure 3. The A*-FPA flow chart process 
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