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 Through the much defiance facing energy today, it has become necessary to 

rely on wind energy as a source of unlimited renewable energies. However, 

energy planning and regulation require wind capacity forecasting, because 

oscillations of wind speed drastically affect directly power generation. 

Therefore, several scenarios must be provided to allow for estimating 

uncertainties. To deal with this problem, this paper exploits the major 

advantages of the regularized extreme learning machine algorithm (R-ELM) 

and thus proposes a model for predicting the wind energy generated for the 

next hour based on the time series of wind speed. The R-ELM is combined 

with the genetic algorithm which is designed to optimize the most important 

hyperparameter which is the number of hidden neurons. Thus, the proposed 

model aims to forecast the average wind power per hour based on the wind 

speed of the previous hours. The results obtained showed that the proposed 

method is much better than those reported in the literature concerning the 

precision of the prediction and the time convergence. 
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1. INTRODUCTION  

In recent years, the environmental problems caused by climate change and traditional fossil fuels 

have become increasingly serious. Using sustainable renewable energy (RE) sources guards against 

environmental deterioration and shields the atmosphere from the hazards and disruptions of nuclear power 

[1], [2]. The fact that RE is powered by renewable resources such as the sun, wind, and water results in lower 

costs. Creating clean, green power also contributes to lowering pollutants and CO2 emissions. 

The fundamentals of electricity production are largely the same for all RE sources. Especially, wind 

power is the most widely used to generate electricity using wind turbines [3]. Wind energy is 

environmentally friendly as it can be used easily, so it is an ideal source of renewable energy on a large scale. 

But during its rapid development, it faced many challenges. Wind energy is affected by many effects such as 

wind speed, which in turn is changeable, inconstant, and intermittent because of the large fluctuations in 

wind power production. Due to this extreme variability, wind energy integration is facing significant 

challenges. The impact of the hazard can be minimized by the wind speed forecasting model [4], [5]. 

To predict wind energy, many strategies have been improved, which are divided into three 

categories: statistical and physical methods and artificial intelligence models [6]. Statistical approaches 

including automatic regression (AR) and auto-regressive integrated moving average (ARIMA) are best 
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implemented than digital weather models in short-term forecasting, so it is considered a modest method [7]. 

However, due to the linearity of statistical approaches, they cannot correctly predict nonlinear and 

nonstationary wind energy [8]. Physical prediction approaches like numerical weather prediction (NWP) 

methods, when the environment is constant, they show high precision in long-range forecasting [9], [10]. 

Nevertheless, the computational complexity of the accuracy of these models is greatly increased by the 

complex information requirements of the atmosphere [11]. Artificial intelligence approaches like least 

squares support vector machines (LSSVM) [12], artificial neural networks (ANN), and back-propagation 

algorithms (BP) are powerful and broadly applied to wind energy forecasting with suitable precision. The 

ANN is more favored due to its nonlinear system, which can take the fuzzy functional relationship of 

historical time series [13]. Also noted is that the strong properties of ANNs make them an effective tool for 

wind energy prediction. For instance, [14] based on the hourly average wind speed data, performed a 

comprehensive comparative study of the forecast performance of three different ANNs. Meng et al. [15] 

described that ANN has several advantages over other models no supplementary information is needed other 

than historical wind speed data. Moreover, Kani and Ardehali [16] proposed a new technique for predicting 

short-range wind speeds using ANN and Markov chains. Moreover, wavelet neural network (WNN) is an 

ideal prediction tool with advanced convergence speed and excellent results, so it is one of the most efficient 

artificial neural networks. That has been broadly used for time series forecasting in any domain such as wind 

power forecasting [17]. 

These suggested works are all built on supervised learning. On the contrary, they experience some 

anxiety. The main drawbacks of these models are the local minima they can reach and the slow convergence 

time. Also, they are reliant on the input data and perform poorly with large datasets or when the dataset has 

more noise. Ultimately, these models are incapable of adjusting to significant changes in meteorological data [18].  

Taking into account these issues, this article proposes a novel model to evaluate the quantity of wind 

energy produced founded on the regularized extreme learning machine (R-ELM) algorithm. R-ELM is 

founded on the main minimization of structural risk and weighted least squares. It fixes the issues with the 

algorithms mentioned that are used to wind energy forecast. The implementation of the R-ELM algorithm 

generalization is significantly ameliorated in many instances without increasing the learning time [19]. Due 

to the concealed nodes’ connection weights being spread at random and never being updated. We take as 

inputs of the proposed wind energy forecasting model the previous wind speed which forms a time series. 

While the output is the next energy generated by the wind turbines. In the hidden layer, the number of nodes 

is a large hyperparameter that greatly affects the execution of the final output of the model. In this regard, the 

genetic algorithm (GA) is applied in this paper to improve the hidden neurons of the proposed R-ELM 

model. GA is a computation technique intended to optimize a problem by iteratively attempting to make the 

result better following a fitness function [20]–[26]. It has shown a strong capability in the optimization field 

compared to optimization techniques such as particle swarm optimization (PSO) [27] and ant colony (AC) [28]. 

The suggested model is called regularized extreme learning machine algorithm genetic algorithm (R-ELM-GA). 

The remainder of this article is organized in the following way. In heading 2 we introduce the ELM 

algorithm and R-ELM algorithm, and next, we expose the GA, and we provide an elaborate description of the 

suggested wind energy forecast founded on R-ELM-GA. In section 3 we present the results of the simulation. 

We conclude the paper in section 4. 

 

  

2. METHOD 

2.1.  Extreme learning machine 

ELM which is introduced in [29] is a forward neural network with a powerful hidden layer that is 

detected by feedback. The main components of the ELM construction are the input layer, the output layer, 

and the hidden layer, connected by links called weights. The initial input weights are chosen at random, and 

the output weights are established using the inverse Moore-Penrose function [30]. ELM outperforms other 

machine learning techniques when the computational value is low.  

Taking into account a single-hidden layer feedforward neural network (SLFN), we will suppose that 

it has a training set {(𝑥𝑖 , 𝑡𝑖)}𝑖=1 
𝑁  with 𝑁 separated instances, where 𝑥𝑖 = [ 𝑥𝑖1; 𝑥𝑖2; … . . . ; 𝑥𝑖𝑛]

𝑇  include 𝑛 

inputs and 𝑡𝑖 = [𝑡𝑖1; 𝑡𝑖2; … . . ; 𝑡𝑖𝑚]
𝑇 includes 𝑚 outputs, and 𝑔(𝑥) the function that activates the hidden 

layer’s output, then the generic result 𝑡𝑖 maybe placed into the outcome target following the subsequent 

function: 
 

∑ 𝛽𝑗𝑔(𝜔𝑗 . 𝑥𝑖 + 𝑏𝑗)
𝐿
𝑗=1  (1) 

 

Where 𝜛𝑗  and 𝑏𝑗  are the randomly attributed parameters; 𝛽 is the weight of the linking between the hidden 

nodes and the output nodes illustrated in Figure 1. 
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Figure 1. Representation of the ELM construct 

 

 

There are two key stages to the ELM learning phase. As previously mentioned, the hidden layer’s 

weights and biases are first created at random. The following equation may then be used to calculate an exact 

approximation of the input samples: 

 

𝐻 𝛽 = 𝑇 (2) 

 

where 𝐻 = [
𝑔(𝜔1𝑥1 + 𝑏1) ⋯ 𝑔(𝜔1𝑥1 + 𝑏𝐿

⋮ ⋱ ⋮
𝑔(𝜔1𝑥𝑁 + 𝑏1) ⋯ 𝑔(𝜔1𝑥𝑁 + 𝑏𝐿

]

𝑁×𝐿

 (3) 

 

and 𝑇 = [𝑡1; 𝑡2; … ; 𝑡𝑁]
𝑇 . In the second stage, making use of the generalized Moore-Penrose inverse of the 

hidden layer matrix 𝐻†, the output weights are computed: 

 

𝛽 = 𝐻†𝑇 (4) 

 

where the Moore-Penrose pseudo-inverse of 𝐻 is denoted by 𝐻†. 

 

2.2.  Regularized extreme learning machine  

Recently, ELM has gained great celebrity, and then due to its speed and good generalization 

execution, it has been successfully applied in various fields. However, it can even be examined as an 

empirical subject of risk reduction and tends to create an overfitting model [21]. Furthermore, it can train less 

reliable estimates, especially with the existence of heterogeneous values or events in the data. Finally, ELM 

can provide less control because it directly computes the least-squares solution of the weakest criterion [31] 

to fill these gaps, Deng et al. [31] suggested a new algorithm named R-ELM founded on the principle of 

structural risk minimization (SRM) and the weighted least squares method. In general, when you want to 

configure SLFN, you have to find 𝜔𝑖, 𝑏𝑖, 𝛽 (𝑖 =  1… 𝐿) like this: 

 

 𝑚𝑖𝑛  ‖𝜀‖2 

 

𝑠. 𝑡 ∑ 𝛽𝑗𝑔(𝜔𝑗 . 𝑥𝑖 + 𝑏𝑗)
𝐿
𝑗=0 − 𝑡𝑖 = 𝜀𝑖 (5) 

 

𝑖 =  1, … , 𝑁 

 

Where 𝜀𝑖 = 𝜀𝑖1, 𝜀𝑖2, … . . , 𝜀𝑖𝑚 is the evaluator among the actual value and objective value of the 𝑖-th specimen, 

and 𝜀 = 𝜀1, 𝜀2, … . . , 𝜀𝑛. However, a well-generalized model should achieve the best solution despite the 

empirical risks and structural risks, which in turn constitute the real danger of prediction by learning statistics 

theory. By presenting a weighting factor 𝛾 for the empirical risk, which is depicted by the sum of the squares 

of the errors i.e., ‖𝜀‖2, their proportions can be regularized, and the structural risk can be depicted by ‖𝛽‖2 

which is a value to maximize the distance to the edge disconnecting between boundary categories.  

In addition, to obtain a robust estimate that attenuates the anomalous interferences, the error 𝜀𝑖 is weighted by 

the variable 𝑣𝑖. Thus, ‖𝜀‖2 is prolonged to ‖𝐷𝜀‖
2, where 𝐷 = 𝑑𝑖𝑎𝑔(𝑣1, 𝑣2, … . , 𝑣𝑁). 
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Therefore, we can be depicted the mathematical model of the proposed R-ELM algorithm as (6): 
 

 𝑚𝑖𝑛 
1

2
‖𝜀‖2 +

1

2
 𝛾‖𝐷𝜀‖

2 

 

𝑠. 𝑡 ∑ 𝛽𝑗𝑔(𝜔𝑗 . 𝑥𝑖 + 𝑏𝑗)
𝐿
𝑗=0 − 𝑡𝑖 = 𝜀𝑖 (6) 

 

 𝑖 =  1,2, … , 𝑁 
 

To determine the optimal balance between the ratio of structural risk and empirical risk, any 

individual can adopt this ratio by adjusting these two risks, resulting in a model with good generalization 

performance. We can be depicted the Lagrangian function of (6) as (7): 
 

𝐿 = (𝛽, 𝜀, 𝛼) =
1

2
 𝛾‖𝐷𝜀‖

2 +
1

2
‖𝛽‖2 −∑𝛼𝑖

𝑁

𝑖=1

 

 

(∑ 𝛽𝑗𝑔(𝜔𝑗 . 𝑥𝑖 + 𝑏𝑗)
𝐿
𝑗=0 − 𝑡𝑖 − 𝜀𝑖) =

1

2
 𝛾‖𝐷𝜀‖

2 +
1

2
‖𝛽‖2 − 𝛼(𝐻𝛽 − 𝑇 − 𝜀) (7) 

 

where 𝛼𝑖  ∈  ℝ (𝑖 = 1,… , 𝑁) is the Lagrange multiplier with equality restrictions from (6) and 
𝛼 =  [𝛼1;  𝛼2; … ;  𝛼𝑁]. Then, by setting the gradient of this Lagrangian to zero for (𝛽, 𝜀, 𝛼), the optimal 

conditions are obtained as (8): 
 

{
 
 

 
 

𝜕𝐿

𝜕𝛽
 →  𝛽𝑇 = 𝛼𝑇,

𝜕𝐿

𝜕𝜀
 →  𝛾𝜀𝑇𝐷2 + 𝛼 = 0 ,

𝜕𝐿

𝜕𝛼
 →  𝐻𝛽 − 𝑇 − 𝜀 = 0 .

 (8) 

 

Replacing the latter formula of (8) in the second formula will result in a clear formula for 𝛼 (9) and 𝜀𝑖 can be 

computed with 𝛼 (10): 
 

𝛼 = −𝛾(𝐻𝛽 − 𝑇)𝑇 (9) 
 

𝜀𝑖 =
𝛼𝑖

𝛾
 (10) 

 

By resolving (8), we can get the solution of 𝛽: 
 

𝛽 = (
𝐼

𝛾
+𝐻𝑇  𝐷2 𝐻)

†

𝐻𝑇𝐷2𝑇 (11) 

 

where 𝐼 is a unitary matrix. When 𝐷 is the unitary matrix 𝐼, we can use the following expression to calculate 𝛽: 
 

𝛽 = (
𝐼

𝛾
+𝐻𝑇  𝐻)

†

𝐻𝑇𝑇 (12) 

 

The algorithm is named unweighted regularized ELM (UWR-ELM) in this case. Indeed, when 𝛾 → ∞ 

the traditional ELM is a special case of the ELM-UWR. There are many types of calculation methods to 

obtain the weights 𝑣𝑖, such as (13): 
 

𝑣𝑖 =

{
 
 

 
  1 |

𝜀𝑖

ŝ
|  ≤ 𝑐1 

𝑐1−|
𝜀𝑖
ŝ
|

𝑐1−𝑐2

 10−4 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑐1 ≤ |
𝜀𝑖

ŝ
| ≤ 𝑐2  (13) 

 

where the constant 𝑐1 and 𝑐2 are usually set at 2.5 and 3 consecutively. We can compute ŝ which is a robust 

estimate of the standard deviation of unweighted error variables 𝜀𝑖 is as (14):  
 

ŝ =
𝐼𝑄𝑅

2×0,6745
 (14) 

 

where IQR is the interquartile interval that is the variance between the 25th percentile and the 75th percentile. 
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2.3.  Genetic algorithm 

The genetic algorithm is a Darwinian developmental simulation of natural selection and the process 

computational model of the genetic mechanism of biological evolution proposed by [22]. It is an extensive 

simulation of the natural evolution method of optimal solutions to some complex problems. At the core of the 

genetic algorithm are initial group identification, parameter encoding, genetic manipulation, fitness function, 

and control parameters [23]. The genetic process principally contains three factors: the selection process, the 

crossing process, and the variation process. The control parameters primarily contain group size and the 

probability of genetic functioning.  

 

2.4.  Proposed method 

One of the most important and best sources of renewable energy is wind energy, which is 

considered appropriate, promising, and active, attracting more and more global attention, thanks to its 

ambitious advantages such as environmental protection and ease of use. Wind turbines generate wind energy 

by turning the kinetic energy of the wind into usable power. The power delivered by this generator can be 

calculated as (15) [32]: 

 

𝑃𝑊 = {

0 𝑠𝑖 𝑉 < 𝑉𝑚𝑖𝑛
𝑎𝑉2 + 𝑏𝑉 + 𝑐 𝑠𝑖 𝑉𝑚𝑖𝑛 ≤ 𝑉 < 𝑉𝑟

 𝑃𝑊𝑁  𝑠𝑖 𝑉𝑟 ≤ 𝑉 > 𝑉𝑚𝑎𝑥

 (15) 

 

where: 

𝑃𝑊𝑁: the estimated produced energy of the wind turbine 

𝑉: wind speed 

𝑉𝑚𝑖𝑛: the wind speed required to trigger the wind turbine 

𝑉𝑚𝑎𝑥: the cut-off wind speed of the wind turbine 

𝑉𝑟: estimated wind speed 

𝑎, 𝑏, and 𝑐: constants and depend on the wind turbine type 

The main drawback of wind power is the great variability of wind speed that makes it difficult to 

control and optimize the operation of power production. It leads to significant challenges in the planning of 

reliable wind power systems and also affects their rapid development. Due to this extreme variability, the 

integration of wind power inside the grid faces significant challenges. Consequently, the effects of the 

fluctuating wind speed can be minimized by building a prediction model to evaluate the wind power 

produced. To determine the power output generated, meteorological measurements like wind speed are taken 

as inputs because the efficiency of the generation unit depends on the weather conditions.  

In the literature, there are several works on the prediction of wind energy generation. However, they 

suffer from some difficulties such as local minimum and slow convergence time. R-ELM is a strong 

algorithm that has proved its capability to solve the shortcomings.  

In this regard, in this article, we propose a model for forecasting wind energy that combines the  

R-ELM algorithm and GA. The proposed model exploits the most advantages of the R-ELM algorithm 

(extreme time convergence and good generalization ability) while optimizing the hyperparameter of hidden 

nodes number using the GA. Since the past wind speed restrains hidden information and correlation that 

affect the next wind power generated, then we built a prediction model with wind speed values as inputs of 

the network. The final production corresponds to the hourly wind energy produced. According to the work of 

[19], to correlate past wind speed values with the next wind speed value, only 8 past wind speed values are 

sufficient, so we opt for 8 entries for the last wind speed. The developed model, designated as R-ELM-GA, 

can make use of the main features of the R-ELM technique while eliminating the random selection of the 

hidden node number or the recurrent tests that need more training time and result in slower convergence. 

Following [33], we can determine the hidden nodes’ 𝐿 number in the hidden layer as (16): 

 

𝐿 = √𝑛 + 𝑚 + 𝛼 (16) 

 

where 𝛼 is a constant and 1 ≤ 𝛼 ≤ 10.  

The number of inputs in our model is eight and the number of the output is one. The hidden nodes 

number 𝐿 might thus range from 4 and 13 according to (16). The set {4, …,13} is seen as a population of 

unique solutions for the GA, where the mean square error (MSE) is regarded as fitness or an objective 

function. The many phases of the R-ELM-GA method are presented in a flowchart in Figure 2. 
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Figure 2. The different steps of the R-ELM-GA algorithm 

  

 

3. RESULTS AND DISCUSSION  

In this section, we will introduce the results and discuss the numerical analyses. To evaluate the 

effectiveness of the suggested wind prediction R-ELM-GA model, we used a set of wind speeds from 

Tetouan City in Morocco [30]. The dataset for the modeling has been divided into training and testing sets. 

As a result, we used 70% of the instances in the training set to train the model and 30% of the examples in 

the test set to evaluate its performance. 

The Python language is used to implement the R-ELM-GA method. There are one output node and 

eight input nodes in the whole network. The GA approach was used to optimize the number of concealed 

nodes into the set of {4, ...,13}. As a consequence, the optimization procedure determined 𝐿 be optimum at 

12. To enhance and measure the forecasting performance of the model, we conducted a comparison etude 

using the most used algorithm in wind energy forecasting, namely the R-ELM [34], the fundamental ELM 

[30], the BP [14], and the support vector machines (SVM) [35] algorithms.  

To study the efficacy of the suggested model and its ability to better perform in the critical season, we 

have added an examination of contrasts for the summer and winter months, respectively. The forecast results 

are presented in Figures 3-7 where we compared the results of the BP, SVM, ELM, R-ELM, and R-ELM-GA 

models respectively, and the examined measures for one month in summer. In Figures 8-12, we have exposed 

the comparison result of the BP, SVM, ELM, R-ELM, and R-ELM-GA models respectively, and the examined 

measures for one month in winter. Based on these figures, the R-ELM-GA model has good prediction 

measures in both the summer and winter seasons, as its curve closely resembles the observed curve. 
 

 

  
  

Figure 3. Wind power predicted by BP in summer Figure 4. Wind power predicted by SVM in summer 
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Figure 5. Wind power predicted by ELM in summer Figure 6. Wind power predicted by R-ELM in summer 
 

 

  
  

Figure 7. Wind power predicted by R-ELM-GA in summer 
 

Figure 8. Wind power predicted by BP in winter 

 

  
  

Figure 9. Wind power predicted by SVM in winter Figure 10. Wind power predicted by ELM in winter 
 

 

  
  

Figure 11. Wind power predicted R-ELM in winter Figure 12. Wind power predicted by R-ELM-GA in winter 
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The five models’ combined predictions for the summer and winter seasons are shown in Tables 1 and 2, 

respectively. The tables provide the time convergence of each technique in seconds and the MSE score, 

which may be determined as (17): 

 

𝑀𝑆𝐸 =
1

𝑛
∑ (𝑦𝑖
𝑛
𝑖=1 − 𝑂𝑖) (17) 

 

where the number of instances in the test set is 𝑛, the predictive output is 𝑂𝑖 , and the measured output is 𝑦𝑖 .  
The results shown in Tables 1 and 2 highlighted the execution of the suggested R-ELM-GA method 

concerning the MSE error. In comparison to the other models, BP and SVM provided the largest MSE since 

they provided a considerable discrepancy between the test values and the forecast’s outcome. It is about 

0.8579 for BP and 0.7256 for SVM in the summer season. In contrast, MSE’s ELM and R-ELM are about 

0.1827 and 0.1853 respectively, which are even larger than the MSE’s R-ELM-GA is about 0.1137.  

For the winter season, the MSE is about 0.9251 for BP and about 0.8689 for SVM. Furthermore, the 

error of ELM and R-ELM are about 0.3486 and 0.1932 respectively. All these models produce larger errors 

than that of R-ELM-GA which is about 0.1573.  

In addition, the biggest time convergence value is reached by BP and SVM which calls for a lengthy 

computing process with several iterations. On the other hand, ELM, R-ELM, and the proposed model give 

the lowest values. Although the proposed model uses GA to reduce the number of hidden nodes, it still gives 

a smaller convergence time. Given that the suggested R-ELM-GA approach offered comparably better 

forecasts than static models and required faster convergence, all these findings illustrated the adaptability of 

the method.  

 

 

Table 1. Comparison of different models in the 

summer 
Prediction method MSE Time convergence(s) 

R-ELM-GA 0.1137 0.8153 
R-ELM 0.1853 0.7283 

ELM 0.2597 0.6324 

SVM 0.7256 4.1527 
BP 0.8759 5.1725 

 

Table 2. Comparison of different models in the 

winter 
Prediction method MSE Time convergence(s) 

R-ELM-GA 0.1573 0.8582 
R-ELM 0.1932 0.7591 

ELM 0.3486 0.6816 

SVM 0.8689 5.9872 
BP 0.9251 6.2853 

 

 

 

4. CONCLUSION  

The operational safety of the electricity grid requires the need to provide wind energy as the most 

used RE source, but this is still very difficult due to the instability of wind speeds and their severe 

interruptions. That is why forecasting wind speed has become essential for the effective utilization of energy. 

In this regard, we have provided this article with a power forecasting model for the generation of wind 

energy using the R-ELM and GA, the so-called R-ELM-GA based on past wind speed values, the suggested 

model tried to forecast the next wind energy produced through the wind turbines. The GA was employed to 

choose the ideal network design, that is, the ideal number of hidden nodes, in the initial network of the R-ELM 

model. The simulation results highlighted the execution of the suggested R-ELM-GA algorithm as it has 

produced relatively better predictions than the other compared algorithms. It is a very fast, powerful, and 

active learning algorithm. As a result, we can deduce that the R-ELM-GA can be utilized very flexibly in the 

domain of wind power forecasting. In future works, we will focus on enhancing the proposed R-ELM-GA 

model by employing a twofold optimization strategy to select the number of hidden nodes in the complete 

model and the regularization parameter of R-ELM most advantageously. 
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