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 The harmful code application known as a rootkit is designed to be loaded 

and run directly from the operating system's (OSs') Kernel. Rootkits 

deployed in the Kernel, called Kernel-mode rootkits, can alter the OS. The 

intention behind these Kernel changes is to conceal the hack. Detecting a 

Kernel rootkit in a target machine is found to be quite challenging. 

Numerous techniques can be employed to modify the Kernel of a system. 

Kernel rootkits also create hidden access for attacks, enabling unauthorized 

entry to be gained by attackers on the machine. The ultimate consequence is 

that essential computer data can be modified, personal information can be 

gathered, and hackers can observe behavior. Synthetic neural networks 

support artificial intelligence, a branch of deep learning that models the 

human brain and operates on large datasets. This study proposed the Kernel 

rootkit detection multi-class deep learning techniques (KRDMCDLT). Deep 

learning algorithms are utilized to recognize the Kernel rootkit from a batch 

of data by selecting essential properties for learning tracking models. Thus, 

by identifying the OS malware, trojan assaults can be stopped before they 

can access infected data. This Kernel rootkit detection was tested in a 

Google Cloud Platform (GCP) computing system. 
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1. INTRODUCTION  

The complicated adaptable and scalable internet-based computing system allows computer hardware 

and software, data storage, and computing speed to be made portable whenever needed, as well as an 

alternative plan for the organization. Cloud technology can provide a wide range of services more easily 

online. A rising number of organisations are switching from domestic to public cloud providers, which 

suggests that sustaining the integrity and scalability of web services is becoming more difficult [1]. The 

importance of the challenges is emphasized by many valuable features to both customers and organizations, 

including reduced expenses, improved productivity, rapidity, reliability, efficiency, and security. The 

application that is intended to harm and destroy systems and devices is known as intrusive malware, or 

malware [2]. Some common types of malwares include malicious software, spyware, viruses infections, and 

rootkits. Malicious software from the backdoor virus group can be used to gain unintentional entry to an 

operating system (OS) or communication network. Rootkits, which are difficult to detect and can be hidden 

on an individual's computer, enable hackers to remotely access the system, acquire administrative rights, and 

extract data [3]. Different methods, such as static rootkit deduction, dynamic rootkit deduction, signature 

rootkit deduction, heuristic-based rootkit deduction, and machine learning-based rootkit deduction, are used 

to detect rootkits. However, all these methods have limitations. They cannot detect mutation rootkits, and the 

accuracy is very low even when a deduction is made. The proposed solution is the Kernel rootkit detection 
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multi class deep learning techniques (KRDMCDLT) to detect the Kernel rootkit. This model incorporates 

four deep learning algorithms: multilayer perceptron (MLP) [4], radial basis function networks (RBFN), 

restricted Boltzmann machine (RBM), and convolutional neural network (CNN) which can detect the rootkit 

in parallel. These four algorithms are embedded in the KRDMCDLT model. 

Individuals can frequently exceed the precision of deep learning [5] networking technologies. 

Neural network models are trained with CNN, MLP, RBM, and RBFN in conjunction with extensive tagged 

data collection. The cloud implementation of this system depends on machine learning methods to scan for 

malicious programmes. The cloud environment being used is Google Cloud Platform (GCP), the biggest and 

most well-known internet technology used for implementation globally. GCP is designed to facilitate the 

efficient and secure hosting of apps for vendors and app developers, irrespective of whether they are SaaS. 

The rootkit malware family of malicious software can be utilized to gain unauthorized access to a 

communication or operating system (OS). The benefits of GCP, including accessibility, security, adaptability, 

and reliability are appreciated. 

A rootkit is a form of harmful software designed to enter a computer system without authorization 

and avoid being discovered by the security measures in place. Deep learning models, data mining, and 

machine learning-based rootkit detection are some of the techniques used for rootkit detection. Other 

techniques include static rootkit detection, dynamic malware identification, based upon signatures rootkit 

detection, heuristic-based rootkit detection, and backdoor detection based on rootkits. In the majority of rootkit 

investigation studies, artificial intelligence, machine learning, and data analysis methods are frequently used. 

  

 

2. METHOD 

The file is downloaded and transferred to the GCP cloud on a client machine. The KRDMCDLT are 

available within the cloud. An approach for detecting Kernel rootkits is proposed in this study, which 

involves acquiring four different datasets and individually analyzing each of them using various deep 

learning algorithms. Self-organizing maps, neural networks with convolution, deep relief networks, limited 

Boltzmann machines, and axial basis function networks are a few of the artificial intelligence techniques used 

in the current study. The malicious URL dataset (dataset 4), classification of malware dataset (dataset 3), 

dynamic APICall sequence dataset (dataset 2), and malware dataset (dataset 1) were collected from the 

www.kaggle.com. 

 

2.1.  Sustainability structure for tests 

The framework can be tested in the GCP web services [6] cloud environment by setting up and 

operating a virtual machine. GCP notebook instances can be employed for building, preparing, and drawing 

conclusions from the model. Manual download options and file system storage are available for GCP 

Sagemaker Notebook instances. Additionally, hosting a GCP Notebook application on the sample is allowed 

by the Jupyter experimental setup, facilitating the training and assessment of the deep learning model's 

outcomes. The design of the model, which aids in the identification of rootkits and benign entities, is 

presented in Figure 1. 
 

 

 
 

Figure 1. Architecture diagram of Kernel rootkit detection multi class on deep learning techniques 

http://www.kaggle.com/
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2.2.  Data preprocessing 

The four datasets—rapid application programminng interface (two), group of rootkits (three), 

malware [7] dataset analysis (one), malicious URL dataset (four), and—that have been gathered are used for 

comparison. There are roughly 50,000 clean file and 50,000 malicious files in dataset 1. The categorization 

feature maps the malware [8] as 1, whereas the safe file is mapped as 0. The dataset includes a number of 

characteristics, including millisecond, state, staticprio, previous, and policy, among others. "maj felt," "shared 

vm," truncate count," "now,""exec vm," and "hash" have been eliminated because their characteristic values 

are zero. This model's chosen target data is "classification." Dataset 2 includes 1,090 good application 

programming interface (API) call sequences and about 41,897 malicious API call sequences, including 

examples like t1, t2, t3, t4, t5, and so on. The 'hash' characteristic has been eliminated from the data 

pertaining to features for the 102 examples in dataset 2. The data collection chosen in this model is 'malware.' 

There are two different comma separated value (CSV) file types in dataset 3 [9]. The malicious 

clean files (5184) are in a sample collection known as the securely attached integrated-5184 dataset. It has 69 

characteristics, of which 15 are derived characteristics and 54 are raw. 'Base of data,' 'Image base,' 'Section 

alignment,' 'File alignment,' and 'Base of code,' are some of its attributes. The element that needs data's 

identify 'class' has been eliminated from the dataset's 69 instances. The clamp Raw-5184 testing dataset has 

5184 clean and malicious code samples. There are 55 unprocessed aspects in it, such as "machine," "number 

sections," "creation year," "pointer to symbol table," and "a number of symbols,". The term "class" serves as 

the model's chosen data source. 

Dataset 4 [10] is composed of 651 instances, incorporating a total of 191 web addresses. Among 

these addresses, 428,103 are categorized as secure or safe, 96,457 as defacement web addresses, 94,111 as 

faked email addresses, and 32,520 as dangerous. "Uniform Resources Locator" and "type" are this dataset's 

two main attributes. 'Uniform Resources Locator,' 'domain,' 'category,' and 'type' have been omitted from the 

dataset. The model's data source for evaluating harm is the word "category". 

 

2.3.  Splitting the dataset 

In machine learning [11], splitting a dataset is a typical practice to assess a model's performance and 

avoid overfitting. The dataset typically consists of three main components: training, validation, and test sets. 

This study's data collection is divided into a data set to train and a test set of data. One of the most important 

steps in data pre-processing is dividing the collected data into training dataset and testing datasets. The 

models' dependability and efficiency might be improved by this method. The largest component of the first 

dataset, known as the training data, has been used to train or fit the deep learning model, with a setting of 

80%. The model has been evaluated using test data with a 20% threshold. 

 

2.4.  Artificial intelligence algorithm 

2.4.1. Multi layer perceptron 

In machine learning [12], the practice of splitting a dataset to assess a model's performance and 

prevent overfitting is commonly employed. Typically, a dataset comprises three primary components: 

training, validation, and test sets. A critical step in data pre-processing, the data collection for this study was 

split into a dataset used for training and a testing dataset. Utilizing this method may lead to improved 

reliability and efficiency of the models. The more significant portion of the first dataset, the training data, 

was used for training or fitting the deep learning model, accounting for 80%. The model's evaluation was 

performed using test data, with a threshold of 20%. 

 

2.4.2. Radial basis function networks 

A radial basis function (RBF) network [13] is employed, which uses a special neural network with a 

feed-forward algorithm to address problems involving function averaging. RBF networks are characterized 

by having a multi-layer structure, global computation, and a quicker learning process when compared to 

other artificial intelligence models. Circular basis functions have three layers: the input data, concealing 

components, and result. Received and communicated to the external nodes, where the calculation is carried 

out, is information compiled from the data being entered nodes. For activities requiring prediction, like as 

analysis or grouping, the outcome section is used. The overall outcome for each neuron is calculated using a 

set of characteristics that can be taught to specify the distance between each neuron's input and the RBF 

layer's centre point. It is necessary to define irregular correlations between the characteristics of the input 

variable and the chosen variable in order to accurately anticipate the output. The scale vector computing class 

from the the support vector machine module of sci-kit-learn is initially initialised using the parameters 

gamma='scale' and kernel='rbf' in order to use the RBM network analyzer. The RBM network is then built on 

the basis of the original samples using the selection methodology, and the groups of identities are predicted 
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on the basis of the testing data using the model-generation technique. Finally, using the grade activity for 

positive effects, the performance of the RBM network on the assessment data is assessed. 

 

2.4.3. Restricted Boltzmann machine algorithm  

RBMs [14], a random computational neural network, are a subset of the more prominent family of 

Boltzmann machines. The viewed layer and the invisible layer are the two layers that make up an RBM. 

Weighted connections connect these two layers, but due to the "restricted" nature of these connections, there 

is no interaction within either layer. The hidden layer is created by removing feature data from the dataset, 

creating an obscured layer. The secret layer cell computes a weighted sum of the input data from the visible 

layer. It adds the outcome after processing the visual layer of data neurons enter with an invalid value. Repeat 

the procedure until the final results are identical to the initial data. The capacity of RBMs to develop 

meaningful models for information provided, which may be used for tasks like feature extraction, clustering, 

and generation, is one of their main advantages. RBMs [15] are self-supervised models that can be trained 

from the data being entered without the need for data tags. The sklearn—neural_network module's Bernoulli 

RBM is used to start an RBM model and include RBM into it. After the training and test data set have been 

preprocessed using the transformation process, the RBM models are fitted to the sample set. Finally, a 

classification algorithm trained on the updated information is applied to the test data to make predictions. The 

model's performance is subsequently assessed. 

 

2.4.4. Convolution neural networks 

CNN are a specific type of deep neural network commonly utilized for visual data processing, such 

as image recognition. Within deep learning, various neural network architectures exist, including fully 

connected, pooling, and convolutional layers. As the network's depth increases, the receptive field also 

expands. Small Kernel matrices, which have been trained to recognize features in the input data, constitute 

the quickly learned variables. The integrated layer replaces the network output at specific points, reducing 

representation density and the number of calculations and weights required. Calculating the fully connected 

layer is straightforward because every cell in that layer was connected to every other neuron in the preceding 

and subsequent layers, using techniques such as offset factors and standard matrix multiplication. The fully 

attached layer creates a symbolic mapping from the data entering and the results. A CNN [16] extracts 

pertinent features from incoming visual data and executes complex image-processing tasks through its hidden 

layers. To efficiently carry out these tasks, the artificial neural network must possess a secret component that 

learns structured models of the incoming visual data. The level of abstraction gradually increases with the 

addition of more layers. 

The most important advantage of CNNs is their ability to automatically detect crucial traits without 

human assistance. The CNN [17] model's architecture must first be defined. There is just one deep level, one 

optimum pooling level, and one convolutional level. The model is constructed using the Adam method, a 

digital efficiency function for loss calculation, and a measure of accuracy. The model is built using the 

training dataset and repeated ten more times with a batch size limitation of 32. Predictions are generated 

using the model's prediction approach and are approximated to the nearest number for further evaluation with 

experimental data. Efficiency is then calculated by determining the average similarity between the expected 

and actual labels, segmented by elements. 

 

 

3. RESULTS AND DISCUSSION 

The mentioned four algorithms are used to turn the data into models [18]. Subsequently, the dataset 

is divided. The file is downloaded and uploaded to Google Cloud for comparison with the model. Following 

the comparison with the model, the task of detecting whether the file is a rootkit or benign is assigned to the 

model. The four algorithms and four datasets are executed sequentially. Each algorithm and dataset are tested 

with sixty-four sample rootkits. The rootkit samples, as mentioned in Table 1, were collected from 

virustotal.com. Table 2 displays the confusion matrix for multi-class Kernel rootkit detection using deep 

learning techniques. 

These rootkits were downloaded onto the client machine. The specific file was then transferred to 

Google Cloud for verification using the KRDMCDLT to determine whether it was a rootkit or benign [19]. 

When this verification was conducted on the optimal launch system in windows 2022 against 64 rootkits 

[20], every test attempting to differentiate the cloud was unsuccessful. The rootkit [21], which targeted a 

brand-new boot system, was included in the tests. This system yielded no false positives, achieving a 100 

percent rate of certified negatives and zero false positives. The ideal windows instance system is expected to 

remain flawless. Of the 64 rootkits tested, 42 were included in the validation set, and the remaining 16 out of 

the 58 rootkits needed to be distinguished, leaving only 6. The findings showed a 23.63% number of false 

negatives and a 76.36% positive detection accuracy. An incorrect rootkit installation setup was responsible 
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for the false negatives. Nevertheless, attackers continue to refine their rootkit installation techniques, 

resulting in a lower false negative rate.  
 
 

Table 1. Input field 
S.no Malware name Malware size Offensive 

1 Virus. BAT.Qwerty. b 676 kb ucrtbase.dl 
2 Virus.Boot.Catman 28 kb Scvhost.exe 

3 Virus.Unix.Sillysh.b 6.84 kb Aubot.exe 

4 9ba7332fdca46ed72bd788def5498140 793 kb  User32.dll 
5 38c7bd26550daa3b4527f4eeefe8a0dd 81.5 kb Svchost.exe 

6 D0617FEDF0EA31D7D5FB55BD334D85D6 8 kb Svchost.exe 

7 f0f927ee20a62d0b0a1b37d68d1406ea 78 b  Svchost.exe 
8 $%&%_2169.vir@ 22.86kb Taskhost.exe 

9 Backdoor.Win32.Haxdoor.gs 1.26 mb Taskhost.exe 

10 bakuryu 121 kb Scvhost.exe 
11 shell.jpg 89.1 kb Svchost.exe 

12 f6e671d8630df5d8045ff4243da94f74 24 kb Ucrbase.dl 

13 afe8df184dccf6db48cf27916d0d0da6 48 kb ucrtbase.dll 
14 6eddd98e0463acaa3aa0eeab26b1d3c9 1 kb Ucrbase.dll 

15 80da4801d2b70d7044e9d660a05c676 5.03 kb Svchost.exe 

16 4356aded80ee30d1f85321ecc28694b3 140 b Taskhost.exe 
17 e08de794d84c472b1fd9a862bd729556 107 b System32.dll 

18 Rootkit.Win32.Agent.agk 512 b Ucrbase.dll 

19 Rootkit.Win32.Agent.azt 512 b Ucrbase.dll 

 

 

Table 2. Confusion matrix of Kernel rootkit detection multi-class on deep learning techniques 
Actual Predicted(-) Predicted(+) 

- 6 0 
+ 16 42 

  
 

An aspect of the aforementioned deep learning models that can be observed is their capability to 

handle vast datasets, manage complex and nonlinear relationships, effortlessly extract high-level features, 

and adapt to novel and evolving threats. These methods, regarded as the most effective, are employed for 

evaluating the rootkit detection models. Methodologies [22] were used to evaluate the model's efficiency on 

the GCP web service. The corresponding graphical representation provide a description of results evaluation. 

Malicious information visualisation research in Table 3 while the virus dataset evaluation procedure is shown 

in Figure 2. 
 

 

Table 3. Malicious information visualization research 
Algorithms Accuracy (%) Precision Recall F1 score 

MLP 99.96 .9 .9 .9 

RBFN 99.82 .9 .9 .9 

RBM 59.30 .6 .62 .6 
CNN 50.33 .5 1 0.67 

 

 

 
 

Figure 2. Malware dataset analysis 
 

 

The most effective method is the multi-layer perceptron algorithm, as it can analyze vast amounts of 

initial data, address complex nonlinear challenges, and produce predictions on the malware dataset with an 
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accuracy of 99%. A summarized sequence of changing API calls illustratedis presented in Table 4. A 

graphical depiction of a sequence of changing API calls illustrated is displayed in Figure 3. 
 

 

Table 4. Sequence of changing API calls illustrated 
Algorithms Accuracy (%) Precision Recall F1 score 

MLP 98 1 .98 0.99 
RBFN 99 1 0.96 0.99 

RBM 97 1 0.99 0.99 

CNN 98 1 0.98 0.99 

 

 

 
 

Figure 3. Sequence of changing API calls illustrated 
 

 

The RBM in Figure 3 is considered the best method because it involves the input and storage of 

binary data, enhances standard by placing a current time collection of information and monitoring, and 

prioritizes developments and statistical abilities. It also achieves a high success rate in the representation of 

dynamic API call sequence. A representation of classification is provided in Table 5. The most effective 

method is the individual planning map, which, as depicted in Figure 4, can divide the data, present syntax 

clearly in two perspectives, and achieve a ninety percent accuracy in the representation of classification. A 

display of a dangerous URL is detailed in Table 6. 
 

 

Table 5. Representation of classification 
Algorithms Accuracy (%) Precision Recall F1 score 

MLP 60 .65 .89 .82 

RBFN 57 1 0.27 0.39 

RBM 52 0.76 0.99 0.78 
CNN 50 0.34 0.39 0.22 

 

 

 
 

Figure 4. Representation of classification 
 

  

Table 6. Display of a dangerous URL 
Algorithms Accuracy (%) Precision Recall F1 score 

MLP 83 0.71 0.96 0.77 
RBFN 66 0.76 0.99 0.87 

RBM 66 0.77 0.76 0.65 

CNN 86 0.76 0.92 0.89 
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Less computing effort is required by the CNN, as illustrated in Figure 5, compared to other 

approaches. The CNN is the favored method for recognizing crucial elements without human supervision 

because an accuracy of eighty-five percent is achieved in the representation of malicious URLs. CNNs 

exhibit high precision in image detection and categorization. Furthermore, CNNs [23] provide the significant 

advantage of weight sharing, reducing computation compared to standard neural networks. Complex 

structures and characteristics in data can be identified by deep learning models, which is valuable for 

detecting hidden or covert malware operations. The degree to which a deep learning model can detect 

rootkits depends on the kind and volume of collected information the complexity of the rootkit, and the 

training phases of the model phase. Accuracy, recall, and F1 score are used to assess the approach efficiency 

in terms of classification and how well it can recognise samples that belong to a particular class. These 

criteria are crucial for assessing the effectiveness of a deep learning model and its suitability for practical 

applications. GCP [24] provides a comprehensive set of privacy rules and oversight to ensure the 

confidentiality, security, and accessibility of customer data in the public web. The concept of shared 

responsibility holds clients and cloud service providers (CSPs) like GCP jointly accountable for cloud 

security. There are responsibilities shared by the CSP and the customer with regard to the security of physical 

facilities, network surveillance, and server confidentiality in the internet. On the other side, the client is in 

responsibility of protecting their cloud-based OS, apps, and information. This involves setting allocated 

security and entry regulations. In support of these initiatives, GCP provides a secure cloud architecture. 

  

 

 
 

Figure 5. Representation of malicious URL 
 
 

When the MLP algorithm was applied, an accuracy of 99.96% was achieved in representing the 

malware dataset. Conversely, when the same dataset was subjected to the RBFN [25] algorithm, an accuracy 

of 99.82% was obtained. An accuracy of 98.62% was achieved when the RBFN algorithm was utilized to 

represent the dynamic API dataset. Meanwhile, the application of the CNN, MLP, and RBM algorithms to 

the same dataset resulted in accuracies of 97.53%, 97.42%, and 97.42%, respectively. For the representation 

of malicious URLs using algorithms, accuracies of 82.82% and 85.62% were attained by the MLP and CNN, 

respectively. In summary, as indicated in Table 7, the representation of the malware dataset using the MLP 

and RBFN algorithms yields notably high accuracy levels.  
 
 

Table 7. Compare the dataset, algorithms, and accuracy 
Dataset Algorithms Accuracy (%) 

Representation of malware dataset MLP 99.96 

Representation of malware dataset RBFN 99.82 
Representation of dynamic API RBFN 98.62 

Representation of dynamic API CNN 97.53 

Representation of dynamic API MLP 97.42 
Representation of dynamic API RBM 97.42 

Representation of malicious URL MLP 82.82 
Representation of malicious URL CNN 85.62 

 

 

4. CONCLUSION 

Rootkit removal from infected machines and rootkit prevention depend heavily on the effectiveness 

of malware identification. Since each type of rootkit operates uniquely and presents specific hazards, 
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detecting rootkits is essential for determining the most effective measures to defend against and prevent 

rootkit infections. In this study, the efficacy of diverse datasets is evaluated KRDMCDLT. In comparison to 

several traditional methodologies, artificial intelligence models perform well at detecting rootkits in a GCP 

cloud service. The four algorithms are transformed into models through data preprocessing and dataset 

splitting. The files are downloaded, uploaded to Google Cloud, and compared with the models. After the 

comparison, the models determine whether the files are rootkits or benign. A total of sixty-four sample 

rootkits are implemented in the GCP cloud environment and tested with various datasets. High precision is 

achieved through hyperparameter tuning, which involves modifying parameters such as batch size, number of 

cycles, and number of layers to optimize the models. The four datasets are analyzed using a variety of 

algorithms, including CNN, MLP, RBM, and RBFN. MLP and RBFN are recognized as excellent 

technologies for achieving high accuracy. Future enhancement work may include implementing other 

techniques using various algorithms on the same datasets. 
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