
Bulletin of Electrical Engineering and Informatics

Vol. 13, No. 3, June 2024, pp. 2000~2008

ISSN: 2302-9285, DOI: 10.11591/eei.v13i3.6802  2000

Journal homepage: http://beei.org

Kernel rootkit detection multi class on deep learning techniques

Suresh Kumar Srinivasan, SudalaiMuthu Thalavaipillai

Department of Computer Science and Engineering, Hindustan Institute of Technology and Science, Chennai, India

Article Info ABSTRACT

Article history:

Received May 25, 2023

Revised Sep 17, 2023

Accepted Sep 28, 2023

 The harmful code application known as a rootkit is designed to be loaded

and run directly from the operating system's (OSs') Kernel. Rootkits

deployed in the Kernel, called Kernel-mode rootkits, can alter the OS. The

intention behind these Kernel changes is to conceal the hack. Detecting a

Kernel rootkit in a target machine is found to be quite challenging.

Numerous techniques can be employed to modify the Kernel of a system.

Kernel rootkits also create hidden access for attacks, enabling unauthorized

entry to be gained by attackers on the machine. The ultimate consequence is

that essential computer data can be modified, personal information can be

gathered, and hackers can observe behavior. Synthetic neural networks

support artificial intelligence, a branch of deep learning that models the

human brain and operates on large datasets. This study proposed the Kernel

rootkit detection multi-class deep learning techniques (KRDMCDLT). Deep

learning algorithms are utilized to recognize the Kernel rootkit from a batch

of data by selecting essential properties for learning tracking models. Thus,

by identifying the OS malware, trojan assaults can be stopped before they

can access infected data. This Kernel rootkit detection was tested in a

Google Cloud Platform (GCP) computing system.

Keywords:

Artificial intelligence

Cloud instance

Data set

Deep learning

Google Cloud Platform

Rootkit

This is an open access article under the CC BY-SA license.

Corresponding Author:

Suresh Kumar Srinivasan

Department of Computer Science and Engineering, Hindustan Institute of Technology and Science

1 Rajiv Gandhi Salai (OMR) Padur, Chennai-603103, Tamil Nadu, India

Email: sureshkumarphd2018@gmail.com

1. INTRODUCTION

The complicated adaptable and scalable internet-based computing system allows computer hardware

and software, data storage, and computing speed to be made portable whenever needed, as well as an

alternative plan for the organization. Cloud technology can provide a wide range of services more easily

online. A rising number of organisations are switching from domestic to public cloud providers, which

suggests that sustaining the integrity and scalability of web services is becoming more difficult [1]. The

importance of the challenges is emphasized by many valuable features to both customers and organizations,

including reduced expenses, improved productivity, rapidity, reliability, efficiency, and security. The

application that is intended to harm and destroy systems and devices is known as intrusive malware, or

malware [2]. Some common types of malwares include malicious software, spyware, viruses infections, and

rootkits. Malicious software from the backdoor virus group can be used to gain unintentional entry to an

operating system (OS) or communication network. Rootkits, which are difficult to detect and can be hidden

on an individual's computer, enable hackers to remotely access the system, acquire administrative rights, and

extract data [3]. Different methods, such as static rootkit deduction, dynamic rootkit deduction, signature

rootkit deduction, heuristic-based rootkit deduction, and machine learning-based rootkit deduction, are used

to detect rootkits. However, all these methods have limitations. They cannot detect mutation rootkits, and the

accuracy is very low even when a deduction is made. The proposed solution is the Kernel rootkit detection

https://creativecommons.org/licenses/by-sa/4.0/

Bulletin of Electr Eng & Inf ISSN: 2302-9285 

Kernel rootkit detection multi class on deep learning techniques (Suresh Kumar Srinivasan)

2001

multi class deep learning techniques (KRDMCDLT) to detect the Kernel rootkit. This model incorporates

four deep learning algorithms: multilayer perceptron (MLP) [4], radial basis function networks (RBFN),

restricted Boltzmann machine (RBM), and convolutional neural network (CNN) which can detect the rootkit

in parallel. These four algorithms are embedded in the KRDMCDLT model.

Individuals can frequently exceed the precision of deep learning [5] networking technologies.

Neural network models are trained with CNN, MLP, RBM, and RBFN in conjunction with extensive tagged

data collection. The cloud implementation of this system depends on machine learning methods to scan for

malicious programmes. The cloud environment being used is Google Cloud Platform (GCP), the biggest and

most well-known internet technology used for implementation globally. GCP is designed to facilitate the

efficient and secure hosting of apps for vendors and app developers, irrespective of whether they are SaaS.

The rootkit malware family of malicious software can be utilized to gain unauthorized access to a

communication or operating system (OS). The benefits of GCP, including accessibility, security, adaptability,

and reliability are appreciated.

A rootkit is a form of harmful software designed to enter a computer system without authorization

and avoid being discovered by the security measures in place. Deep learning models, data mining, and

machine learning-based rootkit detection are some of the techniques used for rootkit detection. Other

techniques include static rootkit detection, dynamic malware identification, based upon signatures rootkit

detection, heuristic-based rootkit detection, and backdoor detection based on rootkits. In the majority of rootkit

investigation studies, artificial intelligence, machine learning, and data analysis methods are frequently used.

2. METHOD

The file is downloaded and transferred to the GCP cloud on a client machine. The KRDMCDLT are

available within the cloud. An approach for detecting Kernel rootkits is proposed in this study, which

involves acquiring four different datasets and individually analyzing each of them using various deep

learning algorithms. Self-organizing maps, neural networks with convolution, deep relief networks, limited

Boltzmann machines, and axial basis function networks are a few of the artificial intelligence techniques used

in the current study. The malicious URL dataset (dataset 4), classification of malware dataset (dataset 3),

dynamic APICall sequence dataset (dataset 2), and malware dataset (dataset 1) were collected from the

www.kaggle.com.

2.1. Sustainability structure for tests

The framework can be tested in the GCP web services [6] cloud environment by setting up and

operating a virtual machine. GCP notebook instances can be employed for building, preparing, and drawing

conclusions from the model. Manual download options and file system storage are available for GCP

Sagemaker Notebook instances. Additionally, hosting a GCP Notebook application on the sample is allowed

by the Jupyter experimental setup, facilitating the training and assessment of the deep learning model's

outcomes. The design of the model, which aids in the identification of rootkits and benign entities, is

presented in Figure 1.

Figure 1. Architecture diagram of Kernel rootkit detection multi class on deep learning techniques

http://www.kaggle.com/

  ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 13, No. 3, June 2024: 2000-2008

2002

2.2. Data preprocessing

The four datasets—rapid application programminng interface (two), group of rootkits (three),

malware [7] dataset analysis (one), malicious URL dataset (four), and—that have been gathered are used for

comparison. There are roughly 50,000 clean file and 50,000 malicious files in dataset 1. The categorization

feature maps the malware [8] as 1, whereas the safe file is mapped as 0. The dataset includes a number of

characteristics, including millisecond, state, staticprio, previous, and policy, among others. "maj felt," "shared

vm," truncate count," "now,""exec vm," and "hash" have been eliminated because their characteristic values

are zero. This model's chosen target data is "classification." Dataset 2 includes 1,090 good application

programming interface (API) call sequences and about 41,897 malicious API call sequences, including

examples like t1, t2, t3, t4, t5, and so on. The 'hash' characteristic has been eliminated from the data

pertaining to features for the 102 examples in dataset 2. The data collection chosen in this model is 'malware.'

There are two different comma separated value (CSV) file types in dataset 3 [9]. The malicious

clean files (5184) are in a sample collection known as the securely attached integrated-5184 dataset. It has 69

characteristics, of which 15 are derived characteristics and 54 are raw. 'Base of data,' 'Image base,' 'Section

alignment,' 'File alignment,' and 'Base of code,' are some of its attributes. The element that needs data's

identify 'class' has been eliminated from the dataset's 69 instances. The clamp Raw-5184 testing dataset has

5184 clean and malicious code samples. There are 55 unprocessed aspects in it, such as "machine," "number

sections," "creation year," "pointer to symbol table," and "a number of symbols,". The term "class" serves as

the model's chosen data source.

Dataset 4 [10] is composed of 651 instances, incorporating a total of 191 web addresses. Among

these addresses, 428,103 are categorized as secure or safe, 96,457 as defacement web addresses, 94,111 as

faked email addresses, and 32,520 as dangerous. "Uniform Resources Locator" and "type" are this dataset's

two main attributes. 'Uniform Resources Locator,' 'domain,' 'category,' and 'type' have been omitted from the

dataset. The model's data source for evaluating harm is the word "category".

2.3. Splitting the dataset

In machine learning [11], splitting a dataset is a typical practice to assess a model's performance and

avoid overfitting. The dataset typically consists of three main components: training, validation, and test sets.

This study's data collection is divided into a data set to train and a test set of data. One of the most important

steps in data pre-processing is dividing the collected data into training dataset and testing datasets. The

models' dependability and efficiency might be improved by this method. The largest component of the first

dataset, known as the training data, has been used to train or fit the deep learning model, with a setting of

80%. The model has been evaluated using test data with a 20% threshold.

2.4. Artificial intelligence algorithm

2.4.1. Multi layer perceptron

In machine learning [12], the practice of splitting a dataset to assess a model's performance and

prevent overfitting is commonly employed. Typically, a dataset comprises three primary components:

training, validation, and test sets. A critical step in data pre-processing, the data collection for this study was

split into a dataset used for training and a testing dataset. Utilizing this method may lead to improved

reliability and efficiency of the models. The more significant portion of the first dataset, the training data,

was used for training or fitting the deep learning model, accounting for 80%. The model's evaluation was

performed using test data, with a threshold of 20%.

2.4.2. Radial basis function networks

A radial basis function (RBF) network [13] is employed, which uses a special neural network with a

feed-forward algorithm to address problems involving function averaging. RBF networks are characterized

by having a multi-layer structure, global computation, and a quicker learning process when compared to

other artificial intelligence models. Circular basis functions have three layers: the input data, concealing

components, and result. Received and communicated to the external nodes, where the calculation is carried

out, is information compiled from the data being entered nodes. For activities requiring prediction, like as

analysis or grouping, the outcome section is used. The overall outcome for each neuron is calculated using a

set of characteristics that can be taught to specify the distance between each neuron's input and the RBF

layer's centre point. It is necessary to define irregular correlations between the characteristics of the input

variable and the chosen variable in order to accurately anticipate the output. The scale vector computing class

from the the support vector machine module of sci-kit-learn is initially initialised using the parameters

gamma='scale' and kernel='rbf' in order to use the RBM network analyzer. The RBM network is then built on

the basis of the original samples using the selection methodology, and the groups of identities are predicted

Bulletin of Electr Eng & Inf ISSN: 2302-9285 

Kernel rootkit detection multi class on deep learning techniques (Suresh Kumar Srinivasan)

2003

on the basis of the testing data using the model-generation technique. Finally, using the grade activity for

positive effects, the performance of the RBM network on the assessment data is assessed.

2.4.3. Restricted Boltzmann machine algorithm

RBMs [14], a random computational neural network, are a subset of the more prominent family of

Boltzmann machines. The viewed layer and the invisible layer are the two layers that make up an RBM.

Weighted connections connect these two layers, but due to the "restricted" nature of these connections, there

is no interaction within either layer. The hidden layer is created by removing feature data from the dataset,

creating an obscured layer. The secret layer cell computes a weighted sum of the input data from the visible

layer. It adds the outcome after processing the visual layer of data neurons enter with an invalid value. Repeat

the procedure until the final results are identical to the initial data. The capacity of RBMs to develop

meaningful models for information provided, which may be used for tasks like feature extraction, clustering,

and generation, is one of their main advantages. RBMs [15] are self-supervised models that can be trained

from the data being entered without the need for data tags. The sklearn—neural_network module's Bernoulli

RBM is used to start an RBM model and include RBM into it. After the training and test data set have been

preprocessed using the transformation process, the RBM models are fitted to the sample set. Finally, a

classification algorithm trained on the updated information is applied to the test data to make predictions. The

model's performance is subsequently assessed.

2.4.4. Convolution neural networks

CNN are a specific type of deep neural network commonly utilized for visual data processing, such

as image recognition. Within deep learning, various neural network architectures exist, including fully

connected, pooling, and convolutional layers. As the network's depth increases, the receptive field also

expands. Small Kernel matrices, which have been trained to recognize features in the input data, constitute

the quickly learned variables. The integrated layer replaces the network output at specific points, reducing

representation density and the number of calculations and weights required. Calculating the fully connected

layer is straightforward because every cell in that layer was connected to every other neuron in the preceding

and subsequent layers, using techniques such as offset factors and standard matrix multiplication. The fully

attached layer creates a symbolic mapping from the data entering and the results. A CNN [16] extracts

pertinent features from incoming visual data and executes complex image-processing tasks through its hidden

layers. To efficiently carry out these tasks, the artificial neural network must possess a secret component that

learns structured models of the incoming visual data. The level of abstraction gradually increases with the

addition of more layers.

The most important advantage of CNNs is their ability to automatically detect crucial traits without

human assistance. The CNN [17] model's architecture must first be defined. There is just one deep level, one

optimum pooling level, and one convolutional level. The model is constructed using the Adam method, a

digital efficiency function for loss calculation, and a measure of accuracy. The model is built using the

training dataset and repeated ten more times with a batch size limitation of 32. Predictions are generated

using the model's prediction approach and are approximated to the nearest number for further evaluation with

experimental data. Efficiency is then calculated by determining the average similarity between the expected

and actual labels, segmented by elements.

3. RESULTS AND DISCUSSION

The mentioned four algorithms are used to turn the data into models [18]. Subsequently, the dataset

is divided. The file is downloaded and uploaded to Google Cloud for comparison with the model. Following

the comparison with the model, the task of detecting whether the file is a rootkit or benign is assigned to the

model. The four algorithms and four datasets are executed sequentially. Each algorithm and dataset are tested

with sixty-four sample rootkits. The rootkit samples, as mentioned in Table 1, were collected from

virustotal.com. Table 2 displays the confusion matrix for multi-class Kernel rootkit detection using deep

learning techniques.

These rootkits were downloaded onto the client machine. The specific file was then transferred to

Google Cloud for verification using the KRDMCDLT to determine whether it was a rootkit or benign [19].

When this verification was conducted on the optimal launch system in windows 2022 against 64 rootkits

[20], every test attempting to differentiate the cloud was unsuccessful. The rootkit [21], which targeted a

brand-new boot system, was included in the tests. This system yielded no false positives, achieving a 100

percent rate of certified negatives and zero false positives. The ideal windows instance system is expected to

remain flawless. Of the 64 rootkits tested, 42 were included in the validation set, and the remaining 16 out of

the 58 rootkits needed to be distinguished, leaving only 6. The findings showed a 23.63% number of false

negatives and a 76.36% positive detection accuracy. An incorrect rootkit installation setup was responsible

  ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 13, No. 3, June 2024: 2000-2008

2004

for the false negatives. Nevertheless, attackers continue to refine their rootkit installation techniques,

resulting in a lower false negative rate.

Table 1. Input field
S.no Malware name Malware size Offensive

1 Virus. BAT.Qwerty. b 676 kb ucrtbase.dl
2 Virus.Boot.Catman 28 kb Scvhost.exe

3 Virus.Unix.Sillysh.b 6.84 kb Aubot.exe

4 9ba7332fdca46ed72bd788def5498140 793 kb User32.dll
5 38c7bd26550daa3b4527f4eeefe8a0dd 81.5 kb Svchost.exe

6 D0617FEDF0EA31D7D5FB55BD334D85D6 8 kb Svchost.exe

7 f0f927ee20a62d0b0a1b37d68d1406ea 78 b Svchost.exe
8 $%&%_2169.vir@ 22.86kb Taskhost.exe

9 Backdoor.Win32.Haxdoor.gs 1.26 mb Taskhost.exe

10 bakuryu 121 kb Scvhost.exe
11 shell.jpg 89.1 kb Svchost.exe

12 f6e671d8630df5d8045ff4243da94f74 24 kb Ucrbase.dl

13 afe8df184dccf6db48cf27916d0d0da6 48 kb ucrtbase.dll
14 6eddd98e0463acaa3aa0eeab26b1d3c9 1 kb Ucrbase.dll

15 80da4801d2b70d7044e9d660a05c676 5.03 kb Svchost.exe

16 4356aded80ee30d1f85321ecc28694b3 140 b Taskhost.exe
17 e08de794d84c472b1fd9a862bd729556 107 b System32.dll

18 Rootkit.Win32.Agent.agk 512 b Ucrbase.dll

19 Rootkit.Win32.Agent.azt 512 b Ucrbase.dll

Table 2. Confusion matrix of Kernel rootkit detection multi-class on deep learning techniques
Actual Predicted(-) Predicted(+)

- 6 0
+ 16 42

An aspect of the aforementioned deep learning models that can be observed is their capability to

handle vast datasets, manage complex and nonlinear relationships, effortlessly extract high-level features,

and adapt to novel and evolving threats. These methods, regarded as the most effective, are employed for

evaluating the rootkit detection models. Methodologies [22] were used to evaluate the model's efficiency on

the GCP web service. The corresponding graphical representation provide a description of results evaluation.

Malicious information visualisation research in Table 3 while the virus dataset evaluation procedure is shown

in Figure 2.

Table 3. Malicious information visualization research
Algorithms Accuracy (%) Precision Recall F1 score

MLP 99.96 .9 .9 .9

RBFN 99.82 .9 .9 .9

RBM 59.30 .6 .62 .6
CNN 50.33 .5 1 0.67

Figure 2. Malware dataset analysis

The most effective method is the multi-layer perceptron algorithm, as it can analyze vast amounts of

initial data, address complex nonlinear challenges, and produce predictions on the malware dataset with an

Bulletin of Electr Eng & Inf ISSN: 2302-9285 

Kernel rootkit detection multi class on deep learning techniques (Suresh Kumar Srinivasan)

2005

accuracy of 99%. A summarized sequence of changing API calls illustratedis presented in Table 4. A

graphical depiction of a sequence of changing API calls illustrated is displayed in Figure 3.

Table 4. Sequence of changing API calls illustrated
Algorithms Accuracy (%) Precision Recall F1 score

MLP 98 1 .98 0.99
RBFN 99 1 0.96 0.99

RBM 97 1 0.99 0.99

CNN 98 1 0.98 0.99

Figure 3. Sequence of changing API calls illustrated

The RBM in Figure 3 is considered the best method because it involves the input and storage of

binary data, enhances standard by placing a current time collection of information and monitoring, and

prioritizes developments and statistical abilities. It also achieves a high success rate in the representation of

dynamic API call sequence. A representation of classification is provided in Table 5. The most effective

method is the individual planning map, which, as depicted in Figure 4, can divide the data, present syntax

clearly in two perspectives, and achieve a ninety percent accuracy in the representation of classification. A

display of a dangerous URL is detailed in Table 6.

Table 5. Representation of classification
Algorithms Accuracy (%) Precision Recall F1 score

MLP 60 .65 .89 .82

RBFN 57 1 0.27 0.39

RBM 52 0.76 0.99 0.78
CNN 50 0.34 0.39 0.22

Figure 4. Representation of classification

Table 6. Display of a dangerous URL
Algorithms Accuracy (%) Precision Recall F1 score

MLP 83 0.71 0.96 0.77
RBFN 66 0.76 0.99 0.87

RBM 66 0.77 0.76 0.65

CNN 86 0.76 0.92 0.89

  ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 13, No. 3, June 2024: 2000-2008

2006

Less computing effort is required by the CNN, as illustrated in Figure 5, compared to other

approaches. The CNN is the favored method for recognizing crucial elements without human supervision

because an accuracy of eighty-five percent is achieved in the representation of malicious URLs. CNNs

exhibit high precision in image detection and categorization. Furthermore, CNNs [23] provide the significant

advantage of weight sharing, reducing computation compared to standard neural networks. Complex

structures and characteristics in data can be identified by deep learning models, which is valuable for

detecting hidden or covert malware operations. The degree to which a deep learning model can detect

rootkits depends on the kind and volume of collected information the complexity of the rootkit, and the

training phases of the model phase. Accuracy, recall, and F1 score are used to assess the approach efficiency

in terms of classification and how well it can recognise samples that belong to a particular class. These

criteria are crucial for assessing the effectiveness of a deep learning model and its suitability for practical

applications. GCP [24] provides a comprehensive set of privacy rules and oversight to ensure the

confidentiality, security, and accessibility of customer data in the public web. The concept of shared

responsibility holds clients and cloud service providers (CSPs) like GCP jointly accountable for cloud

security. There are responsibilities shared by the CSP and the customer with regard to the security of physical

facilities, network surveillance, and server confidentiality in the internet. On the other side, the client is in

responsibility of protecting their cloud-based OS, apps, and information. This involves setting allocated

security and entry regulations. In support of these initiatives, GCP provides a secure cloud architecture.

Figure 5. Representation of malicious URL

When the MLP algorithm was applied, an accuracy of 99.96% was achieved in representing the

malware dataset. Conversely, when the same dataset was subjected to the RBFN [25] algorithm, an accuracy

of 99.82% was obtained. An accuracy of 98.62% was achieved when the RBFN algorithm was utilized to

represent the dynamic API dataset. Meanwhile, the application of the CNN, MLP, and RBM algorithms to

the same dataset resulted in accuracies of 97.53%, 97.42%, and 97.42%, respectively. For the representation

of malicious URLs using algorithms, accuracies of 82.82% and 85.62% were attained by the MLP and CNN,

respectively. In summary, as indicated in Table 7, the representation of the malware dataset using the MLP

and RBFN algorithms yields notably high accuracy levels.

Table 7. Compare the dataset, algorithms, and accuracy
Dataset Algorithms Accuracy (%)

Representation of malware dataset MLP 99.96

Representation of malware dataset RBFN 99.82
Representation of dynamic API RBFN 98.62

Representation of dynamic API CNN 97.53

Representation of dynamic API MLP 97.42
Representation of dynamic API RBM 97.42

Representation of malicious URL MLP 82.82
Representation of malicious URL CNN 85.62

4. CONCLUSION

Rootkit removal from infected machines and rootkit prevention depend heavily on the effectiveness

of malware identification. Since each type of rootkit operates uniquely and presents specific hazards,

Bulletin of Electr Eng & Inf ISSN: 2302-9285 

Kernel rootkit detection multi class on deep learning techniques (Suresh Kumar Srinivasan)

2007

detecting rootkits is essential for determining the most effective measures to defend against and prevent

rootkit infections. In this study, the efficacy of diverse datasets is evaluated KRDMCDLT. In comparison to

several traditional methodologies, artificial intelligence models perform well at detecting rootkits in a GCP

cloud service. The four algorithms are transformed into models through data preprocessing and dataset

splitting. The files are downloaded, uploaded to Google Cloud, and compared with the models. After the

comparison, the models determine whether the files are rootkits or benign. A total of sixty-four sample

rootkits are implemented in the GCP cloud environment and tested with various datasets. High precision is

achieved through hyperparameter tuning, which involves modifying parameters such as batch size, number of

cycles, and number of layers to optimize the models. The four datasets are analyzed using a variety of

algorithms, including CNN, MLP, RBM, and RBFN. MLP and RBFN are recognized as excellent

technologies for achieving high accuracy. Future enhancement work may include implementing other

techniques using various algorithms on the same datasets.

ACKNOWLEDGEMENTS

The Department of Computer Science and Engineering at the Hindustan Institute of Technology and

Science in Chennai, India, provided the infrastructure needed to create the models for the study issue. The

writers would like to thank you for your assistance.

REFERENCES
[1] D. Tian, Q. Ying, X. Jia, R. Ma, C. Hu, and W. Liu, "MDCHD: A novel malware detection method in thecloudusinghardware

trace and deep learning,"Computer Networks, vol. 198, 2021, doi: 10.1016/j.comnet.2021.108394.
[2] L. F. Ilca, O. P. Lucian, and T. C. Balan, “Enhancing cyber-resilience for small and medium-sized organizations with

prescriptivemalware analysis, detection and response,” Sensors, vol. 23, no. 15, p. 6757, Jul. 2023, doi: 10.3390/s23156757.

[3] A. Tsohou, V. Diamantopoulou, S. Gritzalis, and C. Lambrinoudakis, “Cyber insurance: state of the art, trends, and future
directions,” International Journal of Information Security, vol. 22, no. 3, pp. 737–748, 2023, doi: 10.1007/s10207-023-00660-8.

[4] M. Shobana and S. Poonkuzhali, “An efficient botnet detection approach for green iot devices using machine learning

techniques,” Journal of Green Engineering, vol. 10, no. 3, pp. 1053–1076, 2020.
[5] K. R. Sowmia and S. Poonkuzhali, “Artificial intelligence in the field of education: a systematic study of artificial intelligence

impact on safe teaching learning process with digital technology,” Journal of Green Engineering, vol. 10, no. 4, pp. 1566–1583,

2020.
[6] R. Vadivel and T. Sudalaimuthu, “Cauchy particle swarm optimization (CPSO) based migrations of tasks in a virtual machine,”

Wireless Personal Communications, vol. 127, no. 3, pp. 2229–2246, 2022, doi: 10.1007/s11277-021-08784-7.

[7] J. Jeyalakshmi and S. Poonkuzhali, “Prescriptive analytics of constraint optimisation of diabetes diet exhortation by using
information systems,” Journal of Environmental Protection and Ecology, vol. 22, no. 6, pp. 2672–2681, 2021.

[8] I. Ahmed, “Technology organization environment framework in cloud computing,” Telkomnika (Telecommunication Computing

Electronics and Control), vol. 18, no. 2, pp. 716–725, 2020, doi: 10.12928/TELKOMNIKA.v18i2.13871.
[9] S. Poonkuzhali and J. Jeyalakshmi, “Study of diabetes mellitus patients for thyroid related co-morbidities using data analytics,”

Basic and Clinical Pharmacology and Toxicology, vol. 124, no. S3, pp. 19–20, 2019.

[10] C.-L. Chen and S. Punya, “An enhanced WPA2/PSK for preventing authentication cracking,” International Journal of
Informatics and Communication Technology (IJ-ICT), vol. 10, no. 2, pp. 85–92, Aug. 2021, doi: 10.11591/ijict.v10i2.pp85-92.

[11] A. Vijayaraj, R. M. Suresh, and S. Poonkuzhali, “Node discovery with development of routing tree in wireless networks,” Cluster

Computing, vol. 22, pp. 10861–10871, 2019, doi: 10.1007/s10586-017-1211-y.
[12] A. Vijayaraj, R. M. Suresh, and S. Poonkuzhali, “Load balancing in wireless networks using reputation-ReDS in the magnified

distributed hash table,” Multimedia Tools and Applications, vol. 77, no. 8, pp. 10347–10364, 2018, doi: 10.1007/s11042-018-

5620- 6.
[13] P. Sugumaran, K. K. Ravi, and T. Shanmugam, “A novel algorithm for enhancing search results by detecting dissimilar patterns

based on correlation method,” International Arab Journal of Information Technology, vol. 14, no. 1, pp. 60–69, 2017.

[14] O. E. Taylor, P. S. Ezekiel, D. J. S. Sako, “A Deep Learning Based Approach for Malware Detection and Classification,”
iJournals: International Journal of Software & Hardware Research in Engineering (IJSHRE), vol. 9, no 4, pp. 32-40, Apr. 2021.

[15] Q. Wang and Q. Qian, “Malicious code classification based on opcode sequences and textCNN network,” Journal of Information

Security and Applications, vol. 67, 2022, doi: 10.1016/j.jisa.2022.103151.
[16] N. Aman, Y. Saleem, F. H. Abbasi, and F. Shahzad, “A hybrid approach for malware family classification,” Communications in

Computer and Information Science, vol. 719, pp. 169–180, 2017, doi: 10.1007/978-981-10-5421-1_14.

[17] B. Liu et al., “An approach based on the improved SVM algorithm for identifying malware in network traffic,” Security and
Communication Networks, vol. 2021, pp. 1–14, Apr. 2021, doi: 10.1155/2021/5518909.

[18] B. Liu, J. Chen, S. Qin, Z. Zhang, Y. Liu, and L. Zhao, “An Approach Based on the Improved SVM Algorithm for Identifying

Malwarein Network Traffic,” Security and Communication Networks, vol. 1, pp. 1-14, 2021, doi: 10.1155/2021/5518909.
[19] B. U. A. Barathi and S. Poonkuzhali, “Design and implementation of interactive data analytics model for predicting the

survivability of breast cancer patients,” Journal of Environmental Protection and Ecology, vol. 21, no. 4, pp. 1455–1468, 2020.

[20] A. Ullah, I. Laassar, C. B. Şahin, O. B. Dinle, and H. Aznaoui, “Cloud and internet-of-things secure integration along with
security concerns,” International Journal of Informatics and Communication Technology (IJ-ICT), vol. 12, no. 1, pp. 62-71, Apr.

2023, doi: 10.11591/ijict.v12i1.pp62-71.

[21] M. Awais, Q. Abbas, S. Tariq, and S. H. Warraich, “Blockchain based secure energy marketplace scheme to motivate P2P
microgrids,” International Journal of Informatics and Communication Technology (IJ-ICT), vol. 11, no. 3, pp. 177–184, Dec.

2022, doi: 10.11591/ijict.v11i3.pp177-184.

  ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 13, No. 3, June 2024: 2000-2008

2008

[22] X. Wang, J. Zhang, A. Zhang, and J. Ren, “TKRD: Trusted kernel rootkit detection for cybersecurity of VMs based on machine

learning and memory forensic analysis,” Mathematical Biosciences and Engineering, vol. 16, no. 4, pp. 2650–2667, 2019, doi:
10.3934/mbe.2019132.

[23] B. Yergaliyeva, Y. Seitkulov, D. Satybaldina, and R. Ospanov, “On some methods of storing data in the cloud for a given time,”

Telkomnika (Telecommunication Computing Electronics and Control), vol. 20, no. 2, pp. 366–372, 2022, doi:
10.12928/TELKOMNIKA.v20i2.21887.

[24] H. S. Hamid, B. AlKindy, A. H. Abbas, and W. B. Al-Kendi, “An intelligent strabismus detection method based on convolution

neural network,” Telkomnika (Telecommunication Computing Electronics and Control), vol. 20, no. 6, pp. 1288–1296, 2022, doi:
10.12928/TELKOMNIKA.v20i6.24232.

[25] S. M. Kareem and A. M. S. Rahma, “A new multi-level key block cypher based on the Blowfish algorithm,” Telkomnika

(Telecommunication Computing Electronics and Control), vol. 18, no. 2, pp. 685–694, 2020, doi:
10.12928/TELKOMNIKA.V18I2.13556.

BIOGRAPHIES OF AUTHORS

Suresh Kumar Srinivasan is a doctoral candidate at the Department of

Computer Science and Engineering at the Hindustan Institute of Technology and Science in

Chennai, India. Suresh holds undergraduate degrees in computer science and engineering from

the University of Madras in Chennai and master's degrees from Anna University in Chennai.

His most recent studies concentrate on the security capabilities of cloud computing. He has

been a lifelong member of CSI. He can be contacted at email:

sureshkumarphd2018@gmail.com.

SudalaiMuthu Thalavaipillai works at the Hindustan Institute of Technology

and Science in Chennai, India, where he is a part of the School of Computing Science. His

doctorate was obtained at Chennai, India's Hindustan Institute of Technology and Science. He

has been certified as an ethical hacker. 50 research papers that he wrote have been published in

prestigious international journals and conferences, and he has been given both Indian and

Australian patents. He has won various awards throughout his professional career, including

the best entrepreneur award for patent rights and the Pearson Award for Outstanding

Professor. Machine learning, grid and cloud computing, and cyber network security are some

of his areas of interest. Lifetime members of the IEEE, CSI, and ACM include Sudalaimuthu

Thalavaipillai. He can be contacted at email: sudalaimuthut@gmail.com.

https://orcid.org/0000-0001-5655-2718
https://scholar.google.com/citations?hl=id&user=Bq0DBzIAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=57215495873
https://orcid.org/0000-0003-0371-9371
https://scholar.google.com/citations?hl=id&user=KuLgJoQAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=36919367400

