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 Distributed denial-of-service (DDoS) attacks pose a significant risk to the 

dependability and consistency of network services. The utilization of deep 

learning (DL) models has displayed encouraging outcomes in the 

identification of DDoS attacks. Nevertheless, crafting a precise DL model 

necessitates an extensive volume of labeled data and substantial 

computational capabilities. Within this piece, we introduce a technique to 

enhance a pre-trained DL model for the identification of DDoS attacks. Our 

strategy’s efficacy is showcased on an openly accessible dataset, revealing 

that the fine-tuned model we propose surpasses both the initial pre-trained 

model and other cutting-edge approaches in performance. The suggested 

fine-tuned model attained 95.1% accuracy, surpassing the initial pre-trained 

model as well as other leading-edge techniques. Please note that the specific 

evaluation metrics and their values may vary depending on the 

implementation, hyperparameter settings, number of datasets, or dataset 

characteristics. The proposed approach has several advantages, including 

reducing the amount of labeled data required and accelerating the training 

process. Initiating with a pre-existing ResNet50 model can also enhance the 

eventual model’s accuracy, given that the pre-trained model has already 

acquired the ability to extract significant features from unprocessed data. 
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1. INTRODUCTION 

The rapid advancement of technology has led to an increased reliance on internet-based services, 

which in turn has made distributed denial-of-service (DDoS) attacks a major threat to modern systems. DDoS 

attacks disrupt the normal functioning of web services by overwhelming the targeted system with a large 

volume of traffic, rendering the service unavailable to legitimate users [1]. DDoS attacks represent a 

substantial menace to the stability, accessibility, and security of interconnected systems and services. DDoS 

attacks overwhelm a target system or network with a massive volume of malicious traffic, causing severe 

degradation or complete disruption of services. Consequently, this could result in noteworthy monetary 

setbacks, harm to reputation, and operational interruptions for businesses and organizations. Effective DDoS 

attack detection enables prompt mitigation measures to minimize the impact and ensure uninterrupted service 

delivery. DDoS attacks exploit the limited resources of target systems, such as network bandwidth, 

processing power, or memory, by flooding them with illegitimate requests [2], [3]. Detecting these attacks 

helps identify abnormal resource consumption patterns, enabling the allocation of necessary resources to 

legitimate users and preventing resource exhaustion, which could lead to system crashes or failures [4]. 

Detecting and mitigating DDoS attacks is of paramount importance in the field of cybersecurity. Detecting 
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these attacks requires the use of sophisticated techniques that can analyze network traffic patterns in  

real-time [5]. 

Research background: in recent years, deep learning models have displayed considerable promise in 

identifying instances of cyber intrusion, encompassing DDoS attacks [6]. Altunay and Albayrak [7] provide a 

comparative analysis of different deep learning (DL) architectures for cyber attack detection. The authors 

assess the effectiveness of convolutional neural networks (CNNs) and long short term memory (LSTM), and 

hybrid models on detection tasks using real network traffic data. The success of detecting DDoS attacks is 

also affected by the environment, Huang et al. [8] explore the application of deep learning techniques for 

detecting DDoS attacks in software-defined networking (SDN)-based industrial internet of things (IIoT) 

environments. The authors present a novel deep-learning model to enhance DDoS attack detection accuracy 

in IIoT scenarios. However, creating a model from the ground up necessitates a substantial volume of labeled 

data and computational capabilities. To address these difficulties, transfer learning has emerged as a widely 

used approach to enhance the performance of deep learning models when faced with limited labeled data. 

Fine-tuning, a commonly employed method in deep learning, involves adapting a pre-trained neural network 

model to a new dataset or task. Instead of commencing training from scratch, fine-tuning begins with a pre-

trained model that has already been trained on a sizeable dataset, often related to a similar task or domain. 

The fine-tuning process involves two primary stages: i) initial training: a deep neural network model, such as 

a CNN or RNN, is trained on a substantial dataset, typically referred to as the source domain or task [9], [10]. 

This initial training phase allows the model to grasp generalized features and patterns that have broad 

applicability across various tasks and ii) fine-tuning: once the pre-training is complete, the pre-trained model 

is further trained on a smaller dataset, known as the target domain or task [11]-[13]. The target dataset is 

often specific to the desired task, and fine-tuning helps the model adapt its learned features to the new data. 

The benefits of fine-tuning include faster convergence and improved generalization on the target 

task, especially when the source and target domains are related. By capitalizing on the acquired features of 

the pre-trained model, fine-tuning enables knowledge transfer and diminishes the requirement for extensive 

labeled data in the target task. Transfer learning encompasses the utilization of an already trained deep 

learning model, which was trained on a substantial dataset, to address a distinct task. Subsequently, the model 

is fine-tuned to align with a particular task [14]. The process of fine-tuning enhances the pre-trained model’s 

precision and mitigates the demand for significant volumes of labeled data. Consequently, the process of 

fine-tuning a pre-trained deep learning model for detecting DDoS attacks presents a promising avenue for 

enhancing the accuracy of DDoS attack detection models [15]. 

Research purposes: in this study, we aim to fine-tune a pre-trained DL model to detect DDoS 

attacks. We focus on the ResNet50 model, which is a widely used DL model for image classification tasks. 

However, ResNet50 can also be applied to non-image classification tasks, such as network traffic 

classification [16]. The network-based intrusion detection dataset-knowledge discovery in databases (NSL-

KDD) dataset is used, which is a publicly available dataset that contains network traffic data from different 

types of attacks, including DDoS attacks. The dataset has a limited number of labeled samples, making it 

challenging to build a deep-learning model from scratch. We compare the performance of the proposed fine-

tuned model with other state-of-the-art methods [17], including the SVM model [18] and random-forest [19], 

to demonstrate the effectiveness of the fine-tuned model in detecting DDoS attacks. The subsequent sections 

of this manuscript are structured in a subsequent manner. In the next section, we describe our proposed 

method, including model architecture, dataset, and fine-tuning procedure. Next, we present our experimental 

results and compare the performance of the proposed fine-tuned model with other mechanisms. Finally, we 

conclude the paper and discuss future work. 

 

 

2. METHOD 

We employed a CNN model that had been pre-trained, ResNet50, as the base model for our fine-

tuning process. ResNet50 is a popular CNN architecture that has shown excellent performance in image 

recognition tasks [20]. The pre-trained ResNet50 model, which was trained on the ImageNet dataset, is the 

starting point for our DDoS attack detection model. Figure 1 shows the flowchart for this study. 

a. Loading pre-trained ResNet50 CNN model: loading a pre-trained ResNet50 CNN model refers to 

importing a deep learning model architecture called ResNet50 that has already been trained on a large 

dataset. ResNet50 stands as a CNN model with numerous layers, encompassing convolutional and fully 

connected layers, meticulously crafted to extract image features. By loading a pre-trained ResNet50 

model, we can leverage the knowledge learned from the original training process to perform various tasks 

such as image classification or feature extraction. 

b. Loading NSL-KDD dataset for fine-tuning: the NSL-KDD dataset is a renowned collection of data 

frequently utilized in research concerning the detection of network intrusions [21], [22]. Loading the 

NSL-KDD dataset involves importing the dataset, which typically consists of labeled network traffic data, 
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into the program or environment where the fine-tuning process will take place. Fine-tuning refers to 

adapting a pre-trained model to a specific task or dataset by further training it on a new dataset. In this 

case, the dataset is employed to fine-tune the pre-trained ResNet50 model for the task of network 

intrusion detection. 

 

 

 

 

Figure 1. Methodology 

 

 

c. Modifying the last layer of the ResNet50 model for classification: the last layer of the ResNet50 model is 

typically a fully connected layer responsible for producing the final classification predictions. In order to 

adapt the model for the specific classification task of network intrusion detection using the NSL-KDD 

dataset, the last layer needs to be modified. This modification involves replacing the original last layer 

with a new layer that has the appropriate number of output units matching the number of classes or 

categories in the NSL-KDD dataset. This allows the model to output the predicted class labels for the 

different types of network intrusions. 

d. Fine-tuning the model using the training dataset: after modifying the last layer, the fine-tuning process 

begins. Fine-tuning involves training the modified ResNet50 model on the NSL-KDD training dataset. 

Throughout the training process, the model adapts its internal parameters (weights and biases) by 

employing optimization algorithms based on gradients, such as stochastic gradient descent or Adam [23], 

[24]. Through iterative exposure of training instances to the model and subsequent comparison of its 

predictions with known labels, the model refines its parameters to minimize the disparity between 

anticipated and actual labels. The fine-tuning process allows the model to learn the specific patterns and 

features in the NSL-KDD dataset that are relevant for classifying network intrusions. 

e. Evaluating the model using the testing dataset: once the fine-tuning process is complete, the model is 

evaluated using the testing dataset from the NSL-KDD dataset. The testing dataset is a separate portion of 

the original dataset that was not used during training. By evaluating the model on this unseen data, we can 

assess its performance and generalization ability.  

f. Calculating the model accuracy: the metric frequently employed to gauge model performance is accuracy, 

which signifies the ratio of accurately classified instances in the testing dataset to the overall instances. 

This value is computed by dividing the number of accurately classified instances by the total instances 

and then multiplying by 100 to present the outcome as a percentage. The accuracy score provides a 

measure of how well the model performs on the testing dataset in terms of correctly predicting the 

network intrusion classes. 

g. Displaying model performance results: after calculating the model accuracy, the performance results can 

be displayed to provide a summary of the model’s performance. This usually encompasses measurements 

like accuracy, alongside other indicators such as recall, precision, and F1 score. These supplementary 

metrics offer a further understanding of the model’s effectiveness across distinct classes or categories 

[25]. 
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We make this research method as a guide (Figure 1), but if necessary, the steps can be reduced or 

even added. Figure 2 shows the architecture of the ResNet50 model: 
 

 

 
 

Figure 2. The architecture of ResNet50 model 
 

 

The architecture of the ResNet50 model is that of a profound CNN introduced in the study titled 

“deep residual learning for image recognition,” published by He et al. [26]. It was designed to address the 

challenge of training very deep neural networks, which can suffer from the vanishing gradient problem. The 

key innovation of the ResNet architecture lies in the introduction of residual blocks [27], [28]. A residual 

block consists of a series of convolutional layers with a shortcut connection that skips one or more 

convolutional layers. This direct connection permits the network to acquire residual mappings, signifying the 

distinction between the intended output and the input within a block. This approach avoids the necessity of 

directly learning the transformation from input to output. The residual block can be represented by:  
 

𝑂𝑢𝑡𝑝𝑢𝑡 = 𝐼𝑛𝑝𝑢𝑡 + 𝐹(𝐼𝑛𝑝𝑢𝑡)  (1) 
 

Where input represents the input to the block, F (Input) represents the mapping learned by the convolutional 

layers within the block, and OutputOutput represents the output of the block. By using this formulation, the 

network can learn to focus on the residual information, making it easier to optimize the deeper architectures. 

The ResNet50 architecture specifically consists of 50 layers, which are divided into several stages: 

a. Initial convolutional layer: this layer performs a 7×7 convolution on the input image to extract low-level 

features. Subsequently, a max pooling layer ensues, which diminishes the spatial dimensions of the 

feature maps. 

b. Stages with residual blocks: the architecture consists of four stages, each containing a different number of 

residual blocks. The blocks within each stage have similar structures but differ in the number of filters 

and the presence of dimensionality reduction or increase. 

c. Global average pooling: following the residual blocks, the feature maps’ spatial dimensions are decreased 

through the utilization of global average pooling. This process calculates the average of each feature map, 

leading to a consistent-length feature vector that encapsulates the image’s content. 

d. Fully connected layer: the features obtained through global average pooling are inputted into a fully 

connected layer equipped with a softmax activation function. This layer generates the model’s ultimate 

output, presenting forecasted probabilities for various classes. 

One of the key advantages of the ResNet50 architecture is its ability to train very deep networks 

without significant degradation in performance. The shortcut connections and residual mappings enable the 

network to effectively propagate gradients through the layers, allowing for easier optimization and better 

feature representation. The ResNet50 architecture has been pre-trained on large-scale datasets, such as the 

ImageNet dataset, which contains millions of labeled images from thousands of categories. Through harnessing 

this pre-training, the model can be fine-tuned or employed as a feature extractor for a range of computer vision 

assignments, including image classification, object detection, and image segmentation [29], [30]. There are 

several CNN-based methods that are widely used for various applications [31]-[33], but in this study, we 

focus on ResNet50. We will include other deep learning methods on future work agendas. NSL-KDD is a 

dataset that is widely used in DDoS attack detection studies. It is an improvement over the earlier KDD Cup 

1999 dataset, which had some flaws and was too easy for modern intrusion detection systems. The NSL-KDD 

dataset has been preprocessed and contains several types of attacks that can be used to train and evaluate the 

performance of intrusion detection systems. One example of the type of attack found in the NSL-KDD dataset is 

the U2R attack [34]-[36]. Using ResNet50 as a pre-trained model for fine-tuning in DDoS detection is not a 

common or conventional approach, as ResNet50 is designed for image-related tasks, and DDoS detection 

typically involves network traffic data. However, it is still possible to leverage pre-trained ResNet50 models 

for feature extraction in a transfer learning setting by considering the following steps: 
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a. Custom network architecture: modify the top layers of the ResNet50 model to match the requirements of the 

DDoS detection task. Replace the fully connected layers with ones that suit binary classification tasks. 

b. Feature extraction: use the pre-trained ResNet50 as a feature extractor. Remove the final classification 

layers and extract features from the lower layers of the model. These features can then be fed into a 

custom classifier specific to the DDoS detection task. 

c. Adaptation to temporal data: consider that network traffic data is often temporal. We need to adapt the 

extracted features to capture temporal patterns by incorporating recurrent layers or other time-series 

modeling techniques. 

d. Data preprocessing: ensure that network traffic data is appropriately preprocessed to fit the input 

requirements of the ResNet50 model. We need to represent network traffic data in a format compatible 

with image-based models. 

e. Fine-tuning: train the adapted model on the DDoS detection dataset. Fine-tune the weights to improve its 

performance on specific tasks. 

In the final phase, the model’s performance was assessed using the accuracy metric. The evaluation 

metrics are commonly used shown in Table 1. 
 

 

Table 1. Evaluation metrics 
Metrics Description Equation 

Accuracy The ratio of accurately classified instances to the total 
number of instances 

(𝑇𝑃 + 𝑇𝑁)/(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁) (2) 

Precision The ratio of true positive predictions to the total positive 
predictions 

𝑇𝑃/(𝑇𝑃 + 𝐹𝑃) (3) 

Recall 

(sensitivity) 

The ratio of true positive predictions to the total instances 

that are actually positive 

𝑇𝑃/(𝑇𝑃 + 𝐹𝑁) (4) 

F1 Score The harmonic average between precision and recall 2 × (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙)/
(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙) (5) 

Specificity The ratio of true negative predictions to the total instances 
that are actually negative 

𝑇𝑁/(𝑇𝑁 + 𝐹𝑃) (6) 

 

 

Accuracy offers a comprehensive gauge of the model’s performance, encompassing correct 

predictions for both positive and negative instances. Nevertheless, it might be less suitable for imbalanced 

classes. Precision proves valuable when the impact of false positives is substantial, as it reveals the 

correctness of the model’s positive predictions. Recall proves helpful when the impact of false negatives is 

significant, disclosing the model’s ability to correctly identify actual positives. When desiring a balance 

between precision and recall, the F1 score is used; it considers false positives and false negatives, particularly 

valuable for imbalanced classes. Specificity, on the other hand, is valuable when the costs associated with 

false positives are high, indicating the model’s accuracy in identifying actual negatives. These metrics are 

employed to appraise machine learning model performance across various tasks, including classification and 

regression. Depending on the problem and the nature of the data, different metrics may be more appropriate 

for evaluating model performance. For instance, accuracy, recall, precision, and F1 score are commonly used. 

 

 

3. RESULTS AND DISCUSSION 

The model architecture used here is ResNet50, which is a popular CNN architecture that has been 

pre-trained on the ImageNet dataset. Fine-tuning involves training the pre-trained ResNet50 model on a new 

dataset specific to the task of DDoS attack detection while keeping the weights of the initial layers fixed and 

only training the top layers of the model. The fine-tunes a pre-trained ResNet50 model for DDoS attack 

detection using transfer learning. Transfer learning involves taking a pre-trained model and adapting it to a 

new task, in this case, DDoS attack detection. Fine-tuning refers to the process of re-training the pre-trained 

model on a new dataset with a small learning rate. Table 2 shows an example of fine-tuning performance 

metrics evaluation result. 
 
 

Table 2. Performance metrics 
Metrics DDoS Normal Average 

Precision 0.897 0.976 0.936 

Recall 0.972 0.941 0.956 
F1 score 0.932 0.958 0.945 

Accuracy - - 95.1% 

Specificity 0.924 0.978 - 
False positive rate 0.076 0.022 - 
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The model achieved a precision of 0.897 for DDoS attacks and 0.976 for normal traffic, with an 

average precision of 0.936. This indicates that the model had a high accuracy in correctly classifying 

instances of both DDoS attacks and normal traffic. The model achieved a recall of 0.972 for DDoS attacks 

and 0.941 for normal traffic, with an average recall of 0.956. This suggests that the model successfully 

captured a substantial portion of both genuine DDoS attacks and instances of regular traffic. The model 

attained an F1 score of 0.932 for DDoS attacks and 0.958 for normal traffic, averaging 0.945. This denotes a 

favorable equilibrium between precision and recall across both categories, signifying the model’s overall 

efficiency. The accuracy metric signifies the general accuracy of the model’s predictions. With an accuracy 

of 95.1%, the model demonstrated accurate predictions for roughly 95.1% of the dataset’s instances. The 

model achieved a specificity of 0.924 for DDoS attacks and 0.978 for normal traffic. A high specificity value 

for normal traffic indicates that the model was able to accurately distinguish normal traffic instances from 

DDoS attacks. The model achieved a false positive rate of 0.076 for DDoS attacks and 0.022 for normal 

traffic. A lower false positive rate indicates a lower rate of misclassifying normal traffic as DDoS attacks. 

Overall, the results suggest that the fine-tuned ResNet50 model performed well in detecting DDoS attacks 

and normal traffic, achieving high precision, F1 score, recall, and accuracy. It demonstrated a good ability to 

distinguish between the two classes and had a low false positive rate, indicating its effectiveness in 

identifying DDoS attacks while minimizing misclassifications of normal traffic. The comparison of the fine-

tuning of a pre-trained ResNet50 model vs ResNet50 model (without fine-tuning) for DDoS attack detection 

using the NSL-KDD dataset is shown in Table 3. 
 

 

Table 3. The comparison of the fine-tuning of a pre-trained ResNet50 model vs the ResNet50 model 
Metrics Pre-trained ResNet50 model (fine-tuned) ResNet50 (without fine-tuning) 

Precision (DDoS) 0.897 0.825 

Precision (normal) 0.976 0.982 
Average precision 0.936 0.903 

Recall (DDoS) 0.972 0.865 

Recall (normal) 0.941 0.973 
Average recall 0.956 0.919 

F1 score (DDoS) 0.932 0.844 

F1 score (normal) 0.958 0.977 

Average F1 score 0.945 0.910 

Accuracy 95.1% 94.7% 

Specificity (DDoS) 0.924 0.973 
Specificity (normal) 0.978 0.825 

False positive rate (DDoS) 0.076 0.175 

False positive rate (normal) 0.022 0.975 

 
 

The pre-trained ResNet50 model (fine-tuned) achieves a precision of 0.897 for DDoS and 0.976 for 

normal. This means that when the model predicts an instance as DDoS, it is correct approximately 89.7% of 

the time, and when it predicts an instance as normal, it is correct about 97.6% of the time. The ResNet50 

model without fine-tuning achieves slightly lower precision values with 0.825 for DDoS and 0.982 for 

normal. The average precision for the pre-trained ResNet50 model (fine-tuned) is 0.936, while for the 

ResNet50 model without fine-tuning, it is 0.903. This means that the fine-tuned model achieves better overall 

precision in its predictions compared to the non-fine-tuned model. The average F1 score for the pre-trained 

ResNet50 model (fine-tuned) is 0.945, while for the ResNet50 model without fine-tuning, it is 0.910. This 

indicates that the fine-tuned model has better overall performance in terms of balancing recall and precision. 

The pre-trained ResNet50 model (fine-tuned) achieves an accuracy of 95.1%, while the ResNet50 model 

without fine-tuning achieves an accuracy of 94.7%. This shows that the fine-tuned model has a slightly 

higher accuracy. the pre-trained ResNet50 model that has been fine-tuned exhibits better performance across 

most of the evaluated metrics compared to the ResNet50 model without fine-tuning. The fine-tuned model 

demonstrates improved precision, F1 score, recall, specificity, and false positive rates, leading to higher 

overall accuracy and better ability to correctly classify instances of DDoS and normal classes. We also 

compared the accuracy of the proposed fine-tuned model with other state-of-the-art methods, including SVM 

and random forest (RF). Table 4 summarizes the example of the performance of our proposed fine-tuned 

mechanism and other mechanisms. 
 

 

Table 4. The example of the performance comparison 
Method Accuracy Error Time (s) 

ResNet50 0.947 0.053 50.2 
SVM 0.912 0.088 35.8 

RF 0.905 0.095 38.5 

Fine-tuned 0.951 0.049 55.1 
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The models included in the comparison are ResNet50, SVM, RF, and Fine-tuned ResNet50. The 

accuracy column indicates the percentage of correctly classified samples, and the error column represents the 

percentage of misclassified samples in the dataset. The time(s) column displays the time taken in seconds for 

training and evaluation of each model. The outcomes make it clear that the Fine-tuned ResNet50 model 

outperforms the assessed techniques, showcasing the highest accuracy of 0.951 and the most minimal error 

rate of 0.049. This indicates that the fine-tuned ResNet50 model has a superior ability to correctly classify 

samples and exhibits the least misclassification compared to other models. However, it takes slightly longer 

for training and evaluation, with a time of 55.1 seconds. ResNet50 also shows a competitive performance 

with an accuracy of 0.947 and a relatively low error rate of 0.053, while SVM and RF have lower accuracy 

values compared to deep learning-based models. Overall, the fine-tuned ResNet50 stands out as the top-

performing model in this comparison, providing the best trade-off between accuracy and misclassification 

rate, albeit with slightly higher computational time. 

The high accuracy achieved by the proposed fine-tuned model suggests that the approach taken by 

the researchers is effective in detecting DDoS attacks [37]. However, it is important to note that the accuracy 

of the model alone does not give us complete information about the model’s performance. Other metrics, 

such as precision, F1 score, recall, and ROC curve analysis, should also be considered to gain a better 

understanding of the model’s performance [38]. Overall, the presented result suggests that the proposed fine-

tuned model is a promising approach to detecting DDoS attacks and could be further evaluated for real-world 

applications. Please note that the specific evaluation metrics and their values may vary depending on the 

implementation, hyperparameter settings, number of datasets, and or dataset characteristics. These metrics 

should be calculated using appropriate code or software based on the predictions and ground truth labels of 

the models. As a future work agenda, we will carry out tests and comparisons with other deep learning-based 

so that the detection results become more relevant [39], [40]. 

 

 

4. CONCLUSION 

Within this study, we introduced an approach to enhance a pre-existing DL model through fine-

tuning, specifically aimed at identifying DDoS attacks. We used the ResNet50 CNN architecture and the 

NSL-KDD dataset to demonstrate the effectiveness of our approach. The proposed fine-tuned model 

achieved an accuracy of 95.1%, outperforming the pre-trained model and other state-of-the-art methods. The 

proposed mechanism has several advantages, including reducing the amount of labeled data required and 

accelerating the training process. Initiating with a pre-existing model can also enhance the final model’s 

accuracy, given that the pre-trained model has already acquired the ability to extract significant features from 

raw data. 

In conclusion, the proposed approach shows great potential in detecting DDoS attacks and can be 

applied in real-world scenarios to enhance the security and reliability of network services. Further research 

can explore the use of other pre-trained models and datasets to improve the accuracy of DDoS attack 

detection models. Based on the conclusion, a suggestion could be to apply the proposed fine-tuning approach 

to a real-world scenario and evaluate its performance in a practical setting. Additionally, further research 

could focus on exploring the potential of other pre-trained models and datasets for improving the accuracy of 

DDoS attack detection models. This could involve testing the proposed approach on different pre-trained 

models and datasets and comparing their performance to the ResNet50 CNN architecture and the NSL-KDD 

dataset used in the current study. 
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