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Distributed denial-of-service (DDoS) attacks pose a significant risk to the
dependability and consistency of network services. The utilization of deep
learning (DL) models has displayed encouraging outcomes in the
identification of DDoS attacks. Nevertheless, crafting a precise DL model
necessitates an extensive volume of labeled data and substantial
computational capabilities. Within this piece, we introduce a technique to
enhance a pre-trained DL model for the identification of DDoS attacks. Our
strategy’s efficacy is showcased on an openly accessible dataset, revealing
that the fine-tuned model we propose surpasses both the initial pre-trained
model and other cutting-edge approaches in performance. The suggested
fine-tuned model attained 95.1% accuracy, surpassing the initial pre-trained
model as well as other leading-edge techniques. Please note that the specific
evaluation metrics and their values may vary depending on the
implementation, hyperparameter settings, number of datasets, or dataset
characteristics. The proposed approach has several advantages, including

reducing the amount of labeled data required and accelerating the training
process. Initiating with a pre-existing ResNet50 model can also enhance the
eventual model’s accuracy, given that the pre-trained model has already
acquired the ability to extract significant features from unprocessed data.

This is an open access article under the CC BY-SA license.

Corresponding Author:

[©NoloN
Ahmad Sanmorino

Department of Information System, Faculty of Computer and Science, Universitas Indo Global Mandiri
JI. Jendral Sudirman No. 629, Km. 4, Palembang, Indonesia
Email: sanmorino@uigm.ac.id

1. INTRODUCTION

The rapid advancement of technology has led to an increased reliance on internet-based services,
which in turn has made distributed denial-of-service (DDoS) attacks a major threat to modern systems. DDoS
attacks disrupt the normal functioning of web services by overwhelming the targeted system with a large
volume of traffic, rendering the service unavailable to legitimate users [1]. DDoS attacks represent a
substantial menace to the stability, accessibility, and security of interconnected systems and services. DDoS
attacks overwhelm a target system or network with a massive volume of malicious traffic, causing severe
degradation or complete disruption of services. Consequently, this could result in noteworthy monetary
setbacks, harm to reputation, and operational interruptions for businesses and organizations. Effective DDoS
attack detection enables prompt mitigation measures to minimize the impact and ensure uninterrupted service
delivery. DDoS attacks exploit the limited resources of target systems, such as network bandwidth,
processing power, or memory, by flooding them with illegitimate requests [2], [3]. Detecting these attacks
helps identify abnormal resource consumption patterns, enabling the allocation of necessary resources to
legitimate users and preventing resource exhaustion, which could lead to system crashes or failures [4].
Detecting and mitigating DDoS attacks is of paramount importance in the field of cybersecurity. Detecting
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these attacks requires the use of sophisticated techniques that can analyze network traffic patterns in
real-time [5].

Research background: in recent years, deep learning models have displayed considerable promise in
identifying instances of cyber intrusion, encompassing DDoS attacks [6]. Altunay and Albayrak [7] provide a
comparative analysis of different deep learning (DL) architectures for cyber attack detection. The authors
assess the effectiveness of convolutional neural networks (CNNs) and long short term memory (LSTM), and
hybrid models on detection tasks using real network traffic data. The success of detecting DDoS attacks is
also affected by the environment, Huang et al. [8] explore the application of deep learning techniques for
detecting DDoS attacks in software-defined networking (SDN)-based industrial internet of things (lloT)
environments. The authors present a novel deep-learning model to enhance DDoS attack detection accuracy
in 110T scenarios. However, creating a model from the ground up necessitates a substantial volume of labeled
data and computational capabilities. To address these difficulties, transfer learning has emerged as a widely
used approach to enhance the performance of deep learning models when faced with limited labeled data.
Fine-tuning, a commonly employed method in deep learning, involves adapting a pre-trained neural network
model to a new dataset or task. Instead of commencing training from scratch, fine-tuning begins with a pre-
trained model that has already been trained on a sizeable dataset, often related to a similar task or domain.
The fine-tuning process involves two primary stages: i) initial training: a deep neural network model, such as
a CNN or RNN, is trained on a substantial dataset, typically referred to as the source domain or task [9], [10].
This initial training phase allows the model to grasp generalized features and patterns that have broad
applicability across various tasks and ii) fine-tuning: once the pre-training is complete, the pre-trained model
is further trained on a smaller dataset, known as the target domain or task [11]-[13]. The target dataset is
often specific to the desired task, and fine-tuning helps the model adapt its learned features to the new data.

The benefits of fine-tuning include faster convergence and improved generalization on the target
task, especially when the source and target domains are related. By capitalizing on the acquired features of
the pre-trained model, fine-tuning enables knowledge transfer and diminishes the requirement for extensive
labeled data in the target task. Transfer learning encompasses the utilization of an already trained deep
learning model, which was trained on a substantial dataset, to address a distinct task. Subsequently, the model
is fine-tuned to align with a particular task [14]. The process of fine-tuning enhances the pre-trained model’s
precision and mitigates the demand for significant volumes of labeled data. Consequently, the process of
fine-tuning a pre-trained deep learning model for detecting DDoS attacks presents a promising avenue for
enhancing the accuracy of DDoS attack detection models [15].

Research purposes: in this study, we aim to fine-tune a pre-trained DL model to detect DDoS
attacks. We focus on the ResNet50 model, which is a widely used DL model for image classification tasks.
However, ResNet50 can also be applied to non-image classification tasks, such as network traffic
classification [16]. The network-based intrusion detection dataset-knowledge discovery in databases (NSL-
KDD) dataset is used, which is a publicly available dataset that contains network traffic data from different
types of attacks, including DDoS attacks. The dataset has a limited number of labeled samples, making it
challenging to build a deep-learning model from scratch. We compare the performance of the proposed fine-
tuned model with other state-of-the-art methods [17], including the SVM model [18] and random-forest [19],
to demonstrate the effectiveness of the fine-tuned model in detecting DDoS attacks. The subsequent sections
of this manuscript are structured in a subsequent manner. In the next section, we describe our proposed
method, including model architecture, dataset, and fine-tuning procedure. Next, we present our experimental
results and compare the performance of the proposed fine-tuned model with other mechanisms. Finally, we
conclude the paper and discuss future work.

2. METHOD

We employed a CNN model that had been pre-trained, ResNet50, as the base model for our fine-
tuning process. ResNet50 is a popular CNN architecture that has shown excellent performance in image
recognition tasks [20]. The pre-trained ResNet50 model, which was trained on the ImageNet dataset, is the
starting point for our DDoS attack detection model. Figure 1 shows the flowchart for this study.

a. Loading pre-trained ResNet50 CNN model: loading a pre-trained ResNet50 CNN model refers to
importing a deep learning model architecture called ResNet50 that has already been trained on a large
dataset. ResNet50 stands as a CNN model with numerous layers, encompassing convolutional and fully
connected layers, meticulously crafted to extract image features. By loading a pre-trained ResNet50
model, we can leverage the knowledge learned from the original training process to perform various tasks
such as image classification or feature extraction.

b. Loading NSL-KDD dataset for fine-tuning: the NSL-KDD dataset is a renowned collection of data
frequently utilized in research concerning the detection of network intrusions [21], [22]. Loading the
NSL-KDD dataset involves importing the dataset, which typically consists of labeled network traffic data,
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into the program or environment where the fine-tuning process will take place. Fine-tuning refers to
adapting a pre-trained model to a specific task or dataset by further training it on a new dataset. In this
case, the dataset is employed to fine-tune the pre-trained ResNet50 model for the task of network
intrusion detection.

Preliminary i Fine-Tuning I Evaluation
Load pre-trained | | Evaluate model using
ResNet50 CNN model I I testing dataset
Load NSL-KDD dataset I Fine-tuning model Calculate model
for fine-tuning : using training dataset | accuracy
Modify last layer of I Display model
ResNet50 model for performance results
classification | |

Figure 1. Methodology

¢. Modifying the last layer of the ResNet50 model for classification: the last layer of the ResNet50 model is
typically a fully connected layer responsible for producing the final classification predictions. In order to
adapt the model for the specific classification task of network intrusion detection using the NSL-KDD
dataset, the last layer needs to be modified. This modification involves replacing the original last layer
with a new layer that has the appropriate number of output units matching the number of classes or
categories in the NSL-KDD dataset. This allows the model to output the predicted class labels for the
different types of network intrusions.

d. Fine-tuning the model using the training dataset: after modifying the last layer, the fine-tuning process
begins. Fine-tuning involves training the modified ResNet50 model on the NSL-KDD training dataset.
Throughout the training process, the model adapts its internal parameters (weights and biases) by
employing optimization algorithms based on gradients, such as stochastic gradient descent or Adam [23],
[24]. Through iterative exposure of training instances to the model and subsequent comparison of its
predictions with known labels, the model refines its parameters to minimize the disparity between
anticipated and actual labels. The fine-tuning process allows the model to learn the specific patterns and
features in the NSL-KDD dataset that are relevant for classifying network intrusions.

e. Evaluating the model using the testing dataset: once the fine-tuning process is complete, the model is
evaluated using the testing dataset from the NSL-KDD dataset. The testing dataset is a separate portion of
the original dataset that was not used during training. By evaluating the model on this unseen data, we can
assess its performance and generalization ability.

f. Calculating the model accuracy: the metric frequently employed to gauge model performance is accuracy,
which signifies the ratio of accurately classified instances in the testing dataset to the overall instances.
This value is computed by dividing the number of accurately classified instances by the total instances
and then multiplying by 100 to present the outcome as a percentage. The accuracy score provides a
measure of how well the model performs on the testing dataset in terms of correctly predicting the
network intrusion classes.

g. Displaying model performance results: after calculating the model accuracy, the performance results can
be displayed to provide a summary of the model’s performance. This usually encompasses measurements
like accuracy, alongside other indicators such as recall, precision, and F1 score. These supplementary
metrics offer a further understanding of the model’s effectiveness across distinct classes or categories
[25].
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We make this research method as a guide (Figure 1), but if necessary, the steps can be reduced or
even added. Figure 2 shows the architecture of the ResNet50 model:
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Figure 2. The architecture of ResNet50 model

The architecture of the ResNet50 model is that of a profound CNN introduced in the study titled
“deep residual learning for image recognition,” published by He et al. [26]. It was designed to address the
challenge of training very deep neural networks, which can suffer from the vanishing gradient problem. The
key innovation of the ResNet architecture lies in the introduction of residual blocks [27], [28]. A residual
block consists of a series of convolutional layers with a shortcut connection that skips one or more
convolutional layers. This direct connection permits the network to acquire residual mappings, signifying the
distinction between the intended output and the input within a block. This approach avoids the necessity of
directly learning the transformation from input to output. The residual block can be represented by:

Output = Input + F(Input) Q)

Where input represents the input to the block, F (Input) represents the mapping learned by the convolutional
layers within the block, and OutputOutput represents the output of the block. By using this formulation, the
network can learn to focus on the residual information, making it easier to optimize the deeper architectures.
The ResNet50 architecture specifically consists of 50 layers, which are divided into several stages:

a. Initial convolutional layer: this layer performs a 7x7 convolution on the input image to extract low-level
features. Subsequently, a max pooling layer ensues, which diminishes the spatial dimensions of the
feature maps.

b. Stages with residual blocks: the architecture consists of four stages, each containing a different number of
residual blocks. The blocks within each stage have similar structures but differ in the number of filters
and the presence of dimensionality reduction or increase.

c. Global average pooling: following the residual blocks, the feature maps’ spatial dimensions are decreased
through the utilization of global average pooling. This process calculates the average of each feature map,
leading to a consistent-length feature vector that encapsulates the image’s content.

d. Fully connected layer: the features obtained through global average pooling are inputted into a fully
connected layer equipped with a softmax activation function. This layer generates the model’s ultimate
output, presenting forecasted probabilities for various classes.

One of the key advantages of the ResNet50 architecture is its ability to train very deep networks
without significant degradation in performance. The shortcut connections and residual mappings enable the
network to effectively propagate gradients through the layers, allowing for easier optimization and better
feature representation. The ResNet50 architecture has been pre-trained on large-scale datasets, such as the
ImageNet dataset, which contains millions of labeled images from thousands of categories. Through harnessing
this pre-training, the model can be fine-tuned or employed as a feature extractor for a range of computer vision
assignments, including image classification, object detection, and image segmentation [29], [30]. There are
several CNN-based methods that are widely used for various applications [31]-[33], but in this study, we
focus on ResNet50. We will include other deep learning methods on future work agendas. NSL-KDD is a
dataset that is widely used in DDoS attack detection studies. It is an improvement over the earlier KDD Cup
1999 dataset, which had some flaws and was too easy for modern intrusion detection systems. The NSL-KDD
dataset has been preprocessed and contains several types of attacks that can be used to train and evaluate the
performance of intrusion detection systems. One example of the type of attack found in the NSL-KDD dataset is
the U2R attack [34]-[36]. Using ResNet50 as a pre-trained model for fine-tuning in DDoS detection is not a
common or conventional approach, as ResNet50 is designed for image-related tasks, and DDoS detection
typically involves network traffic data. However, it is still possible to leverage pre-trained ResNet50 models
for feature extraction in a transfer learning setting by considering the following steps:
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a. Custom network architecture: modify the top layers of the ResNet50 model to match the requirements of the
DDosS detection task. Replace the fully connected layers with ones that suit binary classification tasks.

b. Feature extraction: use the pre-trained ResNet50 as a feature extractor. Remove the final classification
layers and extract features from the lower layers of the model. These features can then be fed into a
custom classifier specific to the DDoS detection task.

c. Adaptation to temporal data: consider that network traffic data is often temporal. We need to adapt the
extracted features to capture temporal patterns by incorporating recurrent layers or other time-series
modeling techniques.

d. Data preprocessing: ensure that network traffic data is appropriately preprocessed to fit the input
requirements of the ResNet50 model. We need to represent network traffic data in a format compatible
with image-based models.

e. Fine-tuning: train the adapted model on the DDoS detection dataset. Fine-tune the weights to improve its
performance on specific tasks.

In the final phase, the model’s performance was assessed using the accuracy metric. The evaluation

metrics are commonly used shown in Table 1.

Table 1. Evaluation metrics

Metrics Description Equation

Accuracy The ratio of accurately classified instances to the total (TP +TN)/(TP+ TN+ FP+FN) (2)
number of instances

Precision The ratio of true positive predictions to the total positive TP/(TP + FP) (3)
predictions

Recall The ratio of true positive predictions to the total instances TP/(TP+FN) (4)

(sensitivity) that are actually positive

F1 Score The harmonic average between precision and recall 2 X (Precision X Recall)/

(Precision + Recall) (5)
Specificity The ratio of true negative predictions to the total instances TN /(TN + FP) (6)

that are actually negative

Accuracy offers a comprehensive gauge of the model’s performance, encompassing correct
predictions for both positive and negative instances. Nevertheless, it might be less suitable for imbalanced
classes. Precision proves valuable when the impact of false positives is substantial, as it reveals the
correctness of the model’s positive predictions. Recall proves helpful when the impact of false negatives is
significant, disclosing the model’s ability to correctly identify actual positives. When desiring a balance
between precision and recall, the F1 score is used; it considers false positives and false negatives, particularly
valuable for imbalanced classes. Specificity, on the other hand, is valuable when the costs associated with
false positives are high, indicating the model’s accuracy in identifying actual negatives. These metrics are
employed to appraise machine learning model performance across various tasks, including classification and
regression. Depending on the problem and the nature of the data, different metrics may be more appropriate
for evaluating model performance. For instance, accuracy, recall, precision, and F1 score are commonly used.

3. RESULTS AND DISCUSSION

The model architecture used here is ResNet50, which is a popular CNN architecture that has been
pre-trained on the ImageNet dataset. Fine-tuning involves training the pre-trained ResNet50 model on a new
dataset specific to the task of DDoS attack detection while keeping the weights of the initial layers fixed and
only training the top layers of the model. The fine-tunes a pre-trained ResNet50 model for DDoS attack
detection using transfer learning. Transfer learning involves taking a pre-trained model and adapting it to a
new task, in this case, DDoS attack detection. Fine-tuning refers to the process of re-training the pre-trained
model on a new dataset with a small learning rate. Table 2 shows an example of fine-tuning performance
metrics evaluation result.

Table 2. Performance metrics

Metrics DDoS  Normal  Average
Precision 0.897 0.976 0.936
Recall 0.972 0.941 0.956
F1 score 0.932 0.958 0.945
Accuracy - - 95.1%
Specificity 0.924 0.978 -

False positive rate  0.076 0.022
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The model achieved a precision of 0.897 for DDoS attacks and 0.976 for normal traffic, with an
average precision of 0.936. This indicates that the model had a high accuracy in correctly classifying
instances of both DDoS attacks and normal traffic. The model achieved a recall of 0.972 for DDoS attacks
and 0.941 for normal traffic, with an average recall of 0.956. This suggests that the model successfully
captured a substantial portion of both genuine DDoS attacks and instances of regular traffic. The model
attained an F1 score of 0.932 for DDoS attacks and 0.958 for normal traffic, averaging 0.945. This denotes a
favorable equilibrium between precision and recall across both categories, signifying the model’s overall
efficiency. The accuracy metric signifies the general accuracy of the model’s predictions. With an accuracy
of 95.1%, the model demonstrated accurate predictions for roughly 95.1% of the dataset’s instances. The
model achieved a specificity of 0.924 for DDoS attacks and 0.978 for normal traffic. A high specificity value
for normal traffic indicates that the model was able to accurately distinguish normal traffic instances from
DDoS attacks. The model achieved a false positive rate of 0.076 for DDoS attacks and 0.022 for normal
traffic. A lower false positive rate indicates a lower rate of misclassifying normal traffic as DDoS attacks.
Overall, the results suggest that the fine-tuned ResNet50 model performed well in detecting DDoS attacks
and normal traffic, achieving high precision, F1 score, recall, and accuracy. It demonstrated a good ability to
distinguish between the two classes and had a low false positive rate, indicating its effectiveness in
identifying DDoS attacks while minimizing misclassifications of normal traffic. The comparison of the fine-
tuning of a pre-trained ResNet50 model vs ResNet50 model (without fine-tuning) for DDoS attack detection
using the NSL-KDD dataset is shown in Table 3.

Table 3. The comparison of the fine-tuning of a pre-trained ResNet50 model vs the ResNet50 model

Metrics Pre-trained ResNet50 model (fine-tuned)  ResNet50 (without fine-tuning)
Precision (DDoS) 0.897 0.825
Precision (normal) 0.976 0.982
Average precision 0.936 0.903
Recall (DDoS) 0.972 0.865
Recall (normal) 0.941 0.973
Average recall 0.956 0.919
F1 score (DDoS) 0.932 0.844
F1 score (normal) 0.958 0.977
Average F1 score 0.945 0.910
Accuracy 95.1% 94.7%
Specificity (DDoS) 0.924 0.973
Specificity (normal) 0.978 0.825
False positive rate (DDoS) 0.076 0.175
False positive rate (normal) 0.022 0.975

The pre-trained ResNet50 model (fine-tuned) achieves a precision of 0.897 for DDoS and 0.976 for
normal. This means that when the model predicts an instance as DDoS, it is correct approximately 89.7% of
the time, and when it predicts an instance as normal, it is correct about 97.6% of the time. The ResNet50
model without fine-tuning achieves slightly lower precision values with 0.825 for DDoS and 0.982 for
normal. The average precision for the pre-trained ResNet50 model (fine-tuned) is 0.936, while for the
ResNet50 model without fine-tuning, it is 0.903. This means that the fine-tuned model achieves better overall
precision in its predictions compared to the non-fine-tuned model. The average F1 score for the pre-trained
ResNet50 model (fine-tuned) is 0.945, while for the ResNet50 model without fine-tuning, it is 0.910. This
indicates that the fine-tuned model has better overall performance in terms of balancing recall and precision.
The pre-trained ResNet50 model (fine-tuned) achieves an accuracy of 95.1%, while the ResNet50 model
without fine-tuning achieves an accuracy of 94.7%. This shows that the fine-tuned model has a slightly
higher accuracy. the pre-trained ResNet50 model that has been fine-tuned exhibits better performance across
most of the evaluated metrics compared to the ResNet50 model without fine-tuning. The fine-tuned model
demonstrates improved precision, F1 score, recall, specificity, and false positive rates, leading to higher
overall accuracy and better ability to correctly classify instances of DDoS and normal classes. We also
compared the accuracy of the proposed fine-tuned model with other state-of-the-art methods, including SVM
and random forest (RF). Table 4 summarizes the example of the performance of our proposed fine-tuned
mechanism and other mechanisms.

Table 4. The example of the performance comparison
Method Accuracy  Error  Time (s)
ResNet50 0.947 0053  50.2
SVM 0912  0.088 358
RF 0905  0.095 385
Fine-tuned 0.951 0.049 55.1
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The models included in the comparison are ResNet50, SVM, RF, and Fine-tuned ResNet50. The
accuracy column indicates the percentage of correctly classified samples, and the error column represents the
percentage of misclassified samples in the dataset. The time(s) column displays the time taken in seconds for
training and evaluation of each model. The outcomes make it clear that the Fine-tuned ResNet50 model
outperforms the assessed techniques, showcasing the highest accuracy of 0.951 and the most minimal error
rate of 0.049. This indicates that the fine-tuned ResNet50 model has a superior ability to correctly classify
samples and exhibits the least misclassification compared to other models. However, it takes slightly longer
for training and evaluation, with a time of 55.1 seconds. ResNet50 also shows a competitive performance
with an accuracy of 0.947 and a relatively low error rate of 0.053, while SVM and RF have lower accuracy
values compared to deep learning-based models. Overall, the fine-tuned ResNet50 stands out as the top-
performing model in this comparison, providing the best trade-off between accuracy and misclassification
rate, albeit with slightly higher computational time.

The high accuracy achieved by the proposed fine-tuned model suggests that the approach taken by
the researchers is effective in detecting DDoS attacks [37]. However, it is important to note that the accuracy
of the model alone does not give us complete information about the model’s performance. Other metrics,
such as precision, F1 score, recall, and ROC curve analysis, should also be considered to gain a better
understanding of the model’s performance [38]. Overall, the presented result suggests that the proposed fine-
tuned model is a promising approach to detecting DDoS attacks and could be further evaluated for real-world
applications. Please note that the specific evaluation metrics and their values may vary depending on the
implementation, hyperparameter settings, number of datasets, and or dataset characteristics. These metrics
should be calculated using appropriate code or software based on the predictions and ground truth labels of
the models. As a future work agenda, we will carry out tests and comparisons with other deep learning-based
so that the detection results become more relevant [39], [40].

4. CONCLUSION

Within this study, we introduced an approach to enhance a pre-existing DL model through fine-
tuning, specifically aimed at identifying DDoS attacks. We used the ResNet50 CNN architecture and the
NSL-KDD dataset to demonstrate the effectiveness of our approach. The proposed fine-tuned model
achieved an accuracy of 95.1%, outperforming the pre-trained model and other state-of-the-art methods. The
proposed mechanism has several advantages, including reducing the amount of labeled data required and
accelerating the training process. Initiating with a pre-existing model can also enhance the final model’s
accuracy, given that the pre-trained model has already acquired the ability to extract significant features from
raw data.

In conclusion, the proposed approach shows great potential in detecting DDoS attacks and can be
applied in real-world scenarios to enhance the security and reliability of network services. Further research
can explore the use of other pre-trained models and datasets to improve the accuracy of DDoS attack
detection models. Based on the conclusion, a suggestion could be to apply the proposed fine-tuning approach
to a real-world scenario and evaluate its performance in a practical setting. Additionally, further research
could focus on exploring the potential of other pre-trained models and datasets for improving the accuracy of
DDoS attack detection models. This could involve testing the proposed approach on different pre-trained
models and datasets and comparing their performance to the ResNet50 CNN architecture and the NSL-KDD
dataset used in the current study.
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