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 This paper presents a robust optimal control approach for the wheel mobile 

robot system, which considers the effects of external disturbances, 

uncertainties, and wheel slipping. The proposed method utilizes an adaptive 

dynamic programming (ADP) technique in conjunction with a disturbance 

observer. Initially, the system's state space model is formulated through the 

utilization of kinematic and dynamic models. Subsequently, the ADP 

method is employed to establish an online adaptive optimal controller, which 

solely relies on a single neural network for the purpose of function 

approximation. The utilization of the disturbance observer in conjunction 

with the compensation controller serves to alleviate the effects of 

disturbances. The Lyapunov theorem establishes the stability of the 

complete closed-loop system and the convergence of the weights of the 

neural network. The proposed approach has been shown to be effective 

through simulation under the effect of the disturbances and the change of the 

desired trajectory. 
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1. INTRODUCTION 

A wheeled mobile robot (WMR) is a system that can move from one location to another 

autonomously, without the need for external intervention or assistance [1]. Unlike robotic arms, which can 

only work in a specific space, WMR can move freely within a predetermined workspace to achieve the 

desired goal. Proportional integral derivative (PID) controllers [2], feedback linearization controllers [3], 

backstepping controllers [4], sliding mode controllers [5], [6], adaptive controllers [7], [8], robust controllers 

[9], [10], fuzzy controllers [11], [12], and neural network-based controllers [13], [14] are just a few of the 

control methods proposed for WMR. The WMR is assumed to roll without slipping in these studies. In 

practice, however, due to the presence of nonlinear components such as friction, wheel slip, and so on, some 

studies have added these components to the mathematical model of the WMR to improve accuracy [15]–[18]. 

In [15], [16], the friction and wheel slip components are included in the robot's kinematics and dynamics 

models, and then robust controllers for tracking control are established. Vu et al. [17] presents an adaptive 

control method based on a disturbance estimator that can compensate for the effects of wheel slip and 

external disturbances acting on both kinematic and dynamic loops. Similar control structures for uncertain 

WMR with kinematic and dynamic control loops are presented in [18]. However, rather than using two 

disturbance observers in the inner and outer loops, which complicates the system, the controllers in [18] are 

designed to deal with disturbances using the adaptive fuzzy type 2 control technique. Because the controller 

https://creativecommons.org/licenses/by-sa/4.0/
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parameters are updated based on the optimal rule to adapt to changes in working conditions, the disturbance 

observers are removed. 

The previously mentioned control techniques have fulfilled the criteria for achieving high-quality 

trajectory tracking. Nevertheless, the issue of determining the optimal index with respect to tracking error and 

control energy remains unresolved. Reinforcement learning (RL) [19] and adaptive dynamic programming (ADP) 

[20] are efficient techniques that leverage optimization rules of dynamic programming to address optimization 

problems. RL is utilized for the purpose of determining the resolution of the Hamilton-Jacobi-Bellman (HJB) and 

Hamilton-Jacobi-Isaacs (HJI) equations. This is due to the fact that these equations are nonlinear differential 

equations, rendering it challenging to obtain solutions through analytical approaches, particularly in the case of 

nonlinear systems. Prior research has employed the conventional ADP control framework [21], [22], featuring two 

neural networks referred to as actor-critic (AC), frequently neglecting the impact of disturbances on the system. 

The proposed approach employs a neural network, specifically an actor network, to approximate the optimal 

control law. Additionally, a critic network is utilized to evaluate the control law and approximate the optimal cost 

function. Subsequent to this achievement, a number of algorithms have been developed for nonlinear systems that 

are subject to disturbance effects [23]–[28]. The algorithms in [23]–[25] employ the ADP structure, which 

incorporates three neural networks. Notably, an additional neural network has been incorporated into the AC 

structure to estimate the upper bound of noise. A reinforcement learning based trajectory tracking controller is 

proposed for the autopilot system of underactuated surface vessel (USVs) influenced by input disturbances and 

input signal constraints [26]. By using the tracking error conversion technique to handle the error constraint 

problem, it is ensured that the USVs can accurately follow the set trajectory. However, the updating rule of the 

weights of the actor and critic neural networks is sequential, which reduces the convergence speed of the 

parameters. Sun and Liu [27] propose robust optimal control for the rocket autopilot using ADP technique 

combined with nonlinear disturbance observer and adaptive sliding mode controller. The AC architecture is used to 

design an adaptive optimal controller using only one critic neural network. However, because the recognition 

process is additionally combined, the controller has a high computational complexity and is difficult to implement. 

An algorithm based on online adaptive reinforcement learning method is developed for the optimal control 

problem of continuous nonlinear systems with model uncertainty [28]. To approximate the solution of the HJB 

equation, an actor-critic-identity (ACI) structure is used based on three neural networks: actor and critic networks 

that estimate the optimal control law and the optimal cost function, respectively, and the third network is used for 

system dynamics identification. The utilization of a control structure that involves two or three neural networks 

may ensure the good performances for uncertain nonlinear system but can result in a complex calculation process 

and inefficient use of resources, ultimately resulting in a reduction in the rate of convergence. 

This paper develops an adaptive optimal controller for tracking control of a WMR system using the 

online adaptive dynamic programming technique in cooperation with a disturbance observer. The control 

scheme consists of two parts: the first part is the optimal component to optimize the cost function and the 

second component is the compensation component that uses the estimated disturbances to remove the effect 

of model uncertainty and the system noise. The optimal controller is designed based on the value iteration 

(VI) method and simultaneously updates the weight matrix. The stability of the whole system using the 

optimal component and the disturbance observer is demonstrated under the uniformly ultimately bounded 

(UUB) condition. Finally, some simulations are performed to prove the correctness of the algorithm. The 

simulation results show that the proposed scheme gives good performance for both the nominal working and 

when affected by uncertainties and external disturbances. 

 

 

2. SYSTEM MODELLING 

Considering the three-wheel mobile robot, two independent drive wheels at the rear and one rudder 

at the front, subject to nonholonomic constraints as shown in Figure 1. In Figure 1, G is the WMR's center of 

mass, 𝑀(𝑥𝑀 , 𝑦𝑀) is the center of the axle connecting the two rear wheels, and 𝜃 is the WMR's direction 

angle. Let 𝜑̇𝑅 and 𝜑̇𝐿 represent the angular velocities of the right and left wheels, respectively. 𝜇𝑅 and 

𝜇𝐿 represent longitudinal slip of the right and left wheels, while 𝛿 represents the the lateral slip along the 

wheel shaft. Taking the effect of wheel slip into account, the kinematic equation for WMR is [17], [18]: 

 

{
𝑥̇𝑀 = 𝛽 𝑐𝑜𝑠 𝜃 − 𝛿̇ 𝑠𝑖𝑛 𝜃

𝑦̇𝑀 = 𝛽 𝑠𝑖𝑛 𝜃 + 𝛿̇ 𝑐𝑜𝑠 𝜃
 (1) 

 

where 𝛽 is the linear velocity perpendicular to the axis joining the two rear wheels and 𝜛 is angular velocity 

of the WMR. 

The dynamic model of the WMR is as (2) [17], [18]: 
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𝑀𝑣̇ + 𝐵𝑣 + 𝑄𝜇̈ + 𝐶𝛿̇ + 𝐺𝛿̈ + 𝜏𝑑 = 𝜏 (2) 

 

where 𝜏𝑑 is input disturbance, 𝑣 = [𝜑̇𝑅 𝜑̇𝐿]𝑇, 𝜇 = [𝜇𝑅 𝜇𝐿]𝑇 

 

 

 
 

Figure 1. WMR model and coordinate system 

 

 

The objective of this study is to control the WMR, i.e. point 𝑀(𝑥𝑀 , 𝑦𝑀), to track the reference 

trajectory, represented by point 𝑇(𝑥𝑇 , 𝑦𝑇) with mininize consumption of energy. The position error between 

the center of robot (point M) and the target point (point T) is determined as (3): 

 

𝑒𝑝 = [
𝑒𝑝1

𝑒𝑝2
] = [

𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛 𝜃
− 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃

] [
𝑥𝑇 − 𝑥𝑀

𝑦𝑇 − 𝑦𝑀
] = 𝐻 [

𝑥𝑇 − 𝑥𝑀

𝑦𝑇 − 𝑦𝑀
] (3) 

 

where H is the transform matrix: 𝐻 = [
𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛 𝜃

− 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃
] 

The time derivative of (3) is obtainted as (4): 

 

𝑒̇𝑝 = [
𝑒̇𝑝1

𝑒̇𝑝2
] = 𝜅𝑣 + 𝜉1 (4) 

 

where 𝜅 and 𝜉1 are calculated as in the documents [17], [18] 

Define state variables 𝑥1 = 𝑒𝑝; 𝑥2 = 𝑥̇1 + 𝜆𝑥1 where 𝜆 is a positive scalar. Based on (2) and (4), the 

time derivative of x1 and x2 has the following form: 

 

𝑥̇1 = 𝑒̇𝑝 = 𝜅𝑣 + 𝜉1 (5) 

 

𝑥̇2 = 𝛦𝑥2 − 𝛦𝜆𝑥1 + 𝛧𝜏 + 𝑑 (6) 

 

where: 𝛦 = 𝛦1𝜅−1, 𝑑 = 𝜉3 − 𝛦1𝜅−1𝜉1, 𝛦1 = −𝜅𝑀−1𝐵, 𝛧 = 𝜅𝑀−1,  

            𝜉2 = −𝑀−1(𝑄𝜇̈ + 𝐶𝛿̇ + 𝐺𝛿̈ + 𝜏𝑑),𝜉3 = 𝜅𝜉2 + 𝜅̇𝑣 + 𝜉1̇ + 𝜆𝜅𝑣 + 𝜆𝜉1 

 

Rewriting (5) and (6) in the state space form, the following is obtained: 

 

𝑥̇ = 𝑓(𝑥) + 𝑔𝑢𝑢 + 𝑔𝑑𝑑 (7) 

 

where: 𝑓(𝑥) = [
𝑥2 − 𝜆𝑥1

𝛦𝑥2 − 𝜆𝛦𝑥1
]; 𝑔𝑢 = [

0
𝛧

]; 𝑔𝑑 = [
0
1

]; 𝜏 = 𝑢 

Because system (7) is nonlinear and affected by disturbance d, the controller u is established as follows to 

achieve optimal performances: 

 

𝑢 = 𝑢𝑟(𝑥) + 𝑢𝑑(𝑥) (8) 

 

where 𝑢𝑟(𝑥) is the optimal control component which will be designed using the ADP method and 𝑢𝑑(𝑥) 

compensation control component. 
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3. ROBUST ADAPTIVE OPTIMAL CONTROLLER DESIGN FOR THE WMR 

The ADP algorithm can only be applied to nonlinear systems when ignoring impact noise, which 

reduces the applicability of the algorithm in practice. Therefore, we propose to combine the ADP algorithm 

with a disturbance observer to design a sustainable optimal tracking controller for WMR containing an 

uncertain component, affected by disturbances. Figure 2 illustrates the proposed controller's structure 

diagram. The controller is constructed of two parts: an optimal component 𝑢𝑟(𝑥) and a disturbance 

compensation component 𝑢𝑑(𝑥). The detailed design for each part is shown. 

 

 

 
 

Figure 2. ADP control structure combined with disturbance observer 

 

 

3.1.  The adaptive optimal controller 

In the case of 𝑑 = 0, the nonlinear system (7) is rewritten as (9): 

 

𝑥̇ = 𝑓(𝑥) + 𝑔𝑢(𝑥)𝑢𝑟 (9) 

 

Assumption 1: 𝑓(𝑥) satisfies the lipschitz continuous condition in the set 𝛺 where 𝛺 is a set which consists of 

all possible solution of (9). 

Define the cost function: 

 

𝐽(𝑥) = ∫ 𝑟(𝑥(𝜏), 𝑢𝑟(𝑥(𝜏)))
∞

𝑡
𝑑𝜏 (10) 

 

where 𝑟(𝑥(𝜏), 𝑢𝑟(𝜏)) = 𝑥𝑇(𝜏)𝑄𝑥(𝜏) + 𝑢𝑟
𝑇(𝑥)𝑅𝑢𝑟(𝑥) in which 𝑄 ∈ ℝ2𝑛×2𝑛, 𝑅 ∈ ℝ𝑛×𝑛 are symmetric 

positive definite matrices. 

The Hamilton function is defined as (11): 

 

𝐻(𝑥, 𝑢𝑟 , 𝐽𝑥) = (
𝜕𝐽

𝜕𝑥
)

𝑇

𝑥̇ + 𝑟(𝑥, 𝑢𝑟) = (
𝜕𝐽

𝜕𝑥
)

𝑇

𝑥̇ + 𝑥𝑇𝑄𝑥 + 𝑢𝑟
𝑇𝑅𝑢𝑟  (11) 

 

For the system (9) to have the optimal solution, there must exist a function 𝑉(𝑥, 𝑢𝑟) satisfying the HJB: 

 

𝐻(𝑥, 𝑢𝑟 , 𝑉) = (
𝜕𝑉

𝜕𝑥
)

𝑇

𝑥̇ + 𝑥𝑇𝑄𝑥 + 𝑢𝑟
𝑇𝑅𝑢𝑟 = 0 (12) 

 

The optimal control signal 𝑢𝑟 is then determined by using the formula that is presented: 

 

𝑢𝑟 = arg𝑚𝑖𝑛
𝑢𝑟

{𝐻(𝑥, 𝑢𝑟 , 𝑉)} (13) 

 

By solving (13) using (12), the following is obtained: 

 

𝑢𝑟 = −
1

2
𝑅−1𝑔𝑢

𝑇 𝜕𝑉

𝜕𝑥
 (14) 
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However, the system (11) is nonlinear, so (12) cannot be solved directly, which means the function 

𝑉(𝑥, 𝑢𝑟) cannot be found by analytical methods. To overcome this difficulty, the function 𝑉(𝑥, 𝑢𝑟) is 

approximated by a neural network as (15): 

 

𝑉(𝑥, 𝑢𝑟) = 𝑊𝑇𝛷(𝑥) + 𝜀(𝑥) (15) 

 

where 𝑊 is the weight matrix of the neural network, 𝛷(𝑥) is the active function which is a function of state 

variable x, and 𝜀(𝑥) is the approximation error. 

Using this approximation, the controller 𝑢𝑟
∗ becomes: 

 

𝑢𝑟 = −
1

2
𝑅−1𝑔𝑢

𝑇 𝜕𝑉

𝜕𝑥
= −

1

2
𝑅−1𝑔𝑢

𝑇𝑊𝑇 𝜕𝛷

𝜕𝑥
 (16) 

 

Unfortunately, the real value of W in (15) is unknown; therefore, it is replaced by an estimation, and the 

function 𝑉(𝑥, 𝑢𝑟) is also presented by its estimation, as (17): 

 

𝑉̂(𝑥, 𝑢𝑟) = 𝑊̂𝑇𝛷(𝑥) (17) 

 

where 𝑊̂is the estimation of W, which is updated by the following law: 

 

𝑊̇̂ = −𝛼1
𝜎̂

(𝜎̂𝑇𝜎̂+1)
2 (𝜎̂𝑇𝑊̂ + 𝑄(𝑥) + 𝑢𝑟

𝑇𝑅𝑢𝑟) +
1

2
𝛼2

𝜕𝛷

𝜕𝑥
𝑔𝑢(𝑥)𝑅−1𝑔𝑢

𝑇(𝑥)𝑥 (18) 

 

in which 𝜎̂ =
𝜕𝛷

𝜕𝑥
𝑥̇ 

Finally, the optimal controller ur is employed as (19): 

 

𝑢𝑟 = −
1

2
𝑅−1𝑔𝑢

𝑇𝑊̂𝑇 𝜕𝛷

𝜕𝑥
 (19) 

 

3.2.  Observer based adaptive controller design 

Consider system (7) which is affected by the disturbance d: 

 

𝑥̇ = 𝑓(𝑥) + 𝑔𝑢(𝑥)𝑢 + 𝑔𝑑(𝑥)𝑑  (20) 

 

As mentioned in section 2, the controller u consists of a compensation control component that compensates for the 

effects of system uncertainties and disturbances. In this study, this control component is utilized as shown (21): 

 

𝑢𝑑(𝑥) = −𝑍−1𝑑̂ (21) 

 

where 𝑑̂ is the estimation of d, the value of 𝑑̂ is determined by the following observer [29]–[31]: 

 

{
𝑑̂ = 𝜂 + 𝜌(𝑥)

𝜂̇ = −ℎ(𝑥){𝑔𝑑(𝑥)[𝜂 + 𝜌(𝑥)] + 𝑓(𝑥) + 𝑔𝑢(𝑥)𝑢}
  (22) 

 

in which 𝜂 ∈ ℝ𝑙 is the internal state of the observer, 𝜌(𝑥) ∈ ℝ𝑙 is a designed vector, and ℎ(𝑥) =
𝜕𝜌(𝑥)

𝜕𝑥
 is the 

gain of the observer. The convergence of the observer is presented in detail in [29]–[31]. 

 

3.3.  Stability of overall system 

Replace the control components (8) and (21) into system (20), the dynamic of the closed loop 

system is express as (23): 
 

𝑥̇ = 𝑓(𝑥) + 𝑔𝑢𝑢𝑟 − 𝑔𝑢𝑍−1𝑑̂ + 𝑔𝑑(𝑑̃ + 𝑑̂) (23) 
 

Due to 𝑔𝑑 = 𝑍−1𝑔𝑢, the following is obtained: 
 

𝑥̇ = 𝑓(𝑥) + 𝑔𝑢𝑢𝑟 + 𝑔𝑑𝑑̃ (24) 
 

In order to demonstrate the stability of the system which consists of the adaptive optimal controller, the 

disturbance observer, and the WMR, the following Lyapunov function is chosen: 
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𝐿(𝑋, 𝑡) = 𝑣1𝑥𝑇𝑥 + 𝑣2 ∫ (𝑥𝑇𝑄𝑥 + 𝑢𝑟
𝑇𝑅𝑢𝑟)

∞

𝑡
𝑑𝜏 + 𝑣3 ∫ (𝑑̃𝑇𝑑̃)

∞

𝑡
𝑑𝜏 +

𝑣4

𝛼2
𝑊̃𝑇𝑊̃ (25) 

 

where 𝑊̃ = 𝑊 − 𝑊̂, 𝑋 = [𝑥 𝑢𝑟 𝑑̃ 𝑊̃] and 𝑣𝑖 (i=1,2,3,4) is positive scalar. 

Due to 𝑢𝑟 is the solution of (10), the component ∫ (𝑥𝑇𝑄𝑥 + 𝑢𝑟
𝑖𝑇𝑅𝑢𝑟

𝑖 )
∞

𝑡
𝑑𝜏 is limited. In addition, the observer 

in section 3.2 is exponentially convergent, so the integrator ∫ (𝑑̃𝑇𝑑̃)
∞

𝑡
𝑑𝜏 is convergent. These leads to the 

following result: 

 

0 ≤ 𝐿(𝑋, 𝑡) ≤ 𝜂1‖𝑋‖ (26) 

 

where 𝜂1 is a positive constant. 

The time derivative of L(X,t) is determined as (27): 

 

𝐿̇ = 2𝑣1𝑥𝑇(𝑓 + 𝑔𝑢𝑢𝑟 + 𝑍−1𝑔𝑢𝑑̃) − 𝑣2(𝑥𝑇𝑄𝑥 + 𝑢𝑟
𝑇𝑅𝑢𝑟) − 𝑣3‖𝑑̃‖

2
−

2𝑣4

𝛼2
𝑊̃𝑇𝑊 = 2𝑣1𝑥𝑇(𝑓 + 𝑔𝑢𝑢𝑟) + 2𝑣1𝑥𝑇𝑍−1𝑔𝑢𝑑̃ − 𝑣2(𝑥𝑇𝑄𝑥 + 𝑢𝑟

𝑇𝑅𝑢𝑟) − 𝑣3‖𝑑̃‖
2

−
2𝑣4

𝛼2
𝑊̃𝑇𝑊̇̂

̂̇
 (27) 

 

We have: 
 

2𝑣1𝑥𝑇𝛾(𝑥)𝑔𝑢𝑑̃ ≤ 𝑣1‖𝑥‖2 + 𝑣1‖𝑍−1𝑔𝑢‖2‖𝑑̃‖
2
 (28) 

 

𝑥𝑇𝑄𝑥 + 𝑢𝑟
𝑖𝑇𝑅𝑢𝑟

𝑖 ≥ 𝜆‖𝑥‖2‖𝑢𝑟
𝑖 ‖

2

𝑚𝑖𝑛𝑚𝑖𝑛
 (29) 

 

or 
 

−𝑣2(𝑥𝑇𝑄𝑥 + 𝑢𝑟
𝑖𝑇𝑅𝑢𝑟

𝑖 ) ≤ −𝑣2𝜆‖𝑥‖2
2‖𝑢𝑟

𝑖 ‖
2

𝑚𝑖𝑛𝑚𝑖𝑛
 (30) 

 

(27) is equivalent to: 
 

𝐿̇ ≤ 2𝑣1‖𝑥𝑇‖‖𝑓(𝑥)‖ + 2𝑣1‖𝑥𝑇‖‖𝑔𝑢‖‖𝑢𝑟‖ + 𝑣1‖𝑥‖2 + 𝑣1‖𝑍−1𝑔𝑢‖2‖𝑑̃‖
2

 −

𝑣2𝜆‖𝑥‖2
2

‖𝑢𝑟‖2
3

‖𝑑̃‖
2 2𝑣4

𝛼2

̃ 𝑇̂̇

𝑚𝑖𝑛𝑚𝑖𝑛

 (31) 

 

Using updating law (18) leads to (32): 
 

−
2𝑣4

𝛼2
𝑊̃𝑇𝑊̇̂ = −

2𝑣4

𝛼2
𝑊̃𝑇𝑊̇̂1 −

2𝑣4

𝛼2
𝑊̃𝑇𝑊2 = 2𝑣4

𝛼1

𝛼2
𝑊̃𝑇 𝜎̂

(𝜎̂𝑇𝜎̂+1)
2 (𝜎̂𝑇𝑊 − 𝜎̂𝑇𝑊̃ + 𝑄(𝑥) + 𝑢𝑟

𝑇𝑅𝑢𝑟) −

𝑣4𝑊̃𝑇 𝜕𝛷

𝜕𝑥
𝑔𝑢(𝑥)𝑅−1𝑔𝑢

𝑇(𝑥)𝑥 (32) 

 

Define 𝜀𝐻 = 𝜎̂𝑇𝑊 + 𝑄(𝑥) + 𝑢𝑟
𝑇𝑅𝑢𝑟  

Then: 
 

−
2𝑣4

𝛼2
𝑊̃𝑇𝑊̇̂ = −2𝑣4

𝛼1

𝛼2

𝑊̃𝑇𝜎̂𝜎̂𝑇𝑊̃

(𝜎̂𝑇𝜎̂+1)
2 + 2𝑣4

𝛼1

𝛼2

𝑊̃𝑇𝜎̂

(𝜎̂𝑇𝜎̂+1)
2 𝜀𝐻 − 𝑣4𝑊̃𝑇𝛷𝑥𝑔𝑢(𝑥)𝑅−1𝑔𝑢

𝑇(𝑥)𝑥 (33) 

 

−
2𝑣4

𝛼2
𝑊̃𝑇𝑊̇̂ ≤ −2𝑣4

𝛼1

𝛼2
‖

𝜎̂

𝜎̂𝑇𝜎̂+1
‖

2

‖𝑊̃‖
2

+ 𝑣4
𝛼1

𝛼2
‖

𝜎̂

𝜎̂𝑇𝜎̂+1
‖

2

‖𝑊̃‖
2

+ 𝑣4
𝛼1

𝛼2
‖

𝜀𝐻

𝜎̂𝑇𝜎̂+1
‖

2

 

−𝑣4𝑊̃𝑇𝛷𝑥𝑔𝑢(𝑥)𝑅−1𝑔𝑢
𝑇(𝑥)𝑥 = −𝑣4

𝛼1

𝛼2
‖

𝜎̂

𝜎̂𝑇𝜎̂+1
‖

2

‖𝑊̃‖
2

+ 𝑣4
𝛼1

𝛼2
‖

𝜀𝐻

𝜎̂𝑇𝜎̂+1
‖

2

− 𝑣4𝑊̃𝑇𝛷𝑥𝑔𝑢(𝑥)𝑅−1𝑔𝑢
𝑇(𝑥)𝑥 (34) 

 

Also, because 𝑓(𝑥) is Lipschitz then 𝑓(𝑥) ≤ 𝑘‖𝑥‖where k is a positive constant. Substituting  

𝑢𝑟 = −
1

2
𝑅−1𝑔𝑢

𝑇 (
𝜕𝛷

𝜕𝑥
)

𝑇

𝑊̂ and (34) into (31), the following is obtained: 

 

𝐿̇ ≤ ((2𝑘 + 1)𝑣1 − 𝑣2𝜆𝑚𝑖𝑛()‖𝑥‖2
2‖𝑢𝑟

𝑖 ‖
2

(𝑣1‖𝑍−1𝑔𝑢‖2 − 𝑣3)‖𝑑̃‖
2

𝑚𝑖𝑛
) − 𝑣4

𝛼2

𝛼1
‖

𝜎̂

𝜎̂𝑇𝜎̂+1
‖

2

‖𝑊̃‖
2

+

𝑣4
𝛼2

𝛼1
‖

𝜀𝐻

𝜎̂𝑇𝜎̂+1
‖

2

− (𝑣1‖𝑊̂𝑇‖ + 𝑣4‖𝑊̃𝑇‖) ‖
𝜕𝛷

𝜕𝑥
‖ ‖𝑔𝑢(𝑥)‖2‖𝑅−1‖‖𝑥‖) (35) 

 

Choose 𝑣4 = 𝑣1 and note that 𝑊̃ + 𝑊̂ = 𝑊, then: 
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𝐿̇ ≤ ((2𝑘 + 1)𝑣1 − 𝑣2𝜆𝑚𝑖𝑛()‖𝑥‖2
2

‖𝑢𝑟‖2(𝑣1‖𝑍−1𝑔𝑢‖2 − 𝑣3)‖𝑑̃‖
2

𝑚𝑖𝑛
) − 𝑣4

𝛼2

𝛼1
‖

𝜎̂

𝜎̂𝑇𝜎̂+1
‖

2

‖𝑊̃‖
2

+

𝑣4
𝛼2

𝛼1
‖

𝜀𝐻

𝜎̂𝑇𝜎̂+1
‖

2

− 𝑣1‖𝑊𝑇‖ ‖
𝜕𝛷

𝜕𝑥
‖ ‖𝑔𝑢(𝑥)‖2‖𝑅−1‖‖𝑥‖) (36) 

 

𝐿̇ ≤((2𝑘 + 1)𝑣1 − 𝑣2𝜆𝑚𝑖𝑛()‖𝑥‖2
2‖𝑢𝑟

𝑖 ‖
2

𝑚𝑖𝑛
)  + (𝑣1‖𝑍−1𝑔𝑢‖2 − 𝑣3)‖𝑑̃‖

2
−

𝑣4
𝛼2

𝛼1
‖

𝜎̂

𝜎̂𝑇𝜎̂+1
‖

2

‖𝑊̃‖
2

+ 𝑣4
𝛼2

𝛼1
‖

𝜀𝐻

𝜎̂𝑇𝜎̂+1
‖

2

+ 𝑣1𝜆𝑥) (37) 

 

where 𝜆 = ‖𝑊𝑚𝑎𝑥
𝑇 ‖(

𝜕𝛷

𝜕𝑥
)

𝑚𝑎𝑥
‖𝑔𝑢(𝑥)𝑚𝑎𝑥

2‖𝑅−1‖‖‖‖ 

 

𝐿̇ ≤((2𝑘 + 1)𝑣1 − 𝑣2𝜆𝑚𝑖𝑛()‖𝑥‖2
2‖𝑢𝑟

𝑖 ‖
2

(𝑣1‖𝑍−1𝑔𝑢‖2 − 𝑣3)‖𝑑̃‖
2

𝑚𝑖𝑛
) − 𝑣4

𝛼2

𝛼1
‖

𝜎̂

𝜎̂𝑇𝜎̂+1
‖

2

‖𝑊̃‖
2

+

𝑣4
𝛼2

𝛼1
‖

𝜀𝐻

𝜎̂𝑇𝜎̂+1
‖

2

+
𝑣1𝜆2

2
+

𝑣1

2
‖𝑥‖2) (38) 

 

Define 𝐿1𝑥 = (2𝑘 +
3

2
) 𝑣1 − 𝑣2𝜆𝑚𝑖𝑛; 𝐿1𝑢 = −𝑣2𝜆𝑚𝑖𝑛; 𝐿1𝑑 = 𝑣1‖𝑔𝑢𝛾‖2 − 𝑣3 

 

𝐿1𝑊 = −𝑣4
𝛼2

𝛼1
‖

𝜎̂

𝜎̂𝑇𝜎̂+1
‖

2

; 𝐿1𝜀 = 𝑣4
𝛼2

𝛼1
‖

𝜀𝐻

𝜎̂𝑇𝜎̂+1
‖

2

+
𝑣1𝜆2

2
 

 

As a result, (38) is rewritten as (39): 
 

𝐿̇ ≤ 𝐿1𝑥‖𝑥‖2 + 𝐿1𝑢‖𝑢𝑟
𝑖 ‖

2
+ 𝐿1𝑑‖𝑑̃‖

2
+ 𝐿1𝑊‖𝑊̃‖

2
+ 𝐿1𝜀 (39) 

 

If 𝑣𝑖, i=1, ..., 4 satisfies: 𝑣2 ≥
(2𝑘+2)𝑣1

𝜆𝑚𝑖𝑛
, 𝑣3 > 𝑣1‖𝑔𝑢𝛾‖2, 𝑣4 = 𝑣1, and ‖𝑥‖ ≥ √

𝐿1𝜀

−𝐿1𝑥
 or ‖𝑢𝑟

𝑖 ‖ ≥ √
𝐿1𝜀

−𝐿1𝑢
 or 

‖𝑑̃‖ ≥ √
𝐿1𝜀

−𝐿1𝑑
 or ‖𝑊̃‖ ≥ √

𝐿1𝜀

−𝐿1𝑊
 

Then 
 

𝐿̇ ≤ 𝛾‖𝑋‖2 (40) 
 

where 𝛾 ≤ 𝑚𝑎𝑥{𝐿1𝑥, 𝐿1𝑢 , 𝐿1𝑑 , 𝐿1𝑊}is a negative number. 

 

 

4. SIMULATIONS AND DISCUSSION  

To verify the correctness of the optimal tracking control algorithm based on ADP algorithm with 

Actor-Critic structure, we perform numerical simulation on MATLAB/Simulink software with the 

parameters of the WMR given in Table 1 and the designed parameters as follows: 
 

𝛼1 = 0.25, 𝛼2 = 0.01, 𝛾 = 𝑑𝑖𝑎𝑔([1000,1000,1000,1,1,1,1,1]) 
 
 

Table 1. Wheel mobile robot parameters 
Parameters Value 

Weight of the platform (mG) 30 kg 
Weight of each wheel (mW) 1 kg 

Inertial moment of the platform (IG) 15.625 kgm2 

Inertial moment of each wheel (rotation axis - IW) 0.1 kgm2 
Inertial moment of each wheel (diameter axis - ID) 0.0025 kgm2 

Distance between the M and G (a) 0.3 m 

Radius of the wheel shaft (b) 0.75 m 
Radius of the wheel (r) 0.15 m 

 

 

The simulation is executed under two kinds of trajectory: straight line and circle line. In each case, 

the trajectory in xy-reference frame, the position error in time domain, and the velocity error in time domain 

are illustrated. The simulation results are depicted in Figures 3, 4(a), 4(b), 5, 6(a), and 6(b). 
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Figure 3. Response of the ADP controller with linear reference trajectory 
 

 

 

(a) 

 

 

(b) 
 

Figure 4. Tracking error: (a) position tracking error and (b) velocity errors with straight-line reference 

trajectory 
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Figure 5. Response of the ADP controller with circle reference trajectory 
 

 

 
(a) 

 

 
(b) 

 

Figure 6. Tracking error: (a) position tracking error and (b) velocity errors with circle reference trajectory 
 

 

From the simulation results, it can be seen that in the first stage, the critic neural network is in the 

learning process, so the quality of the tracking is not good. However, after a period of 8 s, the optimal control 

law finishes the learning process and convergese to the optimal value. This leads to an increased quality of 

the WMR's tracking and the WMR follows the reference trajectory. The tracking in the x and y axis and the 
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direction angle θ gives a large error at initial state; however, after the learning period, the tracking error is 

almost zero for all variables in both case of simulations. 

 

 

5. CONCLUSION  

The present study introduces a novel approach that combines online adaptive dynamic programming 

with a disturbance observer to address the challenge of robust optimization in the context of nonlinear 

systems. The proposed approach, featuring a singular neural network, yields superior results in terms of 

enhanced system quality and reduced computational overhead. The mathematical proof of the stability of the 

entire system, comprising the optimal controller and disturbance observer components, is established via 

Lyapunov theory. Ultimately, a simulation was conducted to assess the efficacy of the algorithm that was put 

forth. Results of the simulation indicate that the observer-based optimal adaptive dynamic programming 

methodology possesses the capability to yield a favorable response for the wheel mobile robot, even when 

confronted with instances of system uncertainties and external disturbances. 

However, the above method still needs to know the internal dynamic information of the system to be 

able to update the controller parameters. In the next research direction, we use data about the state of the 

system to calculate a control algorithm that does not depend on the system's dynamic model. 
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