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This paper presents the findings of a study that examined the effectiveness of
the application of Quarter-Sweep Boosted AOR with the 9-Point Laplacian
operator using the families of relaxation methods for computing the
solutions of Laplace's equation to obtain the harmonic potentials+ This work
is a continuation from the past study that applied the standard 5-Point
Laplacian to solve path planning issue that a mobile robot faces when
working in indoor environment. The robot can navigate from a given starting
position to a goal position by following the safest path, ensuring it avoids
any obstacles and minimizes the risk of collisions. By utilizing Laplace's
equation and computing the distribution of potential values in the simulated
environments, the robot can determine the safest path that avoids obstacles
present in the environment. This method ensures that the robot moves along
a path where the potential for collisions is minimized. The findings confirm
that Quarter-Sweep Boosted AOR (QSBAOR) outperforms Half-Sweep
Boosted AOR (HSBAOR) and Full-Sweep Boosted AOR (FSBAOR).

QSBAOR and HSBAOR show 75% and 50% reduction respectively,
compared to FSBAOR in terms of computational complexity.
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1. INTRODUCTION

Mobile robots are widely used in various industrial fields where they are exposed to hazardous
conditions such as space research, nuclear industry, and mining industry. In order to find a safe route in a
dangerous environment, mobile robots are the most suitable and safe to use [1]. One of the difficult issues
with moving robots is the problem of route planning [2]. Currently, research for mobile robot path planning
is increasingly becoming a hot topic among researchers [3], [4].

A robot is an automated machine that can respond to the environment. To achieve such automated
properties, it is necessary to use techniques from signal processing, control theory, and artificial intelligence
[5]. This technique is accompanied by mechanics, detectors, and robot actuators. Therefore, designing a robot
requires a deep understanding of its interface to the physical world. Among the key requirements for building
a real automated robot is the ability to plan a route efficiently from the starting point to a specified
destination point without colliding with objects or getting stuck in the path with obstacles it passes through.

Path planning is a vital component in robotics as it plays a crucial role in enabling robots to navigate
from a designated starting point to a desired goal location. Especially in the ability to plan routes to allow
robots to find a smooth path towards their destination. Algorithms for finding the safe path are important not
only in robotics but also in network routing and video games. Route planning requires a map for the purpose
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of allowing the robot to know its location in the environment to avoid getting stuck by any obstacles or walls
while in motion.

Currently, the most common map is a grid map. In a grid map, the environment is divided into a
number of uniformly sized squares such as 1x1 cm. Each square can represent an empty space or an obstacle
object. The disadvantage of grid maps is that they require large memory and typically require a relatively
long computation time. Other than that, another solution is to use topology maps. Topology maps encode the
whole room as corners and edges to show the relationship between points. Each application may require a
different solution that incorporates different types of maps. There is also a combination of discrete and
continuous representations. For example, a road map for a GPS system is stored as a topology map that stores
the GPS coordinates of each place point.

In general, path planning strategies for navigation are divided into two categories: local methods,
which work in response to input sensors, and global methods, which involve the creation and execution of
action plans [6]. The challenge of keeping the robot in a collision-free state is solved using local planning
algorithms. These strategies are referred to as local since they only assess the robot's immediate environment
when determining how it should react. Only immediate sensory data is dealt with by the local technique. As a
result, it operates extremely quickly, allowing it to react quickly to changes in the environment. However,
this speed comes at the expense of completeness. In general, a local method follows its specific functions
greedily. Therefore, it may become stuck in local minima of the function and fail to reach its final destination
[71, [8].

The global technique, on the other hand, solves the problem by creating a full representation of the
environment. The environment model is a three-dimensional space with several obstacles of various shapes,
as well as inner and outer borders. When global planners construct a plan, they take into account the entire
environment, which demands a substantial amount of processing power [9]. Global path planning, in general,
is computationally inflexible. The cost of computing the exact solution to a path planning problem grows
exponentially as the environment grows larger [10]. The real world's dynamic nature is always in motion.
Thus, the availability of time for a robot to make effective planning is greatly constrained in this dynamic
setting. The researchers are challenged by the complexity of the computational demands of such planning
challenges. To make matters worse, data and knowledge about the environment are gathered from noisy
sensors, making them inaccurate and incomplete. As a result, in order to deal with incomplete and perhaps
erroneous representations of the world, path planning algorithms must be reliable and efficient.

2. METHOD

The established a global method for path finding that used the harmonic potentials to construct a
smooth and collision-free path [7]. Harmonic potentials are obtained by solving Laplace's equation, which is
defined as (1):

a%p
V20 =%i,57=0 1)

where the dimension is Vn and the i-th Cartesian coordinate is xi. Harmonic potentials have been established
globally throughout the entire region. The harmonic solutions to Laplace’s (1) are then used to find the path
lines from the start point to the goal point. Obstacles are regarded as current sources, while the goal is
regarded as a sink. Dirichlet boundary conditions are used in this case. The path to the goal point can be
discovered by executing a path search on the harmonic potentials using the gradient descent method [11].

This study applies the above paradigm to solve pathfinding problems, employing the analogies of
temperature and heat flow for the potential and path line, respectively, to characterize the solutions of
Laplace’s equation. Numerical methods are used to solve Laplace's equation and acquire the harmonic
potential (temperature values) for each node. The obtained temperature values are then used in the path-
finding process by descending from a start point (high temperature) to the goal point (lowest temperature).

The fundamental concept of the numerical methods is to represent the problem, i.e., Laplace’s (1), in
the form of a linear system.

Ax=b (2

where A is a coefficient matrix, x is a given vector, and b denotes the unknown vector to be determined.
Although problem (2) can be solved using a direct method, the more efficient iterative methods are used to
compute the solutions. This is because its application in path-finding problems often results in large linear
systems with sparse coefficient matrices [12], [13]. Iterative methods are mathematical techniques that
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produce a series of improving approximations [14]. These techniques are efficient in terms of memory
storage and computation.

Most of the previous development approaches of the iterative methods are still oriented on the 5-point
Laplacian operator. Recently, the 9-point Laplacian operator has been used successfully to solve several types
of linear systems [15]-[17]. Traditionally, these iterative methods rely on the use of the full-sweep (FS)
iteration that processes the computational nodes on the regular fine grid. The introduction of half-sweep (HS)
on the rotated grid by Fauzi and Sulaiman [18] and quarter-sweep (QS) iterations that are operating on the
coarse grid by Alibubin et al. [19], respectively, drastically improve the computational execution time. In
addition, relaxation parameters were applied to further speed up the computation by utilizing SOR [20],
accelerated over-relaxation (AOR) [21], and two-parameter over-relaxation (TOR) iterative methods [22].

Most of the existing solutions to the problem (1) are based on the 5-point iterative scheme. It is
known that the iterative scheme based on 9-point had provided encouraging performance as reported in the
previous works [16], [17], [23], [24]. Therefore, in this work, we applied the 9-point Laplacian and called
these variants as a family of Boosted iterative schemes.

The approximation of the 2D Laplacian (1) based on the 9-point Laplacian is given as (3):

Vif (x,y) = 6%((llu(x—h,y) +4u(x+hy)+4u(c,y—h)+4u(x,y+h) +
u(x—hy—-—h) +ulx+hy—h)+ulx—hy+h)+ulx+hy+h)—
20u(x,y)) ©))

By rotating the x-y axis clockwise 45, the rotated 9-point Laplacian approximation can be written as (4):

121h2((4u(x—h,y—h)+4u (x+hy—h+4u(x—hy+h)+

4u(x+hy+h)+u(x—2hy) +ulx+2hy)+ulx,y—2h)+
u(x,y + 2h) — 20u(x,y)) 4

Vif (x,y) =

Moreover, by considering the points at grids size 2h, the 9-point approximation can be expressed as (5):

241h2 ((4u(x —2h,y) +4u (x + 2h,y) + 4u (x,y — 2h) + 4u (x,y + 2h) +

u(x—2hy—2h) +u(x+2hy—2h)+ulx—2h,y+2h)+
u(x + 2h,y + 2h) — 20u(x,y)) (5)

Vif (x,y) =

Figure 1(a) displays the computational molecule of the FS Boosted method, while Figures 1(b) and (c)
show the computational molecules of the HS Boosted and QS Boosted methods, respectively. In all three
figures, the central node has a coefficient of —20, as stated in (4) to (6). For the FS Boosted and QS Boosted
methods, as shown in Figures 1(a) and (c), the four vertical and horizontal neighbouring nodes have coefficients
of 4, whereas the four diagonal nodes have coefficients of 1. In contrast, for the rotated grid used in the HS
Boosted method, shown in Figure 1(b), the left, right, top, and bottom nodes have coefficients of 1, while all
diagonal nodes have coefficients of 4. The distance between the central node and its vertical and horizontal
neighbours is h for the FS Boosted method and 2h for the QS Boosted method, as shown in Figures 1(a) and (c),
respectively. For the HS Boosted method, shown in Figure 1(b), the distance between the central node and each

of its four diagonal neighbours is v/2h.
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Figure 1. The 9-point Laplacian approximation computational molecules for; (a) FS, (b) HS, and (c) QS
boosted operations

Bulletin of Electr Eng & Inf, Vol. 15, No. 1, February 2026: 680-692



Bulletin of Electr Eng & Inf ISSN: 2302-9285 a 683

Figures 2(a) to (c) illustrate portions of the computational grids for the FS, HS, and QS Boosted
methods, respectively. In all three figures, the central node has a coefficient of —20, as specified in (4) to (6).
In the FS Boosted method, shown in Figure 2(a), the four vertical and horizontal neighbouring nodes have
coefficients of 4, while the four diagonal nodes have coefficients of 1. In contrast, the HS Boosted method
employs a rotated grid, as shown in Figure 2(b), in which the vertical and horizontal nodes have coefficients
of 1 and all diagonal nodes have coefficients of 4. For the QS Boosted method, as shown in Figure 2(c), the
coefficients of the central node and its neighbouring nodes are identical to those of the FS Boosted method,
however, the distance between adjacent nodes is doubled (i.e., 2 units).
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Figure 2. The 9-point Laplacian computational grids at (i; j) for; (a) FS, (b) HS, and (c) QS Boosted cases,
respectively

The computational layer for the FS Boosted method is shown in Figure 3, where all nodes
participate in the computation. Each node is evaluated using the 9-point Laplacian operator, as defined in (4).
As highlighted in the figure, the central node has a coefficient of —20, the neighbouring vertical and
horizontal nodes have coefficients of 4, and the diagonal neighbouring nodes have coefficients of 1.

Figure 3. The boosted iterative methods with 9-point Laplacian based on FS iteration considers all nodes

The computational layer for the HS Boosted method is shown in Figure 4, where black nodes are
evaluated using the 9-point Laplacian operator, as defined in (5). As illustrated in the figure, the HS Boosted
method divides the grid nodes into black and white sets, as shown in the bottom layer. Initially, only the

Harmonic path planning using Quarter-Sweep Boosted AOR iterative method (Sumiati Suparmin)



684 a ISSN: 2302-9285

black nodes are evaluated using a rotated grid, as depicted in the top layer, where a rotated 9-point Laplacian
operator is applied. In this operator, the central node has a coefficient of —20, the neighbouring diagonal
nodes have coefficients of 4, and the vertical and horizontal nodes have coefficients of 1. The computation of
the black nodes proceeds iteratively until the termination criterion is satisfied. Upon convergence, the white
nodes, shown in the middle layer, are subsequently computed using a direct method.

Nodes of type # are calculated using 45° rotated
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Figure 4. The boosted iterative methods with 9-point Laplacian based on HS iteration considers only half the
total nodes

Figure 5 illustrates the computational layer of the QS Boosted method. As shown in the figure, the
QS Boosted method partitions the grid nodes into black nodes, white square nodes, and white circle nodes.
The black nodes, shown in the bottom layer, constitute one quarter of the total nodes and are evaluated using
the 9-point Laplacian operator defined in (6). Initially, only the black nodes are computed, as depicted in the
top layer, where a 9-point Laplacian operator with a node spacing of 2 units is applied. In this operator, the
coefficients of the central node and its neighbouring nodes are identical to those used in the FS Boosted
method. The computation of the black nodes proceeds iteratively until the termination criterion is satisfied.
After convergence, the white square nodes are computed, followed by the white circle nodes, as illustrated in
the second and third layers of the figure, using a direct method.

By using u; ; to approximate f (x,y) and applying the 9-point approximations (2) to (4), the FS, HS,
and QS. The approximation equations for problem (1) can be restated or expressed in a different form as (5)
to (7):

A g+ Uipr + Ugjog + Ugjir) + Uimg jog + Upsr jor + Uim jor + Ugerjar — 20U = 0 (5)
A joq + Upprjo1 + Uim jor F Uperjar) F Uimzj + Upsaj + Ugjop + Uy jup — 20U = 0 (6)

4(U_gj + Upsoj + Upjoz + Ugjan) + Wimgjog + Ussgjp + Wimgjun + Usspjuz — 20u;; = 0(7)

According to the finite difference (5) to (7), the iterative strategies for the FS, HS, and QS instances are
defined as (8) to (10):

(k+1)

+ Ui

+u®

u(k+1) 1 (u(k+1) + u(k) + u§k+1) + u(k) (k+1) i1j+1

1 x)
ij T sWMioy i+1,j ij-1 l,j+1) oo Wic -1 T Ui (©)
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(k+1) _ 17 (k+1) (k+1) k) 03 1/ (k+1) (k) (k+1) k)

Wij = oWy g T Uy o YU T ui+1,j+1) + E(ui—z,j Uty t ui,j+2)(9)
(k+1) _ 17 (k+1) 03 (k+1) k) 1/ (k+1) (k+1) k) k)

U ~ = g(ui—z,j tugotu ot ui,j+2) + %(ui—z,j—z tuio it U0t ui+2,j+2) (10)

All nodes of type ® are computed using

the 9-Point Laplacian with 2k spacing.
The QQSSOR-9L iteration is stopped when

the convergence criterion is satisfied

Figure 5. The Boosted iterative methods with 9-point Laplacian based on QS iteration considers only quarter
of the total nodes

2.1. Boosted SOR methods with the 9-point Laplacian

By using a weighted parameter o, the corresponding 9-point SOR iterative schemes for Full-Sweep
Boosted SOR (FSBSOR), Half-Sweep Boosted SOR (HSBSOR) and Quarter-Sweep Boosted SOR
(QSBSOR) are given as (11) to (13):

(k+1) _ @ [ (k+1) , . () k+1) | . () ® [ (k+1) (k+1) ) 10
u;; —E(u +u +utY 4w )+%(u +u +u; +u; )+

i—1,j i+1,j i,j—1 i,j+1 i-1,j-1 i+1,j-1 i—-1,j+1 i+1,j+1
(k)
(1 -y, (11)
(k+1) _ @ [ (k+1) (k+1) 3) k) W [ (k+1) k) (k+1) )
Wi "= Wiyt o U e T ui+1,j+1) + %(ui—z,j Ut Tt ui,j+2) +
k)
1 -y, (12)
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(k+1) (k+1) (k) (k+1) (k) (k+1) (k+1) (k) (k)
( Uy tugs;tu o+ uu+2) T oo Wi o T Uy 2 T UG jup T L+2}+2) +
(1 — wu. (13)

2.2. Boosted AOR methods with the 9-point Laplacian
The 9-point iterative schemes for the Full-Sweep Boosted AOR (FSBAOR), Half-Sweep Boosted
AOR (HSBAOR), and Quarter-Sweep Boosted AOR (QSBAOR) cases are given as (14) to (16):

(k+1) (u(k) +u® +u(k) +u® )+£ k+1) _ G0 4 &t () )+20 u® +

i-1,j i+1,j ij—1 iLj+1 Ui 1,j Ui 1,j ij—1 1] 1 i-1,j—1
(k) (k) (k) (k+1) (k) (k+1) (k)
Uippjo1 T U T W 5e0) oo (Winjis = Wisgjmn T Uigjon — Uiggy- 1) +
k
(1 - o), (14)
(k+1) _ @ ¢ (k) (9] (9] (k) (k+1) (k) (k+1) (k)
U s _E Uispjor T UL U0 1+1]+1)+ (ul 1jm1 ~ UWispjo Uil Uiy o 1)+
(k) (k) (9] (9] (k+ 1) (k) (k+ 1) (9]
20 Ui 2]+u1] 2+u1+2]+u1]+2 +_ Uiz Uy 2]+ ij—2 — Uij— 2)+
Kk
(1 - wuf?, (15)
(k+1) (9] (9] (9] (9] r (k+1) (k) (k+1) _ (k) (k)
(ul 2]+u1+2]+u1] 2+u1]+2)+_ Ui 2,j Uy 2]+u1] 2 1] 2)+20 i— 2,j—2+
(k) k) (k) (k+ 1) (9] (k+1) (k)
Uiyzjz T U554, T 1+2]+2) +— Ui 552 — Ui g T Ujp T, — U5 2) +
(1 - wufy (16)

3. RESULTS AND DISCUSSION

The simulation is run on the Robot 2D Simulator [25] on a Linux system with an Intel i5 processor
running at 2.5 GHz and 8 GB of memory. The execution of the implementation of the QSBAOR approach
based on (16) for solving 2-dimensional Laplace’s problem as expressed in (1) is described in Algorithm 1.
The start and goal points in the simulation are represented by red and green colored points, respectively. In
the simulations, four different maps are employed, with five different sizes being tested. The experiment
results for FS, HS, and QS Boosted methods, based on the 9-point Laplacian, are shown in this section. The
iteration counts and CPU time for each algorithm are recorded as shown in Tables 1 and 2. Table 1 shows the
results with optimal values of the relaxation and accelerated parameters are used throughout the experiments.

Algorithm 1. QSBAOR

i. u € Set configuration space (obstacles, destination)

ii. Set value of o

iii. Divide the solution points into two types of points: black and white points.

iv. Compute all black points not including obstacles using equation (16)
V. iteration € 0
vi. repeat
(k+1) (k) u® (k) w® w0 k+1) _ o (0
(ul 2] 1+2]+u112 l]+2)+ 12_) 12]+u112 1] Z)+
(k) (k) (k) %
2o Uizj2 T Uo ;0 T U500t z+2}+2)+
(k+1) w® (k+1) u® (k)
5( i—2,j—2 " Uiz jp FUo iy T UG i 2)+ a- w)u
Vii. iteration € iteration +1
viii. until ||u(k+1) (kH)” <e&
iX. Compute all white points not including obstacles using rotated equation (12)
X. do
(k+1) _ (k+1) (k+1) (k) (k)
ul} _5 111]+ i+1,j— 1+ul 1}+1 l+1}+1)+
(k+1) (k) (k+1) (k) ()
20(12} +uL+2]+ul}Z+uL]+2)+(1 w)u

end
Compute all square points not including obstacles using standard equation (11)
Xi. do

(k+1) (k+1) (k) (k+1) (k)
(11} +uL+1]+uL}1+uLJ+1)+
(k+1) (k+1) (k) (k) k)
2o Uimama F oy T UG Uisyea) + (1 — 0w

Xii. end
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Table 1. Performance of the methods in terms of number of iterations

N
Case Method 300 600 900 1200 1500
Casel FSBSOR 2874 10450 23786 35469 62307
FSBAOR 2317 8428 19327 28647 50524
HSBSOR 1480 5381 12253 18229 32093
HSBAOR 1179 4343 9899 14706 25994
QSBSOR 757 2776 6375 9357 16575
QSBAOR 187 2219 5145 8570 13379
Case2 FSBSOR 2094 7956 19732 32360 45628
FSBAOR 1721 6374 16021 26242 37267
HSBSOR 1124 4175 9460 16674 23759
HSBAOR 905 3353 7632 13502 19335
QSBSOR 223 2082 4889 8558 12185
QSBAOR 461 1591 3920 6859 10130
Case3 FSBSOR 2548 9339 20264 23770 53719
FSBAOR 2046 7523 16425 19306 43704
HSBSOR 1302 4811 10459 12292 27751
HSBAOR 1036 3870 8442 9975 22559
QSBSOR 679 2495 5406 9364 14364
QSBAOR 526 1998 4357 8150 11640
Case4 FSBSOR 1674 6207 13529 23750 36996
FSBAOR 1333 5007 10980 19321 30104
HSBSOR 833 3193 6974 12278 19156
HSBAOR 647 2569 5653 9952 15542
QSBSOR 424 1654 3602 6359 9884
QSBAOR 314 1319 2894 5125 8012

Table 2. Performance of the methods in terms of time of execution (in seconds)

N
Case Method 300 600 900 1200 1500
Casel FSBSOR 1.602 23.318 123.358 326.310 932.092
FSBAOR 1497 22.092 120.699 307.958 893.052
HSBSOR 0.533 8.251 44013 116.616  328.061
HSBAOR 0.493  7.420 39.259  103.669  291.926
QSBSOR 0219  3.329 17.712 46.912 137.155
QSBAOR 0.187  2.908 16.589 45.593 120.228
Case2 FSBSOR 1422 22.837 150.992 345.879  756.108
FSBAOR 1361 20.787 153.955 322.320 713.486
HSBSOR 0.516  8.019 37.637 119.921  266.421
HSBAOR 0437 6.585 33.287  105.910 235.898
QSBSOR  0.223  3.117 14704  46.390 103.631
QSBAOR 0.199 2578 12.829 40.690 93.254
Case3 FSBSOR 2.084 29.294 138.506 308.722 1028.280
FSBAOR 2.048 26.548 138.947 298.650  999.656
HSBSOR 0.660 8.628  44.099 99.299  330.833
HSBAOR 0.606  7.879 39.760 89.707  302.794
QSBSOR  0.274  3.493 17574  49.141 132.276
QSBAOR 0.257  3.190 16.184  45.046 118.245
Case4 FSBSOR 1.279 19.442 97.399 307.306 764.704
FSBAOR 1.229 18.680 93.921 298.875 739.420
HSBSOR 0.378  6.082 31.117 98.613  255.649
HSBAOR 0.343  5.500 28.167 89.243  217.134
QSBSOR  0.153 2422 12.292 48.791 85.122
QSBAOR 0.126  2.197 10.898 44.435 82.551

Figures 6 and 7 are graphs which represent the number of iterations and performance in time,
respectively, shows the results of the suggested approaches based on Tables 1 and 2. Both figures indicate
that the length of each execution increases with the number of iterations. It is clear from examination of both
graphs that the QSBAOR outperforms the corresponding suggested approaches in terms of iteration count
and time of performance. Tables 1 and 2 also make this concept quite obvious. As can be observed in the
results table, the graphs for the quantity of iterations and performance time displayed the same trend. In
comparison to other approaches, the QSBAOR iterative scheme clearly offers high efficiency according to

performance time and number of iterations.
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Figure 6. Number of iterations for the tested methods Figure 7. Execution time for the tested methods

The harmonic potentials obtained from the computation using the proposed approaches are
forwarded to the path generation procedure that employs the gradient descent search (GDS) algorithm as
described in Algorithm 2. The GDS is guided by the gradient of the harmonic potentials by moving from the
start point with higher potential value to the next lower potential value until the lowest potential value in the
environment that indicates the goal point is found. Figure 8 (in Appendix) shows the paths generated by the
GDS algorithm using harmonic potentials computed by the proposed iterative methods on four 300300
maps. In Case 1 (Figure 8(a)), smooth paths are obtained from three different start positions to the target
locations. In Cases 2 and 3 (Figures 8(b) and (c)), large central obstacles do not prevent successful path
generation from start to goal. Similarly, in Case 4 (Figure 8(d)), the presence of a narrow corridor does not
hinder the generation of smooth and collision-free paths. Illustrations for other map sizes in Table 2 are
omitted, as all proposed methods produce comparable path generation results.

Algorithm 2. GDS

i. Setup start position as f [i, j] € startposition [i, j].
ii. Initializing found € false and k € 0.
iii. Calculate

Ucurrent € U f [1, 7]

U gli, j] € MIN (U £ [i-1, 31, U f [i+1, 31, U £ [i, j-1], U £ [i, j+11, U £ [i-1,
j-11, v £ [i+1, j-1], U £ [i-1, j+11, U f [i+, F+11)

path [k] € gli, j]

k € k+1
iv. 1f g[i, j] = goal position [i, j] then found € true
V. Else if Vg [i, j] < Vcurrent,, then f[i, j] € g [i, 7]
Step (ii) up to (iv) repeated until found or Vg [i, Jj] 2 Vcurrent. If not found then
path€ 0

The number of arithmetic operations needed by the tested methods are shown in Tables 3 to 5,
where M=N2-P represents the number of nodes calculated during the iteration, N? is the size of environment
and P denotes the number of nodes occupied by obstacles. Based on these tables, the iterative techniques
based on the HS Boosted (HSBSOR and HSBAOR methods) compute only half of the node points in a
skewed manner during the iteration process. As a result, the computational complexity has been lowered by
around 50%. Simulated results based on the QS Boosted (QSBSOR and QSBAOR methods) are provides
much better performance. All of these iterative techniques assess only one of the four node points at a time
during the iteration phase. As a result, the computational complexity has decreased by around 75%. In
addition to the reduction in computational complexity, the performance improvement of the tested algorithms
is further quantified in terms of the number of iterations and CPU time, as summarized in Table 6. Using the
harmonic potentials derived through the above algorithms, the GDS had successfully constructed visually
identical paths for all four different maps, similar to the results given in Figure 8.

Table 3. Arithmetic operations for SOR methods Table 4. Arithmetic operations for AOR methods

Methods ADD/SUB  MUL/DIV Methods ADD/SUB MUL/DIV
FSBSOR 8M 3M FSBAOR 16M 5M
HSBSOR 4M 3 HSBAOR 8M 5

M 2"

3 5
QSBSOR 2M e QSBAOR 5M Sw
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Table 5. Number of additional arithmetic operations for the remaining white points

Methods ADD/SUB  MUL/DIV
Half-Sweep cases aM EM
2
Quarter-Sweep cases 6M EM
4

Table 6. Reduction percentages in terms of humber of iterations and CPU time for the tested algorithms

Methods Iteration  CPU time
FSBSOR vs FSBAOR 40.33 27.64
HSBSOR vs HSBAOR 26.48 24.77

QSBSOR vs QSBAOR 22.17 19.02

4. CONCLUSION

The intent of this research is to formulate and develop a way for combining iterative approaches and
path finding algorithms to find a solution to the mobility robot's path problem. The concepts of HS and QS
iteration are proposed in this work, as well as the use of computing the Laplacian harmonic potentials based
on the 9-point Laplacian to solve the path planning problem by employing the family of relaxation iterative
methods. The overall performances of the path planning algorithms are measured by using three criteria:
successful generation of paths, number of iterations, and time performance.

Accordingly, the main contribution of this study, based on the summary of findings, is to introduce
the application of QSBAOR which is Quarter-Sweep Boosted AOR in the 9-Point Laplacian operator using
the families of relaxation methods for to determine the harmonic potentials by computing the solutions of
Laplace’s equation. The generated harmonic potentials were then employed by the GDS algorithm to guide
the path finding method, resulting in a smooth path for the robot to traverse safely in a structured
environment from any start point to the specified goal point.
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APPENDIX

Figure 8. Path creation for various surroundings using various starting locations (green point) and target
places (red point); (a) Case 1, (b) Case 2, (c) Case 3, and (d) Case 4
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