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 This paper presents the findings of a study that examined the effectiveness of 

the application of Quarter-Sweep Boosted AOR with the 9-Point Laplacian 

operator using the families of relaxation methods for computing the 

solutions of Laplace's equation to obtain the harmonic potentials+ This work 

is a continuation from the past study that applied the standard 5-Point 

Laplacian to solve path planning issue that a mobile robot faces when 

working in indoor environment. The robot can navigate from a given starting 

position to a goal position by following the safest path, ensuring it avoids 

any obstacles and minimizes the risk of collisions. By utilizing Laplace's 

equation and computing the distribution of potential values in the simulated 

environments, the robot can determine the safest path that avoids obstacles 

present in the environment. This method ensures that the robot moves along 

a path where the potential for collisions is minimized. The findings confirm 

that Quarter-Sweep Boosted AOR (QSBAOR) outperforms Half-Sweep 

Boosted AOR (HSBAOR) and Full-Sweep Boosted AOR (FSBAOR). 

QSBAOR and HSBAOR show 75% and 50% reduction respectively, 

compared to FSBAOR in terms of computational complexity. 
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1. INTRODUCTION 

Mobile robots are widely used in various industrial fields where they are exposed to hazardous 

conditions such as space research, nuclear industry, and mining industry. In order to find a safe route in a 

dangerous environment, mobile robots are the most suitable and safe to use [1]. One of the difficult issues 

with moving robots is the problem of route planning [2]. Currently, research for mobile robot path planning 

is increasingly becoming a hot topic among researchers [3], [4]. 

A robot is an automated machine that can respond to the environment. To achieve such automated 

properties, it is necessary to use techniques from signal processing, control theory, and artificial intelligence 

[5]. This technique is accompanied by mechanics, detectors, and robot actuators. Therefore, designing a robot 

requires a deep understanding of its interface to the physical world. Among the key requirements for building 

a real automated robot is the ability to plan a route efficiently from the starting point to a specified 

destination point without colliding with objects or getting stuck in the path with obstacles it passes through. 

Path planning is a vital component in robotics as it plays a crucial role in enabling robots to navigate 

from a designated starting point to a desired goal location. Especially in the ability to plan routes to allow 

robots to find a smooth path towards their destination. Algorithms for finding the safe path are important not 

only in robotics but also in network routing and video games. Route planning requires a map for the purpose 

https://creativecommons.org/licenses/by-sa/4.0/
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of allowing the robot to know its location in the environment to avoid getting stuck by any obstacles or walls 

while in motion. 

Currently, the most common map is a grid map. In a grid map, the environment is divided into a 

number of uniformly sized squares such as 1×1 cm. Each square can represent an empty space or an obstacle 

object. The disadvantage of grid maps is that they require large memory and typically require a relatively 

long computation time. Other than that, another solution is to use topology maps. Topology maps encode the 

whole room as corners and edges to show the relationship between points. Each application may require a 

different solution that incorporates different types of maps. There is also a combination of discrete and 

continuous representations. For example, a road map for a GPS system is stored as a topology map that stores 

the GPS coordinates of each place point. 

In general, path planning strategies for navigation are divided into two categories: local methods, 

which work in response to input sensors, and global methods, which involve the creation and execution of 

action plans [6]. The challenge of keeping the robot in a collision-free state is solved using local planning 

algorithms. These strategies are referred to as local since they only assess the robot's immediate environment 

when determining how it should react. Only immediate sensory data is dealt with by the local technique. As a 

result, it operates extremely quickly, allowing it to react quickly to changes in the environment. However, 

this speed comes at the expense of completeness. In general, a local method follows its specific functions 

greedily. Therefore, it may become stuck in local minima of the function and fail to reach its final destination 

[7], [8]. 

The global technique, on the other hand, solves the problem by creating a full representation of the 

environment. The environment model is a three-dimensional space with several obstacles of various shapes, 

as well as inner and outer borders. When global planners construct a plan, they take into account the entire 

environment, which demands a substantial amount of processing power [9]. Global path planning, in general, 

is computationally inflexible. The cost of computing the exact solution to a path planning problem grows 

exponentially as the environment grows larger [10]. The real world's dynamic nature is always in motion. 

Thus, the availability of time for a robot to make effective planning is greatly constrained in this dynamic 

setting. The researchers are challenged by the complexity of the computational demands of such planning 

challenges. To make matters worse, data and knowledge about the environment are gathered from noisy 

sensors, making them inaccurate and incomplete. As a result, in order to deal with incomplete and perhaps 

erroneous representations of the world, path planning algorithms must be reliable and efficient. 

 

 

2. METHOD 

The established a global method for path finding that used the harmonic potentials to construct a 

smooth and collision-free path [7]. Harmonic potentials are obtained by solving Laplace's equation, which is 

defined as (1): 

 

𝛻2Ø = ∑
𝜕2Ø

𝜕𝑥𝑖
2 = 0𝑛

𝑖=1  (1) 

 

where the dimension is ∇n and the i-th Cartesian coordinate is xi. Harmonic potentials have been established 

globally throughout the entire region. The harmonic solutions to Laplace’s (1) are then used to find the path 

lines from the start point to the goal point. Obstacles are regarded as current sources, while the goal is 

regarded as a sink. Dirichlet boundary conditions are used in this case. The path to the goal point can be 

discovered by executing a path search on the harmonic potentials using the gradient descent method [11]. 

This study applies the above paradigm to solve pathfinding problems, employing the analogies of 

temperature and heat flow for the potential and path line, respectively, to characterize the solutions of 

Laplace’s equation. Numerical methods are used to solve Laplace's equation and acquire the harmonic 

potential (temperature values) for each node. The obtained temperature values are then used in the path-

finding process by descending from a start point (high temperature) to the goal point (lowest temperature). 

The fundamental concept of the numerical methods is to represent the problem, i.e., Laplace’s (1), in 

the form of a linear system. 

 

𝐴𝑥 = 𝑏 (2) 

 

where A is a coefficient matrix, x is a given vector, and b denotes the unknown vector to be determined. 

Although problem (2) can be solved using a direct method, the more efficient iterative methods are used to 

compute the solutions. This is because its application in path-finding problems often results in large linear 

systems with sparse coefficient matrices [12], [13]. Iterative methods are mathematical techniques that 
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produce a series of improving approximations [14]. These techniques are efficient in terms of memory 

storage and computation. 

Most of the previous development approaches of the iterative methods are still oriented on the 5-point 

Laplacian operator. Recently, the 9-point Laplacian operator has been used successfully to solve several types 

of linear systems [15]–[17]. Traditionally, these iterative methods rely on the use of the full-sweep (FS) 

iteration that processes the computational nodes on the regular fine grid. The introduction of half-sweep (HS) 

on the rotated grid by Fauzi and Sulaiman [18] and quarter-sweep (QS) iterations that are operating on the 

coarse grid by Alibubin et al. [19], respectively, drastically improve the computational execution time. In 

addition, relaxation parameters were applied to further speed up the computation by utilizing SOR [20], 

accelerated over-relaxation (AOR) [21], and two-parameter over-relaxation (TOR) iterative methods [22]. 

Most of the existing solutions to the problem (1) are based on the 5-point iterative scheme. It is 

known that the iterative scheme based on 9-point had provided encouraging performance as reported in the 

previous works [16], [17], [23], [24]. Therefore, in this work, we applied the 9-point Laplacian and called 

these variants as a family of Boosted iterative schemes. 

The approximation of the 2D Laplacian (1) based on the 9-point Laplacian is given as (3): 
 

∇2𝑓 (𝑥, 𝑦) =  
1

6ℎ2 ((4𝑢(𝑥 − ℎ, 𝑦) + 4𝑢 (𝑥 + ℎ, 𝑦) + 4𝑢 (𝑥, 𝑦 − ℎ) + 4𝑢 (𝑥, 𝑦 + ℎ) +

                                         𝑢 ( 𝑥 − ℎ, 𝑦 − ℎ)  + 𝑢 (𝑥 + ℎ, 𝑦 − ℎ) + 𝑢(𝑥 − ℎ, 𝑦 + ℎ) + 𝑢(𝑥 + ℎ, 𝑦 + ℎ) −

                                         20𝑢(𝑥, 𝑦)) (3) 
 

By rotating the x-y axis clockwise 45֯, the rotated 9-point Laplacian approximation can be written as (4): 
 

∇2𝑓 (𝑥, 𝑦) =  
1

12ℎ2 ((4𝑢(𝑥 − ℎ, 𝑦 − ℎ) + 4𝑢 (𝑥 + ℎ, 𝑦 − ℎ) + 4𝑢 (𝑥 − ℎ, 𝑦 + ℎ) +

                                         4𝑢(𝑥 + ℎ, 𝑦 + ℎ) + 𝑢 ( 𝑥 − 2ℎ, 𝑦)  + 𝑢 (𝑥 + 2ℎ, 𝑦) + 𝑢(𝑥, 𝑦 − 2ℎ) +

                                         𝑢(𝑥, 𝑦 + 2ℎ) − 20𝑢(𝑥, 𝑦)) (4) 
 

Moreover, by considering the points at grids size 2h, the 9-point approximation can be expressed as (5): 
 

∇2𝑓 (𝑥, 𝑦) =  
1

24ℎ2 ((4𝑢(𝑥 − 2ℎ, 𝑦) + 4𝑢 (𝑥 + 2ℎ, 𝑦) + 4𝑢 (𝑥, 𝑦 − 2ℎ) + 4𝑢 (𝑥, 𝑦 + 2ℎ) +

                                         𝑢 ( 𝑥 − 2ℎ, 𝑦 − 2ℎ)  + 𝑢 (𝑥 + 2ℎ, 𝑦 − 2ℎ) + 𝑢(𝑥 − 2ℎ, 𝑦 + 2ℎ) +

                                         𝑢(𝑥 + 2ℎ, 𝑦 + 2ℎ) − 20𝑢(𝑥, 𝑦)) (5) 
 

Figure 1(a) displays the computational molecule of the FS Boosted method, while Figures 1(b) and (c) 

show the computational molecules of the HS Boosted and QS Boosted methods, respectively. In all three 

figures, the central node has a coefficient of −20, as stated in (4) to (6). For the FS Boosted and QS Boosted 

methods, as shown in Figures 1(a) and (c), the four vertical and horizontal neighbouring nodes have coefficients 

of 4, whereas the four diagonal nodes have coefficients of 1. In contrast, for the rotated grid used in the HS 

Boosted method, shown in Figure 1(b), the left, right, top, and bottom nodes have coefficients of 1, while all 

diagonal nodes have coefficients of 4. The distance between the central node and its vertical and horizontal 

neighbours is h for the FS Boosted method and 2h for the QS Boosted method, as shown in Figures 1(a) and (c), 

respectively. For the HS Boosted method, shown in Figure 1(b), the distance between the central node and each 

of its four diagonal neighbours is √2h. 
 

 

   
(a) (b) (c) 

   

Figure 1. The 9-point Laplacian approximation computational molecules for; (a) FS, (b) HS, and (c) QS 

boosted operations 
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Figures 2(a) to (c) illustrate portions of the computational grids for the FS, HS, and QS Boosted 

methods, respectively. In all three figures, the central node has a coefficient of −20, as specified in (4) to (6). 

In the FS Boosted method, shown in Figure 2(a), the four vertical and horizontal neighbouring nodes have 

coefficients of 4, while the four diagonal nodes have coefficients of 1. In contrast, the HS Boosted method 

employs a rotated grid, as shown in Figure 2(b), in which the vertical and horizontal nodes have coefficients 

of 1 and all diagonal nodes have coefficients of 4. For the QS Boosted method, as shown in Figure 2(c), the 

coefficients of the central node and its neighbouring nodes are identical to those of the FS Boosted method, 

however, the distance between adjacent nodes is doubled (i.e., 2 units). 

 

 

   
(a) (b) (c) 

   

Figure 2. The 9-point Laplacian computational grids at (i; j) for; (a) FS, (b) HS, and (c) QS Boosted cases, 

respectively 

 

 

The computational layer for the FS Boosted method is shown in Figure 3, where all nodes 

participate in the computation. Each node is evaluated using the 9-point Laplacian operator, as defined in (4). 

As highlighted in the figure, the central node has a coefficient of −20, the neighbouring vertical and 

horizontal nodes have coefficients of 4, and the diagonal neighbouring nodes have coefficients of 1. 
 

 

 

 

Figure 3. The boosted iterative methods with 9-point Laplacian based on FS iteration considers all nodes 

 

 

The computational layer for the HS Boosted method is shown in Figure 4, where black nodes are 

evaluated using the 9-point Laplacian operator, as defined in (5). As illustrated in the figure, the HS Boosted 

method divides the grid nodes into black and white sets, as shown in the bottom layer. Initially, only the 
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black nodes are evaluated using a rotated grid, as depicted in the top layer, where a rotated 9-point Laplacian 

operator is applied. In this operator, the central node has a coefficient of −20, the neighbouring diagonal 

nodes have coefficients of 4, and the vertical and horizontal nodes have coefficients of 1. The computation of 

the black nodes proceeds iteratively until the termination criterion is satisfied. Upon convergence, the white 

nodes, shown in the middle layer, are subsequently computed using a direct method. 
 

 

 
 

Figure 4. The boosted iterative methods with 9-point Laplacian based on HS iteration considers only half the 

total nodes 
 

 

Figure 5 illustrates the computational layer of the QS Boosted method. As shown in the figure, the 

QS Boosted method partitions the grid nodes into black nodes, white square nodes, and white circle nodes. 

The black nodes, shown in the bottom layer, constitute one quarter of the total nodes and are evaluated using 

the 9-point Laplacian operator defined in (6). Initially, only the black nodes are computed, as depicted in the 

top layer, where a 9-point Laplacian operator with a node spacing of 2 units is applied. In this operator, the 

coefficients of the central node and its neighbouring nodes are identical to those used in the FS Boosted 

method. The computation of the black nodes proceeds iteratively until the termination criterion is satisfied. 

After convergence, the white square nodes are computed, followed by the white circle nodes, as illustrated in 

the second and third layers of the figure, using a direct method. 

By using 𝑢𝑖,𝑗  to approximate 𝑓(𝑥, 𝑦) and applying the 9-point approximations (2) to (4), the FS, HS, 

and QS. The approximation equations for problem (1) can be restated or expressed in a different form as (5) 

to (7): 
 

4(𝑢𝑖−1,𝑗 + 𝑢𝑖+1,𝑗 + 𝑢𝑖,𝑗−1 + 𝑢𝑖,𝑗+1) + 𝑢𝑖−1,𝑗−1 + 𝑢𝑖+1,𝑗−1 + 𝑢𝑖−1,𝑗+1 + 𝑢𝑖+1,𝑗+1 − 20𝑢𝑖,𝑗 = 0 (5) 

 

4(𝑢𝑖−1,𝑗−1 + 𝑢𝑖+1,𝑗−1 + 𝑢𝑖−1,𝑗+1 + 𝑢𝑖+1,𝑗+1) + 𝑢𝑖−2,𝑗 + 𝑢𝑖+2,𝑗 +  𝑢𝑖,𝑗−2 + 𝑢𝑖,𝑗+2 − 20𝑢𝑖,𝑗 = 0 (6) 

  

4(𝑢𝑖−2,𝑗 + 𝑢𝑖+2,𝑗 + 𝑢𝑖,𝑗−2 + 𝑢𝑖,𝑗+2) + 𝑢𝑖−2,𝑗−2 + 𝑢𝑖+2,𝑗−2 + 𝑢𝑖−2,𝑗+2 + 𝑢𝑖+2,𝑗+2 − 20𝑢𝑖,𝑗 = 0 (7) 
 

According to the finite difference (5) to (7), the iterative strategies for the FS, HS, and QS instances are 

defined as (8) to (10): 
 

𝑢𝑖,𝑗
(𝑘+1)

=
1

5
(𝑢𝑖−1,𝑗

(𝑘+1)
+ 𝑢𝑖+1,𝑗

(𝑘)
+ 𝑢𝑖,𝑗−1

(𝑘+1)
+ 𝑢𝑖,𝑗+1

(𝑘)
) +

1

20
(𝑢𝑖−1,𝑗−1

(𝑘+1)
+ 𝑢𝑖+1,𝑗−1

(𝑘+1)
+ 𝑢𝑖−1,𝑗+1

(𝑘)
+ 𝑢𝑖+1,𝑗+1

(𝑘)
)(8) 
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𝑢𝑖,𝑗
(𝑘+1)

=
1

5
(𝑢𝑖−1,𝑗−1

(𝑘+1)
+ 𝑢𝑖+1,𝑗−1

(𝑘+1)
+ 𝑢𝑖−1,𝑗+1

(𝑘)
+ 𝑢𝑖+1,𝑗+1

(𝑘)
) +

1

20
(𝑢𝑖−2,𝑗

(𝑘+1)
+ 𝑢𝑖+2,𝑗

(𝑘)
+ 𝑢𝑖,𝑗−2

(𝑘+1)
+ 𝑢𝑖,𝑗+2

(𝑘)
)(9) 

 

𝑢𝑖,𝑗
(𝑘+1)

=
1

5
(𝑢𝑖−2,𝑗

(𝑘+1)
+ 𝑢𝑖+2,𝑗

(𝑘)
+ 𝑢𝑖,𝑗−2

(𝑘+1)
+ 𝑢𝑖,𝑗+2

(𝑘)
) +

1

20
(𝑢𝑖−2,𝑗−2

(𝑘+1)
+ 𝑢𝑖+2,𝑗−2

(𝑘+1)
+ 𝑢𝑖−2,𝑗+2

(𝑘)
+ 𝑢𝑖+2,𝑗+2

(𝑘)
) (10) 

 

 

 
 

Figure 5. The Boosted iterative methods with 9-point Laplacian based on QS iteration considers only quarter 

of the total nodes 

 

 

2.1.  Boosted SOR methods with the 9-point Laplacian 

By using a weighted parameter ω, the corresponding 9-point SOR iterative schemes for Full-Sweep 

Boosted SOR (FSBSOR), Half-Sweep Boosted SOR (HSBSOR) and Quarter-Sweep Boosted SOR 

(QSBSOR) are given as (11) to (13): 

 

𝑢𝑖,𝑗
(𝑘+1)

=
𝜔

5
(𝑢𝑖−1,𝑗

(𝑘+1)
+ 𝑢𝑖+1,𝑗

(𝑘)
+ 𝑢𝑖,𝑗−1

(𝑘+1)
+ 𝑢𝑖,𝑗+1

(𝑘)
) +

𝜔

20
(𝑢𝑖−1,𝑗−1

(𝑘+1)
+ 𝑢𝑖+1,𝑗−1

(𝑘+1)
+ 𝑢𝑖−1,𝑗+1

(𝑘)
+ 𝑢𝑖+1,𝑗+1

(𝑘)
) +

                                 (1 − 𝜔)𝑢𝑖,𝑗
(𝑘)

, (11) 

 

𝑢𝑖,𝑗
(𝑘+1)

=
𝜔

5
(𝑢𝑖−1−1,𝑗

(𝑘+1)
+ 𝑢𝑖+1,𝑗−1

(𝑘+1)
+ 𝑢𝑖−1,𝑗+1

(𝑘)
+ 𝑢𝑖+1,𝑗+1

(𝑘)
) +

𝜔

20
(𝑢𝑖−2,𝑗

(𝑘+1)
+ 𝑢𝑖+2,𝑗

(𝑘)
+ 𝑢𝑖,𝑗−2

(𝑘+1)
+ 𝑢𝑖,𝑗+2

(𝑘)
) +

                                 (1 − 𝜔)𝑢𝑖,𝑗
(𝑘)

, (12) 
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𝑢𝑖,𝑗
(𝑘+1)

=
𝜔

5
(𝑢𝑖−2,𝑗

(𝑘+1)
+ 𝑢𝑖+2,𝑗

(𝑘)
+ 𝑢𝑖,𝑗−2

(𝑘+1)
+ 𝑢𝑖,𝑗+2

(𝑘)
) +

𝜔

20
(𝑢𝑖−2,𝑗−2

(𝑘+1)
+ 𝑢𝑖+2,𝑗−2

(𝑘+1)
+ 𝑢𝑖−2,𝑗+2

(𝑘)
+ 𝑢𝑖+2,𝑗+2

(𝑘)
) +

                                 (1 − 𝜔)𝑢𝑖,𝑗
(𝑘)

. (13) 

 

2.2.  Boosted AOR methods with the 9-point Laplacian 

The 9-point iterative schemes for the Full-Sweep Boosted AOR (FSBAOR), Half-Sweep Boosted 

AOR (HSBAOR), and Quarter-Sweep Boosted AOR (QSBAOR) cases are given as (14) to (16): 

 

ui,j
(k+1)

=
ω

5
(ui−1,j

(k)
+ ui+1,j

(k)
+ ui,j−1

(k)
+ ui,j+1

(k)
) +

r

5
 (ui−1,j

(k+1)
− ui−1,j

(k)
+ ui,j−1

(k+1)
− ui,j−1

(k)
) +

ω

20
(ui−1,j−1

(k)
+

                                 ui+1,j−1
(k)

+ ui−1,j+1
(k)

+ ui+1,j+1
(k)

) + 
r

20
(ui−1,j−1

(k+1)
− ui−1,j−1

(k)
+ ui+1,j−1

(k+1)
− ui+1,j−1

(k)
) +

                                 (1 − ω)ui,j
(k)

, (14) 

 

ui,j
(k+1)

=
ω

5
(ui−1,j−1

(k)
+ ui+1,j−1

(k)
+ ui−1,j+1

(k)
+ ui+1,j+1

(k)
) +

r

5
 (ui−1,j−1

(k+1)
− ui−1,j−1

(k)
+ ui+1,j−1

(k+1)
ui+1,j−1

(k)
) +

                                 
ω

20
(ui−2,j

(k)
+ ui,j−2

(k)
+ ui+2,j

(k)
+ ui,j+2

(k)
) +  

r

20
(ui−2,j

(k+1)
− ui−2,j

(k)
+ ui,j−2

(k+1)
− ui,j−2

(k)
) +

                                (1 − ω)ui,j
(k)

, (15) 

 

ui,j
(k+1)

=
ω

5
(ui−2,j

(k)
+ ui+2,j

(k)
+ ui,j−2

(k)
+ ui,j+2

(k)
) +

r

5
 (ui−2,j

(k+1)
− ui−2,j

(k)
+ ui,j−2

(k+1)
− ui,j−2

(k)
) +

ω

20
(ui−2,j−2

(k)
+

                                ui+2,j−2
(k)

+ ui−2,j+2
(k)

+ ui+2,j+2
(k)

) +
r

20
(ui−2,j−2

(k+1)
− ui−2,j−2

(k)
+ ui+2,j−2

(k+1)
− ui+2,j−2

(k)
) +

                               (1 − ω)ui,j
(k)

 (16) 

 

 

3. RESULTS AND DISCUSSION 

The simulation is run on the Robot 2D Simulator [25] on a Linux system with an Intel i5 processor 

running at 2.5 GHz and 8 GB of memory. The execution of the implementation of the QSBAOR approach 

based on (16) for solving 2-dimensional Laplace’s problem as expressed in (1) is described in Algorithm 1. 

The start and goal points in the simulation are represented by red and green colored points, respectively. In 

the simulations, four different maps are employed, with five different sizes being tested. The experiment 

results for FS, HS, and QS Boosted methods, based on the 9-point Laplacian, are shown in this section. The 

iteration counts and CPU time for each algorithm are recorded as shown in Tables 1 and 2. Table 1 shows the 

results with optimal values of the relaxation and accelerated parameters are used throughout the experiments.  

 

Algorithm 1. QSBAOR 
i. u  Set configuration space (obstacles, destination) 

ii. Set value of ω  

iii. Divide the solution points into two types of points: black and white points. 

iv. Compute all black points not including obstacles using equation (16) 

v. iteration  0 

vi. repeat  

𝑢𝑖,𝑗
(𝑘+1)

=
𝜔

5
(𝑢𝑖−2,𝑗

(𝑘)
+ 𝑢𝑖+2,𝑗

(𝑘)
+ 𝑢𝑖,𝑗−2

(𝑘)
+ 𝑢𝑖,𝑗+2

(𝑘)
) +

𝑟

5
(𝑢𝑖−2,𝑗

(𝑘+1)
− 𝑢𝑖−2,𝑗

(𝑘)
+ 𝑢𝑖,𝑗−2

(𝑘+1)
− 𝑢𝑖,𝑗−2

(𝑘)
) +   

   
𝜔

20
(𝑢𝑖−2,𝑗−2

(𝑘)
+ 𝑢𝑖+2,𝑗−2

(𝑘)
+ 𝑢𝑖−2,𝑗+2

(𝑘)
+ 𝑢𝑖+2,𝑗+2

(𝑘)
) +    

  
𝑟

20
(𝑢𝑖−2,𝑗−2

(𝑘+1)
− 𝑢𝑖−2,𝑗−2

(𝑘)
+ 𝑢𝑖+2,𝑗−2

(𝑘+1)
− 𝑢𝑖+2,𝑗−2

(𝑘)
) + (1 − 𝜔)𝑢𝑖,𝑗

(𝑘)
 

vii. iteration  iteration +1  

viii. until ‖𝑢𝑖,𝑗
(𝑘+1)

− 𝑢𝑖.𝑗
(𝑘+1)

‖ < 𝜀 

ix. Compute all white points not including obstacles using rotated equation (12)  

x. do 

 

 𝑢𝑖,𝑗
(𝑘+1)

=
𝜔

5
(𝑢𝑖−1−1,𝑗

(𝑘+1)
+ 𝑢𝑖+1,𝑗−1

(𝑘+1)
+ 𝑢𝑖−1,𝑗+1

(𝑘)
+ 𝑢𝑖+1,𝑗+1

(𝑘)
) + 

  
𝜔

20
(𝑢𝑖−2,𝑗

(𝑘+1)
+ 𝑢𝑖+2,𝑗

(𝑘)
+ 𝑢𝑖,𝑗−2

(𝑘+1)
+ 𝑢𝑖,𝑗+2

(𝑘)
) + (1 − 𝜔)𝑢𝑖,𝑗

(𝑘)
 

 

end 

Compute all square points not including obstacles using standard equation (11) 

xi. do 

 𝑢𝑖,𝑗
(𝑘+1)

=
𝜔

5
(𝑢𝑖−1,𝑗

(𝑘+1)
+ 𝑢𝑖+1,𝑗

(𝑘)
+ 𝑢𝑖,𝑗−1

(𝑘+1)
+ 𝑢𝑖,𝑗+1

(𝑘)
) + 

   
𝜔

20
(𝑢𝑖−1,𝑗−1

(𝑘+1)
+ 𝑢𝑖+1,𝑗−1

(𝑘+1)
+ 𝑢𝑖−1,𝑗+1

(𝑘)
+ 𝑢𝑖+1,𝑗+1

(𝑘)
) + (1 − 𝜔)𝑢𝑖,𝑗

(𝑘)
 

xii. end  
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Table 1. Performance of the methods in terms of number of iterations 
N 

Case Method 300 600 900 1200 1500 

Case 1 FSBSOR 2874 10450 23786 35469 62307 

FSBAOR 2317 8428 19327 28647 50524 

HSBSOR 1480 5381 12253 18229 32093 
HSBAOR 1179 4343 9899 14706 25994 

QSBSOR 757 2776 6375 9357 16575 

QSBAOR 187 2219 5145 8570 13379 
Case 2 FSBSOR 2094 7956 19732 32360 45628 

FSBAOR 1721 6374 16021 26242 37267 

HSBSOR 1124 4175 9460 16674 23759 
HSBAOR 905 3353 7632 13502 19335 

QSBSOR 223 2082 4889 8558 12185 

QSBAOR 461 1591 3920 6859 10130 
Case 3 FSBSOR 2548 9339 20264 23770 53719 

FSBAOR 2046 7523 16425 19306 43704 

HSBSOR 1302 4811 10459 12292 27751 

HSBAOR 1036 3870 8442 9975 22559 

QSBSOR 679 2495 5406 9364 14364 

QSBAOR 526 1998 4357 8150 11640 
Case 4 FSBSOR 1674 6207 13529 23750 36996 

FSBAOR 1333 5007 10980 19321 30104 
HSBSOR 833 3193 6974 12278 19156 

HSBAOR 647 2569 5653 9952 15542 

QSBSOR 424 1654 3602 6359 9884 
QSBAOR 314 1319 2894 5125 8012 

 

 

Table 2. Performance of the methods in terms of time of execution (in seconds) 
N 

Case Method 300 600 900 1200 1500 

Case 1 FSBSOR 1.602 23.318 123.358 326.310 932.092 

FSBAOR 1.497 22.092 120.699 307.958 893.052 

HSBSOR 0.533 8.251 44.013 116.616 328.061 

HSBAOR 0.493 7.420 39.259 103.669 291.926 

QSBSOR 0.219 3.329 17.712 46.912 137.155 

QSBAOR 0.187 2.908 16.589 45.593 120.228 
Case 2 FSBSOR 1.422 22.837 150.992 345.879 756.108 

FSBAOR 1.361 20.787 153.955 322.320 713.486 

HSBSOR 0.516 8.019 37.637 119.921 266.421 
HSBAOR 0.437 6.585 33.287 105.910 235.898 

QSBSOR 0.223 3.117 14.704 46.390 103.631 

QSBAOR 0.199 2.578 12.829 40.690 93.254 
Case 3 FSBSOR 2.084 29.294 138.506 308.722 1028.280 

FSBAOR 2.048 26.548 138.947 298.650 999.656 

HSBSOR 0.660 8.628 44.099 99.299 330.833 
HSBAOR 0.606 7.879 39.760 89.707 302.794 

QSBSOR 0.274 3.493 17.574 49.141 132.276 

QSBAOR 0.257 3.190 16.184 45.046 118.245 
Case 4 FSBSOR 1.279 19.442 97.399 307.306 764.704 

FSBAOR 1.229 18.680 93.921 298.875 739.420 

HSBSOR 0.378 6.082 31.117 98.613 255.649 

HSBAOR 0.343 5.500 28.167 89.243 217.134 

QSBSOR 0.153 2.422 12.292 48.791 85.122 

QSBAOR 0.126 2.197 10.898 44.435 82.551 

 

 

Figures 6 and 7 are graphs which represent the number of iterations and performance in time, 

respectively, shows the results of the suggested approaches based on Tables 1 and 2. Both figures indicate 

that the length of each execution increases with the number of iterations. It is clear from examination of both 

graphs that the QSBAOR outperforms the corresponding suggested approaches in terms of iteration count 

and time of performance. Tables 1 and 2 also make this concept quite obvious. As can be observed in the 

results table, the graphs for the quantity of iterations and performance time displayed the same trend. In 

comparison to other approaches, the QSBAOR iterative scheme clearly offers high efficiency according to 

performance time and number of iterations. 
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Figure 6. Number of iterations for the tested methods Figure 7. Execution time for the tested methods 
 

 

The harmonic potentials obtained from the computation using the proposed approaches are 

forwarded to the path generation procedure that employs the gradient descent search (GDS) algorithm as 

described in Algorithm 2. The GDS is guided by the gradient of the harmonic potentials by moving from the 

start point with higher potential value to the next lower potential value until the lowest potential value in the 

environment that indicates the goal point is found. Figure 8 (in Appendix) shows the paths generated by the 

GDS algorithm using harmonic potentials computed by the proposed iterative methods on four 300×300 

maps. In Case 1 (Figure 8(a)), smooth paths are obtained from three different start positions to the target 

locations. In Cases 2 and 3 (Figures 8(b) and (c)), large central obstacles do not prevent successful path 

generation from start to goal. Similarly, in Case 4 (Figure 8(d)), the presence of a narrow corridor does not 

hinder the generation of smooth and collision-free paths. Illustrations for other map sizes in Table 2 are 

omitted, as all proposed methods produce comparable path generation results. 
 

Algorithm 2. GDS 
i. Setup start position as f [i, j]  startposition [i, j]. 

ii. Initializing found   false and k  0. 

iii. Calculate  

Ucurrent   U f [i, j] 

U g[i, j]  MIN (U f [i-1, j], U f [i+1, j], U f [i, j-1], U f [i, j+1], U f [i-1, 

j-1], U f [i+1, j-1], U f [i-1, j+1], U f [i+, j+1]) 

path [k]   g[i, j] 

k  k+1 

iv. If g[i, j] = goal position [i, j] then found  true  

v. Else if Vg [i, j] < Vcurrent,, then f[i, j]   g [i, j] 

Step (ii) up to (iv) repeated until found or Vg [i, j] ≥ Vcurrent.  If not found then 

path 0   
 

The number of arithmetic operations needed by the tested methods are shown in Tables 3 to 5, 

where M=N2–P represents the number of nodes calculated during the iteration, N2 is the size of environment 

and P denotes the number of nodes occupied by obstacles. Based on these tables, the iterative techniques 

based on the HS Boosted (HSBSOR and HSBAOR methods) compute only half of the node points in a 

skewed manner during the iteration process. As a result, the computational complexity has been lowered by 

around 50%. Simulated results based on the QS Boosted (QSBSOR and QSBAOR methods) are provides 

much better performance. All of these iterative techniques assess only one of the four node points at a time 

during the iteration phase. As a result, the computational complexity has decreased by around 75%. In 

addition to the reduction in computational complexity, the performance improvement of the tested algorithms 

is further quantified in terms of the number of iterations and CPU time, as summarized in Table 6. Using the 

harmonic potentials derived through the above algorithms, the GDS had successfully constructed visually 

identical paths for all four different maps, similar to the results given in Figure 8.  
 
 

Table 3. Arithmetic operations for SOR methods Table 4. Arithmetic operations for AOR methods 
Methods ADD/SUB MUL/DIV  

FSBSOR 8𝑀 3𝑀  

HSBSOR 4𝑀 3

2
𝑀 

 

QSBSOR 2𝑀 3

4
𝑀 

 

 

Methods ADD/SUB MUL/DIV 

FSBAOR 16𝑀 5𝑀 

HSBAOR 8𝑀 5

2
𝑀 

QSBAOR 5𝑀 5

4
𝑀 
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Table 5. Number of additional arithmetic operations for the remaining white points 
Methods ADD/SUB MUL/DIV 

Half-Sweep cases 4𝑀 3

2
𝑀 

Quarter-Sweep cases 6𝑀 9

4
𝑀 

 

 

Table 6. Reduction percentages in terms of number of iterations and CPU time for the tested algorithms  
Methods Iteration CPU time 

FSBSOR vs FSBAOR 40.33 27.64 
HSBSOR vs HSBAOR 26.48 24.77 

QSBSOR vs QSBAOR 22.17 19.02 

 

 

4. CONCLUSION 

The intent of this research is to formulate and develop a way for combining iterative approaches and 

path finding algorithms to find a solution to the mobility robot's path problem. The concepts of HS and QS 

iteration are proposed in this work, as well as the use of computing the Laplacian harmonic potentials based 

on the 9-point Laplacian to solve the path planning problem by employing the family of relaxation iterative 

methods. The overall performances of the path planning algorithms are measured by using three criteria: 

successful generation of paths, number of iterations, and time performance. 

Accordingly, the main contribution of this study, based on the summary of findings, is to introduce 

the application of QSBAOR which is Quarter-Sweep Boosted AOR in the 9-Point Laplacian operator using 

the families of relaxation methods for to determine the harmonic potentials by computing the solutions of 

Laplace’s equation. The generated harmonic potentials were then employed by the GDS algorithm to guide 

the path finding method, resulting in a smooth path for the robot to traverse safely in a structured 

environment from any start point to the specified goal point. 
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APPENDIX 

 

 
 

Figure 8. Path creation for various surroundings using various starting locations (green point) and target 

places (red point); (a) Case 1, (b) Case 2, (c) Case 3, and (d) Case 4 
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