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 In the power system, transformers are crucial electrical equipment that 

require an insulator or dielectric material, such as paper immersed in 

insulating oil, to prevent electrical contact between components. The 

dissolved gas analysis (DGA) test is important for diagnosing and 

determining the maintenance recommendations for transformers. The duval 

triangle method (DTM) is commonly used to identify faults in transformers. 

The data used in this article are from DGA test of power transformers in East 

Java and Bali transmission main unit (UIT JBM). The DGA data were 

analyzed based on the IEEE C57.104-2019 standards, and by using the 

developed random forest (RF) classifier-based DTM for easier software 

implementation and better accuracy. The results of fault identification in 6 

transformers case study showed a low-thermal fault (T1)<300 °C in 

transformer 1, where methane gas increased, stray gassing (S) in transformer 

5 due to escalating hydrogen gas production, overheating (O)≤250 °C 

indicated in transformers 2 and 6 due to rising ethane gas production. 

Transformers 3 and 4 were found in normal condition. This fault 

identification is done to enhance the accuracy of maintenance 

recommendation action based on DGA. 
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1. INTRODUCTION 

The transformer is a vital and expensive component in the power system network, used to transform 

electric power through magnetic coupling. Repairing a transformer takes a considerable amount of time, and 

replacing it is uneconomical, leading to significant costs for electrical utilities [1], [2]. To prevent transformer 

failure, insulation is essential to decrease the risk of faults. Transformer insulating oil, is a common form of 

internal insulation in power transformers, applied to immerse the transformer’s winding. This serves not only 

to prevent the leakage of short-circuit currents from the transformer’s voltage section to other components 

but also acts as a cooling system for the transformer [3]. The health condition of the transformer can be 

identified through the condition of the insulating oil [4], [5]. Therefore, it is important to diagnose the 

transformer through oil sampling and analysis.  

The most commonly used method over the years for the early identification of transformer failure is 

dissolved gas analysis (DGA). This method involves identifying breakdowns through the formation of 

dissolved gases in the oil insulator, which are indicative of transformer failure effects [6], [7]. DGA is 

utilized for the detection and diagnosis of failure in transformers, especially oil-immersed types. As 

https://creativecommons.org/licenses/by-sa/4.0/
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explained in reference [8], this assessment must be performed promptly to mitigate potential negative 

impacts on the transformer. The concentration of gases produced and dissolved depends on the type of fault 

occurring in the transformer. Generally, faults are classified into two types: electrical faults (PD, D1, and D2) 

and thermal faults (T1, T2, and T3). Faults in the transformer lead to the formation of gases dissolved in the 

dielectric fluid. These gases can be categorized into three groups: firstly, the hydrogen and hydrocarbon group, 

containing hydrogen (H2), methane (CH4), ethane (C2H6), ethylene (C2H4), and acetylene (C2H2); secondly, 

carbon oxides, containing CO and CO2; and thirdly, non-fault gases, containing O2 and N2 [9], [10]. 

IEEE C57.104-2019 provides a standard or guideline for DGA tests on oil-immersed transformers, 

supporting failure identification and maintenance recommendations. Several studies have been conducted 

using the IEEE C57.104-2019 standard along with the duval triangle as a fault identification method. 

Boonseng et al. [11] utilizes IEEE C57.104-2019 as a guideline for inspecting a 24 MVA distribution 

transformer. In research by Mawelela et al. [12], the duval triangle method (DTM), with graphical and 

MATLAB bases, is used to identify faults in data from ten transformers. Machine learning, particularly the 

random forest (RF) classifier technique introduced by Breiman, which involves creating several distinct 

decision trees, each functioning as an independent classifier [13], [14], can be implemented in this research. 

RF exhibits the lowest error rate compared to other methods [15]. Levin et al. [16] developed fuzzy logic 

implementation on Doenenburg ratio method. While the successful software implementation is obtained, the 

Doenenburg ratio method is not known for its high accuracy. Research by Ekojono et al. [17] indicates that 

the RF method achieves a performance accuracy of 99.6%, compared to 90% for the neural network method 

and 82.3% for the naïve Bayes method. Based on these findings, the RF was chosen for this research to 

diagnose transformer failures more accurately. To determine transformer failures, the DTM is used [11], [12]. 

Ekojono et al. [17] describes the creation of RF models for detecting faults in power transformers, 

demonstrating notable accuracy compared to alternative machine learning algorithms. 

Several studies have utilized the DTM in conjunction with the IEEE C57.104-2019 standard for 

fault diagnosis [11], [12], [18]. Additionally, the potential of machine learning techniques, such as the RF 

classifier, has been explored to enhance diagnostic accuracy [17]. This research seeks to address the 

limitations of previous studies by introducing a combination of the DTM with a RF classifier. The proposed 

methods is implemented to assess the condition of the transformer from East Java and Bali transmission main 

units (UIT JBM). 

 

 

2. METHOD 

The flowchart depicted in Figure 1 outlines the procedure of this study. Firstly, collecting DGA data 

from transformers. The delta value and rate of increase for each gas type are then computed. The DGA data 

are subsequently analyzed and compared with the parameters outlined in IEEE C57.104-2019.  
 

 

 
 

Figure 1. Research flowchart 
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If all gas levels are below the limits specified in Tables 1(a) and (b), all delta values and all rates are 

below those in Tables 2(a) and (b), the transformer is classified as DGA status 1, indicating a healthy 

condition. If not, the analysis proceeds to the next step: if any gas level exceeds the limits in Table 1(b) or 

any rate surpasses those in Table 2(b), the transformer is classified as DGA status 3, which signals an urgent 

issue. If neither of these conditions is met, the transformer is assigned a DGA status 2. Transformers 

classified with DGA status 1 will receive maintenance recommendations appropriate for their healthy status. 

For transformers with DGA status 2, fault identification using the DTM is conducted, followed by 

maintenance recommendations for less urgent issues upon fault detection. Similarly, transformers with DGA 

status 3 undergo fault identification using the DTM, after which maintenance recommendations are given 

based on the urgency of the identified faults. 

 

 

Table 1(a). Gas concentration (ppm) limit on 90th 

percentile of transformer population [19] 

Table 1(b). Gas concentration (ppm) limit on 95th 

percentile of transformer population [19] 

Dissolved gas 
Transformer age (year) 

Unknown 1–9 10–30 >30 

H2 80 75 100 

CH4 90 45 90 110 
C2H6 90 30 90 150 

C2H4 50 20 50 90 

C2H2 1 1 
CO 900 900 

CO2 9000 5000 10000 
 

Dissolved gas 
Transformer age (year) 

Unknown 1–9 10–30 >30 

H2 200 200 

CH4 150 100 90 110 
C2H6 175 70 90 150 

C2H4 100 40 50 90 

C2H2 2 2 4 
CO 1100 1100 

CO2 12500 7000 14000 
 

 

 

Table 2(a). Delta value limitation [20] Table 2(b). Rate of gas increase limitation [20] 
Gas Limitation 

H2 40 

CH4 30 

C2H6 25 
C2H4 20 

C2H2 >0 

CO 250 
CO2 2500 

 

Dissolved gas 4-9 months 10-24 months 

H2 50 20 

CH4 15 10 

C2H6 15 9 
C2H4 10 7 

C2H2 >0 

CO 200 100 
CO2 1750 1000 

 

 

 

2.1.  IEEE C57.104-2019  

IEEE C57.104-2019 serves as a standard or reference for detecting anomalies in power transformer. 

The process involves computing and contrasting the obtained number with the typical ones listed in the IEEE 

C57.104-2019 parameter tables. This guideline delineates the transformer operational state such as status 1 

signifies normal. Status 2 implies potential faults of comparatively lower urgency, while status 3 denotes an 

actual fault in the transformer and fault identification action is necessary. Recommendation action are 

outlined for each transformer state, including routine DGA testing for status 1 and performing fault 

identification for status 2 and 3 [19]. Table 1 presents both 90th and 95th percentile limit for various gases, 

namely hydrogen (H2), methane (CH4), ethane (C2H6), ethylene (C2H4), acetylene (C2H2), carbon monoxide 

(CO), and carbon dioxide (CO2). 

Table 2(a) shows gas concentration limit of the differences between two consecutive DGA values. 

This table helps determine if there is an unusual gas rise in the transformer. In such cases, it is recommended 

to take a confirmatory sample. Table 2(b) shows the rate of increase limit calculated using multi-point linear 

regression, which eliminates variations introduced by the laboratory DGA analysis method. These tables are 

useful in detecting the possibility of active gassing based on a series of DGA results. 

 

2.2.  Fault Identification using duval pentagon method 

Fault identification in power transformers is essential for the reliable operation of the electricity grid 

[21]. Transformers in DGA status 2 and DGA status 3 conditions must undergo fault identification. In this 

research, a graphical fault identification method is employed, known as the DTM. There are five types of 

DTM, namely duval triangle 1, 2, 3, 4, and 5. However, for analyzing transformer failures from insulation 

oil, only duval triangle 1, 4, and 5 are used. Each method utilizes the percentages of three hydrocarbon gases 

derived from five basic hydrocarbon gases to diagnose faults on the triangle plot [22]. 

The DTM uses three hydrocarbon gases for mapping fault identification. In DTM 1, as depicted in 

Figure 2(a), methane (CH4) is used for diagnosing low-energy/temperature faults, ethylene (C2H4) for 

identifying high-temperature faults, and acetylene (C2H2) for detecting faults with extremely high 

temperatures or high energy, such as arcing faults [10], [23]. The triangles shown in Figure 2, is used to plot 
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the percentages of these three gases. duval triangle 4, as depicted in Figure 2(b), employs methane (CH4), 

ethane (C2H6), and hydrogen (H2). If the duval triangle 1 analysis indicates PD, T1, or T2 faults, additional 

information can be obtained by combining it with the calculations from duval triangle 4 [20]. Similarly, duval 

triangle 5, as depicted in Figure 2(c), utilizes methane (CH4), ethane (C2H6), and ethylene (C2H4). If the duval 

triangle 1 method indicates a T2 or T3 fault, deeper insights can be achieved by supplementing it with 

calculations from duval triangle 5 [20]. 

 

 

   
(a) (b) (c) 

   

Figure 2. Graphical representation of: (a) duval triangle 1, (b) duval triangle 2, and (c) duval triangle 3 [20] 

 

 

Description: 

PD: partial discharge 

T1: low-thermal fault (below 300 °C) 

T2: medium-thermal fault (300 °C - 700 °C) 

T3: high-thermal fault (above 700 °C) 

D1: low-energy electrical discharge 

D2: high-energy electrical discharge 

DT: indetermine fault (mixtures of electrical/ thermal fault) 

S: stray gassing at temperature <200 °C 

C: possible paper carbonization 

O: overheating <250 °C without carbonization of paper 

ND: not defined 

The percentages of each gas need to be determined. Calculation example for duval triangle 1 is 

shown in (1)-(3): 

 

%CH4=CH4/(CH4+C2H4+C2H2)×100% (1) 

 

%C2H4=C2H4/(CH4+C2H4+C2H2)×100% (2) 

 

%C2H2=C2H2/(CH4+C2H4+C2H2)×100% (3) 

 

2.3.  Random forest classifier implementations 

The application of the DTM in fault identification can be done in several approaches, with a 

prevalent technique involving manual calculations. Machine learning provides a different way to predict 

faults in transformers using DTM. As part of its machine learning component, the RF classifier creates a 

series of decision trees using a bootstrap sample of the training data [17], [24]. The RF algorithm is a  

well-known and effective ensemble supervised classification method [25]. This method generates multiple 

distinct decision trees, each acting as an independent classifier. The final decision is made by combining the 

votes from all these decision trees. Figure 3 illustrates the scheme of RF implementation in the fault 

identification of power transformers. 

This scheme for RF processing starts with the insertion of 5 hydrocarbon gas concentrations, which 

are then processed with the RF classifier to diagnose faults based on DTM. To achieve high precision in fault 

determination using the RF network, selecting the right tuning parameters is mandatory [27]. The RF 

algorithm is composed of an ensemble of decision trees, each built from a bootstrap sample drawn from the 

training set. Using independent and identically distributed random vectors, this approach involves multiple 

tree-structured classifiers. The selected parameters and their related values are shown in Table 3. 
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Figure 3. RF implementation scheme [26] 

 

 

Table 3. Variations of tuning parameters and observed values for RF model 
Parameters Value 

Number of trees 10, 50, 100, 500, 1000, and 2000 

Sample leaf size 10, 20, and 30 
Criterion Gini and entropy 

 

 

Determining faults using the DTM requires a dataset to train and test the RF algorithm. The results 

of testing are evaluated to determine the optimal approach for estimating DGA accuracy. The dataset 

contains information on the actual fault types of transformers identified with the DTM and is provided for 

duval triangles 1, 4, and 5, as shown in Table 4. 

 

 

Table 4. Number of data sample 

Fault type 
Data number 

Duval triangle 1 Duval triangle 2 Duval triangle 3 

PD 26 26 26 

T1 30 - - 
T2 48 - 91 

T3 108 - 444 

D1 520 - - 
D2 400 - - 

DT 270 - - 

S - 610 126 
C - 403 268 

O - 215 168 

ND - 301 325 
Total 1402 1555 1448 

 

 

3. RESULTS AND DISCUSSION 

3.1.  Random Forest based duval triangle 

First, RF models for duval triangle 1, 4, and 5 are developed. The development process begins by 

deciding the leaf sample size, the criterion type, and the number of trees that will be compared to other 

options to achieve the best classification accuracy [28]. A large number of trees in the forest can yield better 

performance [13]. Cross-validation is conducted by comparing two parameters taken from the tuning 

parameters in Table 3, which then produces a level of accuracy for each model. The results of a  

cross-validation graph are used to select the best number of trees, leaf sample size, and criterion for duval 

triangle 1, 4, and 5 RF models.  

Figures 4 to 6 present graphical representation of the classification accuracy for three different leaf 

sizes: 10, 20, and 30, implemented with various criteria. The graphs demonstrate that the best accuracy 

results are achieved with a leaf size of 10 for all the DTM used. Based on the level of accuracy produced by 

the three parameters being compared - namely, the number of trees, leaf sample size, and criterion type - it is 

possible to conclude the following: for duval triangle 1, using entropy as the criterion type with a leaf sample 

size of 10 and a total of 500 trees achieves an accuracy level of 0.969. For duval triangle 4, using entropy as 

the criterion type with a leaf sample size of 10 and a total of 50 trees achieves an accuracy level of 0.996. 

And for duval triangle 5, using entropy as the criterion type with a leaf sample size of 10 and a total of 100 

trees achieves an accuracy level of 0.977. 
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Figure 4. Classification accuracy between gini criterion (left) and entropy criterion (right) for duval triangle 1 

 

 

  
 

Figure 5. Classification accuracy between gini criterion (left) and entropy criterion (right) for duval triangle 4 

 

 

  
 

Figure 6. Classification accuracy between gini criterion (left) and entropy criterion (right) for duval triangle 5 

 

 

3.2.  Transformer dissolved gas analysis data  

The data from DGA tests are essential for supporting the interpretation of transformer conditions 

and diagnosing faults that have occurred. The collected DGA data include information about the age of the 

transformer, the latest gas concentrations, the delta value of each gas, and the rate of gas increase for each 

gas, as shown in Table 5. Dissolved gases analyzed in this research include H2, CO, C2H4, C2H2, CO2, C2H6, 

and CH4. The data in Table 5 was used to determine the condition of the transformers based on IEEE 

C57.104-2019. 
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Table 5. DGA data of 6 transformer case study  
Case study Age (year) Parameters H2 CO C2H4 C2H2 CO2 C2H6 CH4 

T1 5 Gas concentration 21.00 226.00 2.00 0.00 2783.00 53.00 39.00 
Deltas -9.58 201.57 2.00 0.00 1364.19 30.29 39.00 

Rate of increase -60.13 23.78 0.40 0.00 570.42 8.70 -1.31 

T2 6 Gas concentration 0.00 145.00 0.00 0.00 881.00 89.00 35.00 
Deltas 4.48 126.79 0.00 0.00 2.14.00 57.05 35.00 

Rate of increase 0.37 18.95 -0.12 0.00 189.58 8.58 4.92 

T3 6 Gas concentration 0.00 104.00 2.00 0.00 386.00 27.00 14.00 
Deltas -3.34 92.44 2.00 0.00 -298.94 15.15 11.11 

Rate of increase -0.35 10.00 0.47 0.00 -193.25 -26.55 -16.29 

T4 7 Gas concentration 0.00 64.00 0.00 0.00 782.00 20.00 10.00 
Deltas -46.16 8.79.00 -416.14 0.00 323.31 -183.82 -214.46 

Rate of increase -19.15 -17.67 -190.83 -0.10 -311.07 -88.81 -84.53 

T5 6 Gas concentration 85.00 217.00 2.00 0.00 1326.00 55.00 43.00 
Deltas 78.86 194.70 2.00 0.00 -555.39 44.96 43.00 

Rate of increase 18.65 16.69 0.47 0.00 172.46 8.49 6.99 

T6 8 Gas concentration 0.00 179.00 4.00 0.00 2818.00 318.00 133.00 

Deltas -3.04 158.41 2.91 0.00 715.61 201.97 121.17 

Rate of increase 0.32 28.52 1.05 0.00 618.05 61.94 23.06 

 

 

3.3.  IEEE C57.104-2019 interpretation 

The results of the interpretation of six case study transformers based on IEEE standards are status 1 

to status 3, shown in Table 6. These outcomes were derived by examining the most recent gas concentrations, 

deltas, and rates of gas increase for each dissolved gas within the transformers. The data were then compared 

with the parameter table provided by IEEE C57.104-2019. According to the results, four transformers require 

fault identification due to their condition being classified as either DGA status 2 or DGA status 3. These 

transformers are transformer 1, transformer 2, transformer 5, and transformer 6. 

 

 

Table 6. Interpretation result of fault identification 
Transformer case study DGA condition RF-based DTM interpretation 

Transformer 1 DGA status 2 T1–N/D 
Transformer 2 DGA status 3 T1–O 

Transformer 3 DGA status 1 N/A 

Transformer 4 DGA status 1 N/A 
Transformer 5 DGA status 2 T1-S 

Transformer 6 DGA status 3 T1-O 

 

 

3.4.  Fault identification 

To perform fault identification, the DTM with the RF algorithm is applied. The RF method is 

developed as an application using PySimpleGUI as a module and Python as the programming language to 

develop the user interface, as shown in Figure 7. This program was built to support fault identification using 

the combined DTM with the RF classifier. Results are provided after all gas levels are inserted and the 

“ANALYZE” button is clicked. The result column provides a conclusion of the fault diagnosis using DTM. 
 

 

 
 

Figure 7. Interface of transformer fault analysis program 
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Table 6 shows the results of fault identification using combined DTM with the RF classifier on six 

transformers. Transformers 3 and 4 did not identify any faults because these transformers were both in the 

condition of dga status 1. According to IEEE C57.104-2019 standard calculations, transformers 1 and 5 both 

received dga status 2. Transformer 1’s status was due to C2H6 gas concentration values of 53.00 ppm and 

delta gas concentrations of C2H6 and CH4 exceeding the parameter limits. For transformer 5, it was due to H2 

and C2H6 gas concentrations of 85 ppm and 55 ppm, respectively, which exceeded the gas concentration 

normal limit. The identification of faults in these cases involved additional investigation to assess the 

possibility of faults occurring in the transformers. The fault diagnosis results for transformer 1 indicated a 

low-thermal fault (T1)<300 °C in duval triangle 1 and not defined (ND) detected in duval triangle 4, thus 

referring the fault diagnosis for this transformer to duval triangle 1. For transformer 5, a T1<300 °C was 

detected in duval triangle 1 and stray gassing (S) in duval triangle 4, leading the fault diagnosis for this 

transformer to refer to duval triangle 4. Maintenance recommendations were acquired by addressing the 

matter as increasing the frequency of DGA tests, and minimizing the heat production of the transformer. 

Transformers 2 and 6 both received a DGA status 3. This status was assigned due to the high 

concentration levels of C2H6 gas, measured at 89.00 ppm and 318 ppm, respectively. The identification of 

faults in these cases is crucial to determine potential issues in the transformers. The results of the fault 

diagnosis for transformers 2 and 6 indicated a T1<300 °C in duval triangle 1 and O<250 °C in duval triangle 

4. Therefore, the fault diagnosis for these transformers refers to duval triangle 4, leading to maintenance 

recommendations that should be treated as urgent issues. These recommendations include reducing heat 

production in the transformer, increasing the frequency of DGA testing, and monitoring the growth of DGA 

in the transformer oil. 

 

 

4. CONCLUSION 

The RF-based duval method was utilized to identify the condition of transformers using DGA test 

from the insulating oil samples of UIT JBM–East Java, Bali, and Madura transmission main unit 

transformers. To apply a RF model, three datasets were created. The outcomes demonstrate that the optimal 

leaf size and criterion for all DTM are typically 10 with an entropy criterion. Duval triangle 1 with 500 trees 

achieved 96% accuracy, duval triangle 4 with 50 trees achieved 99% accuracy, while duval triangle 5 with 

100 trees achieved 97% accuracy. Interpretation using IEEE C57.106-2019 was performed to determine the 

condition of the transformers. The analysis revealed that transformers 1, 2, 5, and 6 exhibited abnormal 

conditions, which are categorized as DGA status 2 and DGA status 3. Implementing the duval triangle with a 

RF classifier resulted in the identification of a T1 in transformer 1. Transformer 5 showed a stray gassing (S) 

fault diagnosis, and transformers 2 and 6 exhibited O<250 °C. This research offers promising advancements 

for the field of power transformer fault diagnosis. The integration of the DTM with a RF classifier has 

demonstrated the potential to increase diagnostic accuracy, particularly in complex fault scenarios. This 

enhanced accuracy could lead to more informed maintenance strategies, ultimately improving power grid 

reliability. This means fewer disruptions, reduced costs associated with major repairs, and increased safety 

due to the proactive identification of potential transformer failures. The future research is expected to be 

accomplished using a RF model with a multi-method DGA model, which combining the results of the duval 

triangle, duval pentagon, roger ratio method, and International Electrotechnical Commission (IEC) ratio 

method. 
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