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1. INTRODUCTION

The transformer is a vital and expensive component in the power system network, used to transform
electric power through magnetic coupling. Repairing a transformer takes a considerable amount of time, and
replacing it is uneconomical, leading to significant costs for electrical utilities [1], [2]. To prevent transformer
failure, insulation is essential to decrease the risk of faults. Transformer insulating oil, is a common form of
internal insulation in power transformers, applied to immerse the transformer’s winding. This serves not only
to prevent the leakage of short-circuit currents from the transformer’s voltage section to other components
but also acts as a cooling system for the transformer [3]. The health condition of the transformer can be
identified through the condition of the insulating oil [4], [5]. Therefore, it is important to diagnose the
transformer through oil sampling and analysis.

The most commonly used method over the years for the early identification of transformer failure is
dissolved gas analysis (DGA). This method involves identifying breakdowns through the formation of
dissolved gases in the oil insulator, which are indicative of transformer failure effects [6], [7]. DGA is
utilized for the detection and diagnosis of failure in transformers, especially oil-immersed types. As
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explained in reference [8], this assessment must be performed promptly to mitigate potential negative
impacts on the transformer. The concentration of gases produced and dissolved depends on the type of fault
occurring in the transformer. Generally, faults are classified into two types: electrical faults (PD, D1, and D2)
and thermal faults (T1, T2, and T3). Faults in the transformer lead to the formation of gases dissolved in the
dielectric fluid. These gases can be categorized into three groups: firstly, the hydrogen and hydrocarbon group,
containing hydrogen (Hz), methane (CH,), ethane (C;Hg), ethylene (CzH.), and acetylene (C2Hy); secondly,
carbon oxides, containing CO and CO; and thirdly, non-fault gases, containing O, and N [9], [10].

IEEE C57.104-2019 provides a standard or guideline for DGA tests on oil-immersed transformers,
supporting failure identification and maintenance recommendations. Several studies have been conducted
using the IEEE C57.104-2019 standard along with the duval triangle as a fault identification method.
Boonseng et al. [11] utilizes IEEE C57.104-2019 as a guideline for inspecting a 24 MVA distribution
transformer. In research by Mawelela et al. [12], the duval triangle method (DTM), with graphical and
MATLAB bases, is used to identify faults in data from ten transformers. Machine learning, particularly the
random forest (RF) classifier technique introduced by Breiman, which involves creating several distinct
decision trees, each functioning as an independent classifier [13], [14], can be implemented in this research.
RF exhibits the lowest error rate compared to other methods [15]. Levin et al. [16] developed fuzzy logic
implementation on Doenenburg ratio method. While the successful software implementation is obtained, the
Doenenburg ratio method is not known for its high accuracy. Research by Ekojono et al. [17] indicates that
the RF method achieves a performance accuracy of 99.6%, compared to 90% for the neural network method
and 82.3% for the naive Bayes method. Based on these findings, the RF was chosen for this research to
diagnose transformer failures more accurately. To determine transformer failures, the DTM is used [11], [12].
Ekojono et al. [17] describes the creation of RF models for detecting faults in power transformers,
demonstrating notable accuracy compared to alternative machine learning algorithms.

Several studies have utilized the DTM in conjunction with the IEEE C57.104-2019 standard for
fault diagnosis [11], [12], [18]. Additionally, the potential of machine learning techniques, such as the RF
classifier, has been explored to enhance diagnostic accuracy [17]. This research seeks to address the
limitations of previous studies by introducing a combination of the DTM with a RF classifier. The proposed
methods is implemented to assess the condition of the transformer from East Java and Bali transmission main
units (UIT JBM).

2. METHOD

The flowchart depicted in Figure 1 outlines the procedure of this study. Firstly, collecting DGA data
from transformers. The delta value and rate of increase for each gas type are then computed. The DGA data
are subsequently analyzed and compared with the parameters outlined in IEEE C57.104-2019.
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Figure 1. Research flowchart
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If all gas levels are below the limits specified in Tables 1(a) and (b), all delta values and all rates are
below those in Tables 2(a) and (b), the transformer is classified as DGA status 1, indicating a healthy
condition. If not, the analysis proceeds to the next step: if any gas level exceeds the limits in Table 1(b) or
any rate surpasses those in Table 2(b), the transformer is classified as DGA status 3, which signals an urgent
issue. If neither of these conditions is met, the transformer is assigned a DGA status 2. Transformers
classified with DGA status 1 will receive maintenance recommendations appropriate for their healthy status.
For transformers with DGA status 2, fault identification using the DTM is conducted, followed by
maintenance recommendations for less urgent issues upon fault detection. Similarly, transformers with DGA
status 3 undergo fault identification using the DTM, after which maintenance recommendations are given
based on the urgency of the identified faults.

Table 1(b). Gas concentration (ppm) limit on 95t
percentile of transformer population [19]
Transformer age (year)

Table 1(a). Gas concentration (ppm) limit on 90™
percentile of transformer population [19]
Transformer age (year)

Dissolved gas Dissolved gas

Unknown 1-9 10-30 >30 Unknown 19 10-30 >30
H2 80 75 100 H2 200 200
CH4 90 45 90 110 CH4 150 100 90 110
C2H6 90 30 90 150 C2H6 175 70 90 150
C2H4 50 20 50 90 C2H4 100 40 50 90
C2H2 1 1 C2H2 2 2 4
Cco 900 900 Cco 1100 1100
Co2 9000 5000 10000 Co2 12500 7000 14000

Table 2(a). Delta value limitation [20] Table 2(b). Rate of gas increase limitation [20]

Gas __ Limitation Dissolved gas  4-9 months  10-24 months

H2 40 H2 50 20

CH4 30 CH4 15 10
C2H6 25 C2H6 15 9
C2H4 20 C2H4 10 7
C2H2 >0 C2H2 >0

co 250 co 200 100
Cco2 2500 COo2 1750 1000

2.1. IEEE C57.104-2019

IEEE C57.104-2019 serves as a standard or reference for detecting anomalies in power transformer.
The process involves computing and contrasting the obtained number with the typical ones listed in the IEEE
C57.104-2019 parameter tables. This guideline delineates the transformer operational state such as status 1
signifies normal. Status 2 implies potential faults of comparatively lower urgency, while status 3 denotes an
actual fault in the transformer and fault identification action is necessary. Recommendation action are
outlined for each transformer state, including routine DGA testing for status 1 and performing fault
identification for status 2 and 3 [19]. Table 1 presents both 90™ and 95" percentile limit for various gases,
namely hydrogen (H), methane (CH.), ethane (CzHs), ethylene (CzH4), acetylene (C2H>), carbon monoxide
(CO), and carbon dioxide (COy).

Table 2(a) shows gas concentration limit of the differences between two consecutive DGA values.

This table helps determine if there is an unusual gas rise in the transformer. In such cases, it is recommended
to take a confirmatory sample. Table 2(b) shows the rate of increase limit calculated using multi-point linear
regression, which eliminates variations introduced by the laboratory DGA analysis method. These tables are
useful in detecting the possibility of active gassing based on a series of DGA results.

2.2. Fault Identification using duval pentagon method

Fault identification in power transformers is essential for the reliable operation of the electricity grid
[21]. Transformers in DGA status 2 and DGA status 3 conditions must undergo fault identification. In this
research, a graphical fault identification method is employed, known as the DTM. There are five types of
DTM, namely duval triangle 1, 2, 3, 4, and 5. However, for analyzing transformer failures from insulation
oil, only duval triangle 1, 4, and 5 are used. Each method utilizes the percentages of three hydrocarbon gases
derived from five basic hydrocarbon gases to diagnose faults on the triangle plot [22].

The DTM uses three hydrocarbon gases for mapping fault identification. In DTM 1, as depicted in
Figure 2(a), methane (CH,) is used for diagnosing low-energy/temperature faults, ethylene (C,H4) for
identifying high-temperature faults, and acetylene (C,H;) for detecting faults with extremely high
temperatures or high energy, such as arcing faults [10], [23]. The triangles shown in Figure 2, is used to plot
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the percentages of these three gases. duval triangle 4, as depicted in Figure 2(b), employs methane (CHa),
ethane (CzHg), and hydrogen (H>). If the duval triangle 1 analysis indicates PD, T1, or T2 faults, additional
information can be obtained by combining it with the calculations from duval triangle 4 [20]. Similarly, duval
triangle 5, as depicted in Figure 2(c), utilizes methane (CH.), ethane (C;Hs), and ethylene (C;H4). If the duval
triangle 1 method indicates a T2 or T3 fault, deeper insights can be achieved by supplementing it with
calculations from duval triangle 5 [20].

100 — %CH, — [}

(@)

Figure 2. Graphical representation of: (a) duval triangle 1, (b) duval triangle 2, and (c) duval triangle 3 [20]

Description:
PD: partial discharge
T1: low-thermal fault (below 300 °C)
T2: medium-thermal fault (300 °C - 700 °C)
T3: high-thermal fault (above 700 °C)
D1: low-energy electrical discharge
D2: high-energy electrical discharge
DT: indetermine fault (mixtures of electrical/ thermal fault)
S: stray gassing at temperature <200 °C
C: possible paper carbonization
O: overheating <250 °C without carbonization of paper
ND: not defined
The percentages of each gas need to be determined. Calculation example for duval triangle 1 is
shown in (1)-(3):

%CH4=CH4/(CH4+C2H4+C2H2)X100% (1)
%C2H4=C2H4/(CH4+C2H4+Csz)X].OO% (2)
%C2H2=C2H2/(CH4+C2H4+Csz)X].OO% (3)

2.3. Random forest classifier implementations

The application of the DTM in fault identification can be done in several approaches, with a
prevalent technique involving manual calculations. Machine learning provides a different way to predict
faults in transformers using DTM. As part of its machine learning component, the RF classifier creates a
series of decision trees using a bootstrap sample of the training data [17], [24]. The RF algorithm is a
well-known and effective ensemble supervised classification method [25]. This method generates multiple
distinct decision trees, each acting as an independent classifier. The final decision is made by combining the
votes from all these decision trees. Figure 3 illustrates the scheme of RF implementation in the fault
identification of power transformers.

This scheme for RF processing starts with the insertion of 5 hydrocarbon gas concentrations, which
are then processed with the RF classifier to diagnose faults based on DTM. To achieve high precision in fault
determination using the RF network, selecting the right tuning parameters is mandatory [27]. The RF
algorithm is composed of an ensemble of decision trees, each built from a bootstrap sample drawn from the
training set. Using independent and identically distributed random vectors, this approach involves multiple
tree-structured classifiers. The selected parameters and their related values are shown in Table 3.
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Figure 3. RF implementation scheme [26]

Table 3. Variations of tuning parameters and observed values for RF model
Parameters Value
Number of trees 10, 50, 100, 500, 1000, and 2000
Sample leaf size 10, 20, and 30
Criterion Gini and entropy

Determining faults using the DTM requires a dataset to train and test the RF algorithm. The results
of testing are evaluated to determine the optimal approach for estimating DGA accuracy. The dataset
contains information on the actual fault types of transformers identified with the DTM and is provided for
duval triangles 1, 4, and 5, as shown in Table 4.

Table 4. Number of data sample
Data number

Fault type Duval triangle 1 Duval triangle 2 Duval triangle 3
PD 26 26 26
T1 30 - y
T2 48 - oL
T3 108 - 444
D1 520 - -
D2 400 -

DT 270 - -
s - 610 126
C - 403 268
o R 215 168

ND - 301 325

Total 1402 1555 1448

3. RESULTS AND DISCUSSION
3.1. Random Forest based duval triangle

First, RF models for duval triangle 1, 4, and 5 are developed. The development process begins by
deciding the leaf sample size, the criterion type, and the number of trees that will be compared to other
options to achieve the best classification accuracy [28]. A large number of trees in the forest can yield better
performance [13]. Cross-validation is conducted by comparing two parameters taken from the tuning
parameters in Table 3, which then produces a level of accuracy for each model. The results of a
cross-validation graph are used to select the best number of trees, leaf sample size, and criterion for duval
triangle 1, 4, and 5 RF models.

Figures 4 to 6 present graphical representation of the classification accuracy for three different leaf
sizes: 10, 20, and 30, implemented with various criteria. The graphs demonstrate that the best accuracy
results are achieved with a leaf size of 10 for all the DTM used. Based on the level of accuracy produced by
the three parameters being compared - namely, the number of trees, leaf sample size, and criterion type - it is
possible to conclude the following: for duval triangle 1, using entropy as the criterion type with a leaf sample
size of 10 and a total of 500 trees achieves an accuracy level of 0.969. For duval triangle 4, using entropy as
the criterion type with a leaf sample size of 10 and a total of 50 trees achieves an accuracy level of 0.996.
And for duval triangle 5, using entropy as the criterion type with a leaf sample size of 10 and a total of 100
trees achieves an accuracy level of 0.977.
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Figure 6. Classification accuracy between gini criterion (left) and entropy criterion (right) for duval triangle 5

3.2. Transformer dissolved gas analysis data

The data from DGA tests are essential for supporting the interpretation of transformer conditions
and diagnosing faults that have occurred. The collected DGA data include information about the age of the
transformer, the latest gas concentrations, the delta value of each gas, and the rate of gas increase for each
gas, as shown in Table 5. Dissolved gases analyzed in this research include Hz, CO, CoHa, C2Hz, COz, CoHs,
and CHs. The data in Table 5 was used to determine the condition of the transformers based on IEEE
C57.104-2019.
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Table 5. DGA data of 6 transformer case study

Case study  Age (year) Parameters H, CO C,H,4 C,H, CO, C,Hs CH,
T1 5 Gas concentration  21.00 226.00 2.00 0.00 2783.00 53.00 39.00
Deltas -9.58 201.57 2.00 0.00 1364.19 30.29 39.00
Rate of increase -60.13  23.78 0.40 0.00 570.42 8.70 -1.31
T2 6 Gas concentration 0.00 145.00 0.00 0.00 881.00 89.00 35.00
Deltas 4.48 126.79 0.00 0.00 2.14.00 57.05 35.00
Rate of increase 0.37 18.95 -0.12 0.00 189.58 8.58 4,92
T3 6 Gas concentration 0.00 104.00 2.00 0.00 386.00 27.00 14.00
Deltas -3.34 92.44 2.00 0.00 -298.94 15.15 11.11
Rate of increase -0.35 10.00 0.47 0.00 -193.25 -26.55 -16.29
T4 7 Gas concentration 0.00 64.00 0.00 0.00 782.00 20.00 10.00
Deltas -46.16 8.79.00 -416.14 0.00 323.31 -183.82 -214.46
Rate of increase -19.15 -17.67 -190.83 -0.10 -311.07 -88.81 -84.53
T5 6 Gas concentration ~ 85.00 217.00 2.00 0.00 1326.00 55.00 43.00
Deltas 78.86 194.70 2.00 0.00 -555.39 44.96 43.00
Rate of increase 18.65 16.69 0.47 0.00 172.46 8.49 6.99
T6 8 Gas concentration 0.00 179.00 4.00 0.00 2818.00 318.00 133.00
Deltas -3.04 158.41 291 0.00 715.61 201.97 121.17

Rate of increase 0.32 28.52 1.05 0.00 618.05 61.94 23.06

3.3. IEEE C57.104-2019 interpretation

The results of the interpretation of six case study transformers based on IEEE standards are status 1
to status 3, shown in Table 6. These outcomes were derived by examining the most recent gas concentrations,
deltas, and rates of gas increase for each dissolved gas within the transformers. The data were then compared
with the parameter table provided by IEEE C57.104-2019. According to the results, four transformers require
fault identification due to their condition being classified as either DGA status 2 or DGA status 3. These
transformers are transformer 1, transformer 2, transformer 5, and transformer 6.

Table 6. Interpretation result of fault identification
Transformer case study DGA condition  RF-based DTM interpretation

Transformer 1 DGA status 2 T1-N/D
Transformer 2 DGA status 3 T1-O
Transformer 3 DGA status 1 N/A
Transformer 4 DGA status 1 N/A
Transformer 5 DGA status 2 T1-S
Transformer 6 DGA status 3 T1-O0

3.4. Fault identification

To perform fault identification, the DTM with the RF algorithm is applied. The RF method is
developed as an application using PySimpleGUI as a module and Python as the programming language to
develop the user interface, as shown in Figure 7. This program was built to support fault identification using
the combined DTM with the RF classifier. Results are provided after all gas levels are inserted and the
“ANALYZE” button is clicked. The result column provides a conclusion of the fault diagnosis using DTM.

2 Fault Analysis - X
Duval Triangle Method Transformers Fault Analysis
Fault Identification
Gas Concentration (ppm)
i 2t | vz | ame |
CHy o
Fault Type T1-ND'
Duval Triangle 4 cannot defined the additional
CH, 0 fault happen on the transformer but it can be
taken from the result of Duval triangle 1 where
the main fault happen on Transformer are Low
CaHs z Resiit Thermal Fault (T1)
CiHe 53
Selct Dt Sample J cea0a |
| J|

Figure 7. Interface of transformer fault analysis program

Fault diagnosis of power transformer using random forest based combined classifier (Rahman Azis Prasojo)



28 a ISSN: 2302-9285

Table 6 shows the results of fault identification using combined DTM with the RF classifier on six
transformers. Transformers 3 and 4 did not identify any faults because these transformers were both in the
condition of dga status 1. According to IEEE C57.104-2019 standard calculations, transformers 1 and 5 both
received dga status 2. Transformer 1°s status was due to C,Hg gas concentration values of 53.00 ppm and
delta gas concentrations of C,Hs and CH4 exceeding the parameter limits. For transformer 5, it was due to Hy
and C;Hs gas concentrations of 85 ppm and 55 ppm, respectively, which exceeded the gas concentration
normal limit. The identification of faults in these cases involved additional investigation to assess the
possibility of faults occurring in the transformers. The fault diagnosis results for transformer 1 indicated a
low-thermal fault (T1)<300 °C in duval triangle 1 and not defined (ND) detected in duval triangle 4, thus
referring the fault diagnosis for this transformer to duval triangle 1. For transformer 5, a T1<300 °C was
detected in duval triangle 1 and stray gassing (S) in duval triangle 4, leading the fault diagnosis for this
transformer to refer to duval triangle 4. Maintenance recommendations were acquired by addressing the
matter as increasing the frequency of DGA tests, and minimizing the heat production of the transformer.

Transformers 2 and 6 both received a DGA status 3. This status was assigned due to the high
concentration levels of CyHg gas, measured at 89.00 ppm and 318 ppm, respectively. The identification of
faults in these cases is crucial to determine potential issues in the transformers. The results of the fault
diagnosis for transformers 2 and 6 indicated a T1<300 °C in duval triangle 1 and O<250 °C in duval triangle
4. Therefore, the fault diagnosis for these transformers refers to duval triangle 4, leading to maintenance
recommendations that should be treated as urgent issues. These recommendations include reducing heat
production in the transformer, increasing the frequency of DGA testing, and monitoring the growth of DGA
in the transformer oil.

4. CONCLUSION

The RF-based duval method was utilized to identify the condition of transformers using DGA test
from the insulating oil samples of UIT JBM-East Java, Bali, and Madura transmission main unit
transformers. To apply a RF model, three datasets were created. The outcomes demonstrate that the optimal
leaf size and criterion for all DTM are typically 10 with an entropy criterion. Duval triangle 1 with 500 trees
achieved 96% accuracy, duval triangle 4 with 50 trees achieved 99% accuracy, while duval triangle 5 with
100 trees achieved 97% accuracy. Interpretation using IEEE C57.106-2019 was performed to determine the
condition of the transformers. The analysis revealed that transformers 1, 2, 5, and 6 exhibited abnormal
conditions, which are categorized as DGA status 2 and DGA status 3. Implementing the duval triangle with a
RF classifier resulted in the identification of a T1 in transformer 1. Transformer 5 showed a stray gassing (S)
fault diagnosis, and transformers 2 and 6 exhibited O<250 °C. This research offers promising advancements
for the field of power transformer fault diagnosis. The integration of the DTM with a RF classifier has
demonstrated the potential to increase diagnostic accuracy, particularly in complex fault scenarios. This
enhanced accuracy could lead to more informed maintenance strategies, ultimately improving power grid
reliability. This means fewer disruptions, reduced costs associated with major repairs, and increased safety
due to the proactive identification of potential transformer failures. The future research is expected to be
accomplished using a RF model with a multi-method DGA model, which combining the results of the duval
triangle, duval pentagon, roger ratio method, and International Electrotechnical Commission (IEC) ratio
method.
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