
Bulletin of Electrical Engineering and Informatics 

Vol. 14, No. 1, February 2025, pp. 316~327 

ISSN: 2302-9285, DOI: 10.11591/eei.v14i1.8464      316  

 

Journal homepage: http://beei.org 

Analysis of human emotions through speech using deep learning 

fusion technique for Industry 5.0 
 

 

Chevella Anil Kumar, Vumanthala Sagar Reddy, Ambati Pravallika, Rao Y. Chalapathi, Neelam 

Syamala  
Department of Electronics and Communication Engineering, Vallurupally Nageshwara Rao Vignana Jyothi Institute of Engineering and 

Technology, Hyderabad, Telangana, India 
 

 

Article Info  ABSTRACT  

Article history: 

Received Mar 14, 2024 

Revised Oct 5, 2024 

Accepted Oct 17, 2024 

 

 Emotions are important for human well-being and social connections. This 

work focuses on the issue of effectively understanding emotions in human 

speech, specifically in the context of Industry 5.0. Traditional approaches 

and machine learning (ML) techniques for identifying emotions in speech 

are limited, such as the requirement for complicated feature extraction. 

Traditional methods yield recognition accuracies of no more than 90% 

because to the restricted extraction of temporal/sequence information. This 

paper suggests a ground-breaking fusion-based deep learning (DL) method 

to overcome these limitations. Specifically, one-dimensional (1D) and two-

dimensional (2D) convolution neural network (CNN) can automatically 

extract significant characteristics and handle enormous datasets in real time. 

Furthermore, a fusion-based DL network, speech emotion recognition deep 

learning fusion network (SER_DLFNet), has been proposed, which 

combines CNN with long short-term memory (LSTM) to collect sequence 

information and increase recognition accuracy. The proposed model shows 

impressive results, with a test accuracy of 95.52% on the ryerson audio-

visual database of emotional speech and song (RAVDESS) dataset. This 

research contributes to the advancement of more precise and efficient 

emotion identification algorithms for voice analysis, especially within the 

framework of Industry 5.0. 
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1. INTRODUCTION  

The goal of speech emotion recognition (SER) is to develop automatic systems that can recognise 

and interpret speech signals that represent different emotional states, including fear, surprise, disgust, rage, 

happiness, sadness, and neutrality. Numerous applications exist for SER, including mental health assessment 

and human-computer interaction. Additionally, they can design more efficient virtual assistants that can 

modify their responses to reflect the user’s attitude. The emotional content of speech can also be used to 

identify mental diseases. It can also be applied in market research to find out how people feel about 

advertisements or messaging about products. In the SER context, deep learning (DL) has become more 

important, as it can learn features from raw speech data automatically, which helps to improve emotion 

recognition accuracy. 

https://creativecommons.org/licenses/by-sa/4.0/
mailto:vsagarreddy1990@gmail.com
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Research has demonstrated that DL models exhibit greater resilience to noise and voice signal 

variance than typical machine learning (ML) techniques. Additionally, they perform better because they scale 

well with huge datasets, which improves generalisation for DL feature extraction, numerous network models 

and architectures are feasible. Figure 1 illustrates the proposed SER system, which features our developed 

model, speech emotion recognition deep learning fusion network (SER_DLFNet) - a novel, customized DL 

network that utilizes fusion-based architecture. 
 
 

 
 

Figure 1. SER system 
 
 

To identify the emotions expressed in speech data, we used a fusion based DL network model 

SER_DLFNet in this suggested framework, which combines one- and two-dimensional (1D and 2D) 

convolution neural network (CNN)+long short-term memory (LSTM) architectures. When handling 1D time-

series data, such audio signals in the speech emotion detection task, 1D convolutional neural networks (1D-

CNNs) are very helpful. 1D-CNNs assist in finding patterns and traits that are relevant for emotion recognition 

by effectively extracting relevant features from audio signals [1]. In contrast, 2D convolutional neural networks 

(2D-CNNs) can analyse 2D input data, including images, and are especially useful for analysing spectrograms, 

also known as Mel-spectrograms, which are frequently used in SER applications. Spectrograms can be viewed 

as visuals and are used to represent audio signals in the time-frequency domain. Thus, 2D-CNNs demonstrate 

that they are effective in examining spectrograms for emotion recognition, as they have demonstrated a 

propensity for producing accurate outcomes [2], [3]. In SER tasks, 1D-CNNs and 2D-CNNs [3] are both 

important. The former is used for extracting features from raw audio signals, while the latter is used for 

spectrogram or Mel-spectrogram analysis. The overall efficacy of the framework is enhanced by the fusing of 

these CNNs with the LSTM, as suggested in fusion-based network model SER_DLFNet. 

 

 

2. LITERATURE 

Speech is among the most popular and organic forms of interpersonal communication. It conveys a 

lot about the speaker’s thoughts, feelings, and goals. To develop a speech emotion detection system, it is 

essential to surmount the challenging challenge of identifying and extracting emotion-related data from 

speech [4]. SER is based on linear prediction cepstrum coefficients, fundamental frequency (F0), and Mel 

frequency cepstral coefficiens (MFCCs), which are commonly employed for emotion recognition from 

speech. Various methodologies were utilized to extract emotion from speech, with each study employing a 

unique array of speech variables [5]. In recent years, DL algorithms [6] have proven to be quite helpful in 

this field. Affective computing holds that for machines to function well, they need to be able to identify 

emotions. For instance, using robots to assist with elderly care or as hospital porters requires a high level of 

environmental awareness. Human expressions on the face and in voice convey a person’s inner feelings [7]–[9]. 

DL has the potential to greatly improve natural language communication as well as human-machine 

interactions. 

The extraction and classification of features are the two most important phases in the SER process. 

Many properties, including as prosodic traits, source-based excitation features, and linguistic elements, were 

found at the initial stages of speech processing. For feature classification, both linear and nonlinear classifiers 

are used in the second step. The maximum-likelihood principle, Bayes networks, and support vector machine 

(SVM) models are the three most commonly utilized classification techniques for emotion recognition [10]. 

It’s common to think of speech as a non-stationary signal. Non-linear classifiers [11] are best option for 

classification. Gaussian mixture model (GMM) and the hidden Markov model are examples of non-linear 

classifiers [11]–[13]. Classical ML techniques based on GMM models, such as SVMs [12], [14], [15] 

artificial neural networks (ANNs), and GMM models have shown excellent success in SER tasks. However, 

there are inherent limits to the ability of technologies to accurately identify emotional states in speech. ML 

and artificial intelligence (AI) algorithms are putting a lot of effort into improving the accuracy of voice-

based emotion recognition. Unlike traditional methods, DL algorithms extract features without human 

intervention, in contrast to conventional approaches. 

DL algorithms have been proposed as a solution to the accuracy issues with regular ML algorithms. 

The intelligent DL environment analyses human emotions using voice analysis using a CNN [17], and LSTM 

[16], [17]. Numerous research projects on DL for speech-based emotional analysis have been carried out in 
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light of the AI technology’s explosive rise. At the moment, some progress has been made in identifying 

emotions using DL techniques based on speech. For instance, utilizing DL and cognitive wireless 

frameworks, Hossain and Muhammad [18] created an audio-visual emotion identification system [19]. This 

technology was able to automatically interpret a patient’s emotional state by looking at their facial 

expressions. After putting the strategy to the test, they were able to show that it would help the expansion of 

online healthcare. Khalil et al. [4] offered additional details and a brief synopsis of the research on DL for 

SER in 2019. Ntalampiras [20] used behavioral analogies to construct a twin neural network for voice 

emotion recognition. 

A unique temporal modelling framework for robust emotion categorization was presented by  

Zheng et al. [21]. It incorporates CNN, capsule networks, and a bidirectional LSTM network (BLSTM) [22], 

[23]. The goal of this approach is to effectively manage speech signals’ temporal dynamics and to give a 

cutting-edge technique for identifying the extracted patterns, with an accuracy of 69.40%. A novel 

framework for SER was presented by Mustaqeem et al. [22]. It selects crucial sequence segments by 

evaluating the similarity measures of radial basis function networks (RBFNs) in clusters. The short-time 

Fourier transform (STFT) algorithm is then used to convert the chosen sequence into a spectrogram, which is 

subsequently input into a CNN to extract significant and discriminative characteristics from the spoken 

spectrogram. After the features are standardised, a deep BiLSTM network is trained with them. This network 

learns the temporal information needed to identify the final emotion state with 91.14% accuracy. 

 

 

3. METHOD 

The entire architecture of the proposed network, which consists of LSTM, 1-D and 2-D CNN, is 

depicted in Figure 2. We proposed a fusion based DL network model (SER_DLFNet) that includes a local 

feature learning block (LFLB) shown in Figure 3 comprising a convolutional layer, Max-pooling, exponential 

linear unit (ELU) and batch normalization (BN) layer for extracting local features. Additionally, the model 

integrates an LSTM network to capture long-term dependencies from the sequence of local features.  
 

 

  
  

Figure 2. Architecture of SER_DLFNet, *audio clips 

(1D signal)=AC, *log Mel-spectrogram (2D 

signal)=LMS 

Figure 3. LFLB 

 

 

3.1.  Deep learning of features 

Combining LFLB and LSTM allows for the learning of both local and global characteristics from raw 

audio samples. The core component of LFLB is the convolution layer, which is made to analyse data in a grid 

format. It is capable of learning a sequence feature in which every feature member is determined by a limited 

number of nearby input members. Every feature of the learnt feature is a function of the output’s prior features, 

in contrast to LSTM, which is designed to handle a series of values. Thus, by combining the LSTM and CNN, 

we may learn high-level features that incorporate both local and long-term contextual dependencies. 

 

3.1.1. Acquisition of local features 

The LFLB shown in Figure 3 incorporates essential layers like convolution and pooling, with 

convolution emphasizing connectivity and weight sharing. The BN layer enhances deep neural network 

performance and stability by normalizing activations in each batch. This helps maintain mean and standard 

deviation close to 0 and 1 respectively. The BN layer output is specified by the ELU layer, which, unlike 

most activation functions, permits negative values, which approaches 0 for mean activations for faster 

learning and improved accuracy. The pooling layer strengthens features, making them less susceptible to 

distortion and noise; the most widely utilized nonlinear function is max-pooling that outputs the greatest 

values from sub-regions. For 1D input signal, the output of CNN in LFLB calculated as (1): 
 

𝑞(𝑛) = 𝑝(𝑛) ∗ 𝑤(𝑛) = ∑ 𝑝(𝑚). 𝑤(𝑛 −𝑚)𝑙
𝑚=−𝑙   (1) 
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where 𝑞(𝑛) represents the output of the CNN layer for an input signal 𝑝(𝑛), obtained by convolving using a 

Kernel 𝑤(𝑛) of size 𝑛. 

On the other hand, in the case of 2D-CNN, where 𝑝(𝑖, 𝑗) input to the 2D convolution layer, the 

output 𝑞(𝑖, 𝑗) can be obtained by convolving 𝑝(𝑖, 𝑗) with the Kernel 𝑤(𝑖, 𝑗).  
 

𝑞(𝑖, 𝑗) = 𝑝(𝑖, 𝑗) ∗ 𝑤(𝑖, 𝑗) = ∑ ∑ 𝑝(𝑠, 𝑡). 𝑤(𝑖 − 𝑠, 𝑗 − 𝑡)𝑚
𝑡=−𝑚

𝑙
𝑠=−𝑙   (2) 

 

Next, it normalizes the activations of the previous layer at each batch by feeding the convolved features into 

the BN layer. The convolved characteristics variance and mean are maintained by the BN layer near one and 

zero, respectively. Following the normalized features application of the ELU layer, the final features are 

stated as (3): 
 

𝑓𝑖
𝑙 = 𝜎(𝐵𝑁(𝑏𝑖

𝑛 + ∑ 𝑓𝑗
n−1 ∗ 𝑤𝑖𝑗

𝑛)𝑗   (3) 

 

where 𝑓𝑖
𝑙 and 𝑓𝑗

n−1denote the 𝑛𝑡ℎ output feature at the 𝑛𝑡ℎ  layer and the 𝑗𝑡ℎ input feature at the (n − 1)𝑡ℎ 

layer, respectively; 𝑤𝑖𝑗
𝑛  represents the convolution Kernel between the 𝑖𝑡ℎ and 𝑗𝑡ℎ features. The normalization 

features achieved using the function BN (⋅). The ELU activation function can be expressed as (4): 
 

𝜎(𝑥) = {
𝑥𝑥≥0

𝛼(𝑒𝑥 − 1)𝑥<0
  (4) 

 

Euler’s number, 𝑒, implies there needs to be a positive extra alpha constant (> 0). The pooling layer performs 

the down-sampling function, which reduces the resolution of the feature. For a given pooling region with 

index 𝑘, the input feature of the lth max-pooling layer, denoted as ℎ𝑝
𝑙 , transforms into the output feature of 

the lth pooling layer ℎ𝑘
𝑙 . Features of the max-pooling layer are as (5): 

 

ℎ𝑘
𝑙 = 𝑚𝑎𝑥

∀𝑃∈𝛺𝑘
ℎ𝑝
𝑙   (5) 

 

3.1.2. Global feature learning  

The LSTM architecture is employed to capture prolonged dependencies among sequences, and it is 

layered on top of the LFLB to grasp contextual dependencies from the acquired local feature sequences. The 

LSTM efficiently incorporates or discards information from the block state by utilizing input, output, forget, 

and cell states. Multiple equations describe the procedure for updating an LSTM unit [24], [25]. Expressing 

the connection between the inputs and outputs of an LSTM unit can be done as (6) to (11): 
 

𝑖𝑡 = 𝜎(𝑤𝑖[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (6) 
 

𝑐̂𝑡 = 𝑡𝑎𝑛ℎ(𝑤𝑐[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐) (7) 
 

𝑐𝑡 = 𝑓𝑡 ∗ 𝑐𝑡−1 + 𝑖𝑡 ∗ 𝑐̂𝑡 (8) 
 

𝑓𝑡 = 𝜎(𝑤𝑓 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) (9) 
 

𝑜𝑡 = 𝜎(𝑤𝑜 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) (10) 
 

ℎ𝑡 = 𝑜𝑡 ∗ 𝑡𝑎𝑛ℎ( 𝑐𝑡) (11) 
 

In the context where ct signifies the LSTM unit state, w and b are parameter matrices and vectors, 

𝑓𝑡, it, and 𝑜𝑡 represent gate vectors, 𝜎 denotes the sigmoid function, and 𝐶 and ℎ are hyperbolic tangents, the 

Hadamard product is denoted by ∗. 

 

3.2.  Dataset 

A public repository of recordings of emotional speech and song is RAVDESS. A range of emotions, 

including happy, neutral, sad, surprised, fearful, angry, and disgusted, are portrayed by 24 professional 

performers, both in speech and song. The actors, who are fluent in English, were asked to record the different 

emotions. For every emotion, three types of modalities are offered: audio-only, video-only, and audio-video. 

To train our model to identify and categorise various emotions in speech data, we utilised a dataset that 

contained only audio. 

The audio-only speech dataset consists of 1440 “.wav” files, each having a resolution of 16 bits and 

a sampling rate of 48 kHz. These files constitute a total of 1440 trials, distributed among 24 performers, with 

each performer contributing 60 trials. The dataset includes 60 speech recordings for each emotion, featuring 
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30 recordings by female speakers and 30 by male speakers. Each recording involves two statements: 01=dogs 

are sitting by the door and 02=kids are talking by the door [26]. Here, the Figures 4 and 5 display various 

emotional speech files along with their corresponding spectrograms from the RAVDESS dataset. 
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Figure 4. Angry emotional speech signal along with their corresponding spectrograms 
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Figure 5. Fear emotional speech signal along with their corresponding spectrogram 

 

 

4. EXPERIMENTAL STUDIES 

Before building the proposed fusion based network model using 1D-CNN and 2D-CNN, we trained 

and evaluated the emotional voice dataset, comparing their accuracies to the proposed network model 

SER_DLFNet which consists of 1D and 2D CNNs+LSTM. The 1D network processes 1D audio vectors, 

whereas the 2D network processes spectrograms. Figures 6 and 7 shows how the LFLB collects local 

features, which are then input into the LSTM layer to capture global features and contextual dependencies. 

The LSTM output includes both immediate and a long-term background data. An additional fully 

interconnected layer connects directly to the LSTM layer. 
 

𝑧𝑙 = 𝑏𝑡 + 𝑧𝑙−1. 𝑤𝑡  (12) 
 

Lastly, a softmax layer is employed to classify the emotion of the input data, determining the 

prediction probability for each class. The class label y has various potential interpretations. The Softmax 

function can be defined as in (14), and ultimately, the predicted class label 𝑦̃  is computed using (15).  
 

𝑧𝑖 = ∑𝑤𝑗𝑖 ∗ ℎ𝑗  (13) 
 

𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑧𝑖) = 𝑝𝑖 = 
𝑒𝑧𝑖


=

k

j

z je
0

, 𝑖 = 0,1…  (14) 

 

𝑦̃̃ = 𝑎𝑟𝑔max
𝑖

𝑝𝑖  (15) 
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Figure 6. 1D CNN+LSTM 
 

 

 
 

Figure 7. 2D CNN+LSTM 
 

 

To reduce the hazards of overfitting and underfitting in trials, numerous innovative solutions have 

been proposed. Overfitting happens when a model memorizes data rather than improving prediction, which is 

usually caused by a complex or overtrained deep network. Methods like cross-validation, regularization, BN, 

and early pausing are employed to overcome this. The experimental data used in our investigation was split at 

random into two sets: training (80%) and testing (20%) for SER with good accuracy and generalization. Only 

accurate models are recorded to avoid overfitting, which occurs when extensive training leads to poor 

performance on new data. Early stopping checks model performance on a validation dataset and stops 

training when the validation error no longer improves. 

 

 

5. EXPERIMENTAL RESULTS 

The SER_DLFNet, a fusion-based DL network for SER, was designed, trained, and evaluated with 

RAVDESS. The model’s performance was evaluated using objective metrics such as average accuracy, 

precision, and recall. The number of training epochs in our proposed network was chosen iteratively by 

experimenting with different numbers and comparing performance on a validation dataset. After evaluating 

various epoch settings, it was discovered that the model with 500 epochs achieved the best balance of 

underfitting and overfitting, resulting in optimal performance on the validation dataset. The hybrid 

CNN+LSTM networks were trained and evaluated on the RAVDESS emotional speech dataset, which 

contains audio clips sampled at a rate of 16 kHz and with a fixed duration of eight seconds. If an audio clip 

exceeds eight seconds, it is segmented down, while shorter clips are padded to meet the eight-second length. 

At the 16 kHz sample rate, a 128,000-bit vector describes each audio clip. 

The FFT window length is configured to 2048, with a hop length of 512 during the calculation of 

the log-Mel spectrogram. This process produces a log-Mel spectrogram comprising 251 frames and 128 Mel 

frequency bins. The visualization of the log-Mel spectrogram can be presented as either a grid or a sequence 

for analysis. In our experiments, the 128×251 matrices served as input to the 2D Hybrid network, enabling 

the 2D-CNN+LSTM network to learn high-level features from these image-like patches. 
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5.1.  1D-CNN 

The proposed 1D CNN model for SER consists of six convolutional layers, each utilizing a Kernel 

size of 1×5, followed by a single fully connected layer. This design incorporates zero padding and ReLu 

activation functions to preserve information along the edges. Additionally, the model employs maximum 

pooling with a size of 1×8, complemented by a dropout rate of 0.1 and BN. Through training this network 

model for 500 epochs, an impressive average accuracy of 85.47% was achieved. The corresponding 

confusion matrix for the network model, demonstrating an accuracy matching the aforementioned 

percentage, is presented in Figure 8. These parameters collectively contribute to the effectiveness of the 

proposed 1D CNN model in recognizing emotions from speech. 

 

 

 
 

Figure 8. Confusion matrix of 1D-CNN 

 

 

5.2.  2D-CNN 

In the realm of 1D CNN, the convolution operation is limited to a single direction, whereas the 2D 

CNN’s convolution Kernel operates in two dimensions, opening possibilities for applications in studying 

time series data. The experiment was structured with six convolution layers, each featuring a 3×3 filter size, 

zero padding to preserve edge information, and ReLU activation. The max-pooling procedure, executed on a 

2×2 matrix, incorporated a dropout of 0.1 and BN. Training the network model for 500 epochs yielded an 

impressive accuracy of 88.36%. The accompanying confusion matrix, illustrated in Figure 9, provides a 

visual representation of the network model’s enhanced accuracy. This configuration demonstrates the 

efficacy of the 2D CNN model in handling time series data and achieving improved performance in emotion 

recognition tasks. 

 

 

 
 

Figure 9. Confusion matrix of 2D-CNN 

 

 

At last, LFLBs and LSTM were combined to create hybrid DL network models. Every LFLB 

included a single stride, a 3×3 filter size, and no padding. Tables 1 and 2 illustrate strutures of LFLB and 

LSTM, that the first and second LFLBs each had 64 convolution Kernels, the third and fourth LFLBs had 

128 convolution Kernels, and the fifth and sixth LFLBs had 256. Following training and testing, the 

suggested network models’ effectiveness was assessed using objective metrics on the RAVDESS database 

across a range of epoch counts. 
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Table 1. Structure of 4 LFLB+LSTM 
Block name  Output dimension Kernel size Stride 

LFFB1 1C1 L×64 3×3 1×1 
 1P1 L/4×64 4×4 4×4 

LFFB2 1C2 L/4×64 3×3 1×1 

 1P2 L/16×64 4×4 4×4 
LFFB3 1C3 L/16×128 3×3 1×1 

 1P3 L/64×128 4×4 4×4 

LFFB4 1C4 L/64×128 3×3 1×1 
 1P4 L/256×128 4×4 4×4 

L  - 256×1 - 

F  - K - 

 

 

Table 2. Structure of 6 LFLB+LSTM 
Block name  Output dimension Kernel size Stride 

LFFB1 1C1 L×64 3×3 1×1 

 1P1 L/4×64 4×4 4×4 

LFFB2 1C2 L/4×64 3×3 1×1 

 1P2 L/16×64 4×4 4×4 
LFFB3 1C3 L/16×128 3×3 1×1 

 1P3 L/64×128 4×4 4×4 
LFFB4 1C4 L/64×128 3×3 1×1 

 1P4 L/256×128 4×4 4×4 

LFFB5 1C5 L/256×128 3×3 1×1 
 1P5 L/256×128 4×4 4×4 

LFFB6 1C6 L/512×256 3×3 1×1 

 1P6 L/512×256 4×4 4×4 
L  - 512×1 - 

F  - K - 

 

 

5.3.  1D-CNN+LSTM 

Initially, a 1D-CNN+LSTM network model was introduced with 4LFLB+LSTM layers, 64 fully 

connected neurons, a batch size of 32, and a learning rate of 0.0001 utilizing the stochastic gradient descent 

optimizer. The model was trained for several epochs, yielding accuracies of 77.35%, 78.65%, 90.94%, and 

71.80% for 50, 100, 300, and 500 epochs, respectively. However, due to underfitting, the model’s accuracy 

varied over epochs, resulting in frequent misclassification of some classes and contributing to the network 

model’s overall low accuracy. To improve the model’s performance, we did additional training on the most 

complex emotional classes, such as cases where happy was commonly misclassified as neutral and fear as 

anger. This involved fine-tuning hyperparameters to achieve the optimal balance between underfitting and 

overfitting, leading to improved performance on the validation dataset. 

The network parameters were modified to include 6LFLB+LSTM layers, a batch size of 32, and a 

learning rate of 0.001. The model was then retrained for 50, 100, 300, and 500 epochs, yielding accuracy 

rates of 79.96%, 81.53%, 91.51%, and 80.25%, respectively. Figure 10 shows the accuracy vs the number of 

epochs for the 1D-CNN+LSTM, which includes two distinct networks. Furthermore, Figure 11 depicts the 

confusion matrix for improved accuracy of the 1D-CNN+LSTM network model after 300 epochs, with an 

average accuracy of 91.51%, precision of 91.62%, and recall of 91.50%. 

 

 

 
 

Figure 10. 1D-CNN and LSTM: accuracy vs epochs 
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Figure 11. Confusion matrix of 1D-CNN and LSTM for 300 epochs with 6 LFLB and LSTM 

 

 

5.4.  2D-CNN+LSTM 

In a manner similar to the 1D-CNN+LSTM network model, the 2D-CNN+LSTM network model 

also underwent an initial configuration. A network with 4LFLB+LSTM layers was proposed, featuring 64 

fully connected neurons, a batch size of 32, a learning rate of 0.0001, and a momentum of 0.9. Stochastic 

gradient descent optimizer was utilized, and the model was trained for different epoch counts, yielding 

accuracies of 79.50%, 82.45%, 93.64%, and 85.72% for 50, 100, 300, and 500 epochs, respectively. 

To improve the model’s performance, we modified the architecture to 6LFLB+LSTM and trained it 

again on the most complicated emotional classes. This involved adding two additional LFLBs while keeping 

the same hyperparameters as the 2D 4LFLB+LSTM configuration. The corresponding accuracies for 50, 100, 

300, and 500 epochs were 80.85%, 84.76%, 95.52%, and 87.95%. Table 3 summarizes the proposed model 

accuracies across various epoch counts. Figure 12 shows the accuracy versus the number of epochs for the 

1D-CNN+LSTM, which uses two distinct networks. Furthermore, Figure 13 depicts the confusion matrix for 

the enhanced accuracy network model after 300 epochs, with an average accuracy of 95.52%, precision of 

95.61%, and recall of 95.51%. 

 

 

Table 3. CNN and LSTM model accuracies vs Number of Epochs 

Number 
of epochs 

1D-CNN and LSTM 2D-CNN and LSTM 

Categorical accuracy of 
4LFLB+LSTM network 

(%) 

Categorical accuracy of 
6LFLB+LSTM network 

(%) 

Categorical accuracy of 
4LFLB+LSTM network 

(%) 

Categorical accuracy of 
6LFLB+LSTM network 

(%) 

50 77.35 79.96 79.50  80.85 
100 78.65 81.53 82.45  84.76  

300 90.94 91.51 93.64 95.52 

500 71.80 80.25 85.72  87.95  

 

 

  
  

Figure 12. 2D-CNN and LSTM: accuracy vs 

epochs 

Figure 13. Confusion matrix of 2D-CNN and LSTM for 

300 epochs with 6 LFLB and LSTM 
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6. RESULT ANALYSIS 

Initially, each model was given a unique architecture and set of hyperparameters before being 

trained over a number of epochs. Accuracy levels were documented to evaluate each network model’s first 

performance. Subsequently, to improve the performance of each network model, the architecture and 

hyperparameters were fine-tuned, with an emphasis on reducing confusion in specific classes. This 

adjustment resulted in significant improvements in the accuracy of the network models. Table 4 provides a 

succinct overview of the proposed network models, including their best accuracies. The findings demonstrate 

that the 2D hybrid network outperforms existing established methods in terms of accuracy, precision, and 

recall. 

 

 

Table 4. Different proposed network models accuracies for proposed system 
Objective metrics\network model 1-D CNN 2-D CNN 1-D CNN and LSTM 2-D CNN and LSTM 

Accuracy 85.47 88.36 91.51 95.52 
Precision 85.79 88.46 91.62 95.61 

Recall 85.42 88.28 91.49 95.50 

 

 

In this study, the proposed model was compared with existing DL algorithms, as presented in Table 5. 

In our proposed model, the use of the ELU activation function, rather than ReLU, has played a critical role in 

achieving superior accuracy compared to earlier studies by Zeng et al. [26] who employed a single CNN, and 

by Jalal et al. [27] and Mustaqeem et al. [22], who used a hybrid network model (CNN+LSTM) with ReLU 

activation function and only three convolution layers in their models with two LSTM layers [3]. ELU has a 

significant benefit over ReLU in that it allows for the generation of negative outputs, which allows the neural 

network to comprehend more complex and expressive characteristics. The ELU activation function produces 

smoother outputs than ReLU and addresses the issue of dying ReLU, in which certain ReLU neurons become 

inactive and emit zero outputs during training, resulting in a dormant neuron that contributes little to the 

network’s learning process [16]. 

 

 

Table 5. Comparison of proposed versus other model performances on RAVDESS 
Method Accuracy (%) Precision (%) Recall (%) 

Zeng et al. [26] 64.48 - - 

Jala et al. [27] 69.40 - - 

Mustaqeem et al. [22] 91.14 - - 
Proposed model 95.52 95.61 95.50 

 

 

7. CONCLUSION 

This chapter examines 1D CNN, 2D CNN, 1D CNN and LSTM, and 2D CNN and LSTM DL 

network models for SER. The goal is to understand local correlations and global context using both raw 

audio recordings and speech signal spectrograms. To capture local features, a LFLB is used and an LSTM 

layer handles the global features, which consists of context dependent information. Initially, each model was 

proposed with a distinct architecture and set of hyperparameters, and it was trained over a variety of epoch 

counts. The resulting accuracies were measured to assess the network models’ performance. To improve the 

efficacy of each network model, the architecture and hyperparameters were fine-tuned, with a focus on 

addressing the issues presented by the most confusing classes. This adjustment resulted in significant 

improvements in the accuracy of the network models. It is critical to understand that the appropriate 

architecture and hyperparameters for a DL network model might differ depending on the task and dataset. As 

a result, testing with various configurations is necessary to determine the most effective one, taking into 

account aspects such as the quality and quantity of training data. 
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