Bulletin of Electrical Engineering and Informatics
Vol. 14, No. 1, February 2025, pp. 316~327
ISSN: 2302-9285, DOI: 10.11591/eei.v14i1.8464 a 316

Analysis of human emotions through speech using deep learning
fusion technique for Industry 5.0

Chevella Anil Kumar, Vumanthala Sagar Reddy, Ambati Pravallika, Rao Y. Chalapathi, Neelam

Syamala
Department of Electronics and Communication Engineering, Vallurupally Nageshwara Rao Vignana Jyothi Institute of Engineering and
Technology, Hyderabad, Telangana, India

Article Info ABSTRACT

Article history: Emotions are important for human well-being and social connections. This
. work focuses on the issue of effectively understanding emotions in human

Received Mar 14, 2024 speech, specifically in the context of Industry 5.0. Traditional approaches

Revised Oct 5, 2024 and machine learning (ML) techniques for identifying emotions in speech

Accepted Oct 17, 2024 are limited, such as the requirement for complicated feature extraction.

Traditional methods yield recognition accuracies of no more than 90%
because to the restricted extraction of temporal/sequence information. This
Keywords: paper suggests a ground-breaking fusion-based deep learning (DL) method
to overcome these limitations. Specifically, one-dimensional (1D) and two-
dimensional (2D) convolution neural network (CNN) can automatically
extract significant characteristics and handle enormous datasets in real time.

Acrtificial intelligence
Convolutional neural network

Emotion recognition Furthermore, a fusion-based DL network, speech emotion recognition deep
Long short-term memory learning fusion network (SER_DLFNet), has been proposed, which
Ryerson audio-visual database combines CNN with long short-term memory (LSTM) to collect sequence
of emotional speech and song information and increase recognition accuracy. The proposed model shows

impressive results, with a test accuracy of 95.52% on the ryerson audio-
visual database of emotional speech and song (RAVDESS) dataset. This
research contributes to the advancement of more precise and efficient
emotion identification algorithms for voice analysis, especially within the
framework of Industry 5.0.

This is an open access article under the CC BY-SA license.

©00

Corresponding Author:

Vumanthala Sagar Reddy

Department of Electronics and Communication Engineering

Vallurupally Nageshwara Rao Vignana Jyothi Institute of Engineering and Technology
Hyderabad, Telangana, India

Email: vsagarreddy1990@gmail.com

1. INTRODUCTION

The goal of speech emotion recognition (SER) is to develop automatic systems that can recognise
and interpret speech signals that represent different emotional states, including fear, surprise, disgust, rage,
happiness, sadness, and neutrality. Numerous applications exist for SER, including mental health assessment
and human-computer interaction. Additionally, they can design more efficient virtual assistants that can
modify their responses to reflect the user’s attitude. The emotional content of speech can also be used to
identify mental diseases. It can also be applied in market research to find out how people feel about
advertisements or messaging about products. In the SER context, deep learning (DL) has become more
important, as it can learn features from raw speech data automatically, which helps to improve emotion
recognition accuracy.
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Research has demonstrated that DL models exhibit greater resilience to noise and voice signal
variance than typical machine learning (ML) techniques. Additionally, they perform better because they scale
well with huge datasets, which improves generalisation for DL feature extraction, numerous network models
and architectures are feasible. Figure 1 illustrates the proposed SER system, which features our developed
model, speech emotion recognition deep learning fusion network (SER_DLFNet) - a novel, customized DL
network that utilizes fusion-based architecture.
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Figure 1. SER system

To identify the emotions expressed in speech data, we used a fusion based DL network model
SER_DLFNet in this suggested framework, which combines one- and two-dimensional (1D and 2D)
convolution neural network (CNN)+long short-term memory (LSTM) architectures. When handling 1D time-
series data, such audio signals in the speech emotion detection task, 1D convolutional neural networks (1D-
CNNs) are very helpful. 1D-CNNs assist in finding patterns and traits that are relevant for emotion recognition
by effectively extracting relevant features from audio signals [1]. In contrast, 2D convolutional neural networks
(2D-CNNss) can analyse 2D input data, including images, and are especially useful for analysing spectrograms,
also known as Mel-spectrograms, which are frequently used in SER applications. Spectrograms can be viewed
as visuals and are used to represent audio signals in the time-frequency domain. Thus, 2D-CNNs demonstrate
that they are effective in examining spectrograms for emotion recognition, as they have demonstrated a
propensity for producing accurate outcomes [2], [3]. In SER tasks, 1D-CNNs and 2D-CNNs [3] are both
important. The former is used for extracting features from raw audio signals, while the latter is used for
spectrogram or Mel-spectrogram analysis. The overall efficacy of the framework is enhanced by the fusing of
these CNNs with the LSTM, as suggested in fusion-based network model SER_DLFNet.

2. LITERATURE

Speech is among the most popular and organic forms of interpersonal communication. It conveys a
lot about the speaker’s thoughts, feelings, and goals. To develop a speech emotion detection system, it is
essential to surmount the challenging challenge of identifying and extracting emotion-related data from
speech [4]. SER is based on linear prediction cepstrum coefficients, fundamental frequency (F0), and Mel
frequency cepstral coefficiens (MFCCs), which are commonly employed for emotion recognition from
speech. Various methodologies were utilized to extract emotion from speech, with each study employing a
unique array of speech variables [5]. In recent years, DL algorithms [6] have proven to be quite helpful in
this field. Affective computing holds that for machines to function well, they need to be able to identify
emotions. For instance, using robots to assist with elderly care or as hospital porters requires a high level of
environmental awareness. Human expressions on the face and in voice convey a person’s inner feelings [7]-[9].
DL has the potential to greatly improve natural language communication as well as human-machine
interactions.

The extraction and classification of features are the two most important phases in the SER process.
Many properties, including as prosodic traits, source-based excitation features, and linguistic elements, were
found at the initial stages of speech processing. For feature classification, both linear and nonlinear classifiers
are used in the second step. The maximume-likelihood principle, Bayes networks, and support vector machine
(SVM) models are the three most commonly utilized classification techniques for emotion recognition [10].
It’s common to think of speech as a non-stationary signal. Non-linear classifiers [11] are best option for
classification. Gaussian mixture model (GMM) and the hidden Markov model are examples of non-linear
classifiers [11]-[13]. Classical ML techniques based on GMM models, such as SVMs [12], [14], [15]
artificial neural networks (ANNSs), and GMM models have shown excellent success in SER tasks. However,
there are inherent limits to the ability of technologies to accurately identify emotional states in speech. ML
and artificial intelligence (Al) algorithms are putting a lot of effort into improving the accuracy of voice-
based emotion recognition. Unlike traditional methods, DL algorithms extract features without human
intervention, in contrast to conventional approaches.

DL algorithms have been proposed as a solution to the accuracy issues with regular ML algorithms.
The intelligent DL environment analyses human emotions using voice analysis using a CNN [17], and LSTM
[16], [17]. Numerous research projects on DL for speech-based emotional analysis have been carried out in
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light of the Al technology’s explosive rise. At the moment, some progress has been made in identifying
emotions using DL techniques based on speech. For instance, utilizing DL and cognitive wireless
frameworks, Hossain and Muhammad [18] created an audio-visual emotion identification system [19]. This
technology was able to automatically interpret a patient’s emotional state by looking at their facial
expressions. After putting the strategy to the test, they were able to show that it would help the expansion of
online healthcare. Khalil et al. [4] offered additional details and a brief synopsis of the research on DL for
SER in 2019. Ntalampiras [20] used behavioral analogies to construct a twin neural network for voice
emotion recognition.

A unique temporal modelling framework for robust emotion categorization was presented by
Zheng et al. [21]. It incorporates CNN, capsule networks, and a bidirectional LSTM network (BLSTM) [22],
[23]. The goal of this approach is to effectively manage speech signals’ temporal dynamics and to give a
cutting-edge technique for identifying the extracted patterns, with an accuracy of 69.40%. A novel
framework for SER was presented by Mustageem et al. [22]. It selects crucial sequence segments by
evaluating the similarity measures of radial basis function networks (RBFNS) in clusters. The short-time
Fourier transform (STFT) algorithm is then used to convert the chosen sequence into a spectrogram, which is
subsequently input into a CNN to extract significant and discriminative characteristics from the spoken
spectrogram. After the features are standardised, a deep BiLSTM network is trained with them. This network
learns the temporal information needed to identify the final emotion state with 91.14% accuracy.

3. METHOD

The entire architecture of the proposed network, which consists of LSTM, 1-D and 2-D CNN, is
depicted in Figure 2. We proposed a fusion based DL network model (SER_DLFNet) that includes a local
feature learning block (LFLB) shown in Figure 3 comprising a convolutional layer, Max-pooling, exponential
linear unit (ELU) and batch normalization (BN) layer for extracting local features. Additionally, the model
integrates an LSTM network to capture long-term dependencies from the sequence of local features.
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Figure 2. Architecture of SER_DLFNet, *audio clips Figure 3. LFLB
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3.1. Deep learning of features

Combining LFLB and LSTM allows for the learning of both local and global characteristics from raw
audio samples. The core component of LFLB is the convolution layer, which is made to analyse data in a grid
format. It is capable of learning a sequence feature in which every feature member is determined by a limited
number of nearby input members. Every feature of the learnt feature is a function of the output’s prior features,
in contrast to LSTM, which is designed to handle a series of values. Thus, by combining the LSTM and CNN,
we may learn high-level features that incorporate both local and long-term contextual dependencies.

3.1.1. Acquisition of local features

The LFLB shown in Figure 3 incorporates essential layers like convolution and pooling, with
convolution emphasizing connectivity and weight sharing. The BN layer enhances deep neural network
performance and stability by normalizing activations in each batch. This helps maintain mean and standard
deviation close to 0 and 1 respectively. The BN layer output is specified by the ELU layer, which, unlike
most activation functions, permits negative values, which approaches 0 for mean activations for faster
learning and improved accuracy. The pooling layer strengthens features, making them less susceptible to
distortion and noise; the most widely utilized nonlinear function is max-pooling that outputs the greatest
values from sub-regions. For 1D input signal, the output of CNN in LFLB calculated as (1):

q) =pm) *wn) = Lpo; p(m).w(n —m) @
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where g(n) represents the output of the CNN layer for an input signal p(n), obtained by convolving using a
Kernel w(n) of size n.

On the other hand, in the case of 2D-CNN, where p(i,j) input to the 2D convolution layer, the
output g (i, j) can be obtained by convolving p(i, j) with the Kernel w(i, j).

q(i,)) = p(, ) *w(i,j) =Xt Xy p(s, ). w(i—s,j—t) )

Next, it normalizes the activations of the previous layer at each batch by feeding the convolved features into
the BN layer. The convolved characteristics variance and mean are maintained by the BN layer near one and
zero, respectively. Following the normalized features application of the ELU layer, the final features are
stated as (3):

fi =o(BNG! +X; £ * wjj @)

where £ and £ *denote the n*" output feature at the n*" layer and the j** input feature at the (n — 1)
layer, respectively; w;; represents the convolution Kernel between the it" and jt" features. The normalization
features achieved using the function BN (). The ELU activation function can be expressed as (4):

xsz

7 = aer 1),y @

Euler’s number, e, implies there needs to be a positive extra alpha constant (> 0). The pooling layer performs
the down-sampling function, which reduces the resolution of the feature. For a given pooling region with
index k, the input feature of the Ith max-pooling layer, denoted as h%,, transforms into the output feature of

the Ith pooling layer h!. Features of the max-pooling layer are as (5):

[ l
hy, = Jnax hy (%)

3.1.2. Global feature learning

The LSTM architecture is employed to capture prolonged dependencies among sequences, and it is
layered on top of the LFLB to grasp contextual dependencies from the acquired local feature sequences. The
LSTM efficiently incorporates or discards information from the block state by utilizing input, output, forget,
and cell states. Multiple equations describe the procedure for updating an LSTM unit [24], [25]. Expressing
the connection between the inputs and outputs of an LSTM unit can be done as (6) to (11):

iy = o(Wi[heer, Xc] + by) (6)
& = tanh(welhe_1, %] + be) )
Co = fo* Cooq + g * & ®)
fo = o(Wp. [he_y, xe] + by) )
0r = 0(Wo. [Re—1, x,] + by) (10)
he = o, * tanh(c,) (11)

In the context where ct signifies the LSTM unit state, w and b are parameter matrices and vectors,
fz, it, and o, represent gate vectors, o denotes the sigmoid function, and C and h are hyperbolic tangents, the
Hadamard product is denoted by *.

3.2. Dataset

A public repository of recordings of emotional speech and song is RAVDESS. A range of emotions,
including happy, neutral, sad, surprised, fearful, angry, and disgusted, are portrayed by 24 professional
performers, both in speech and song. The actors, who are fluent in English, were asked to record the different
emotions. For every emotion, three types of modalities are offered: audio-only, video-only, and audio-video.
To train our model to identify and categorise various emotions in speech data, we utilised a dataset that
contained only audio.

The audio-only speech dataset consists of 1440 “.wav” files, each having a resolution of 16 bits and
a sampling rate of 48 kHz. These files constitute a total of 1440 trials, distributed among 24 performers, with
each performer contributing 60 trials. The dataset includes 60 speech recordings for each emotion, featuring
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30 recordings by female speakers and 30 by male speakers. Each recording involves two statements: 01=dogs
are sitting by the door and 02=Kkids are talking by the door [26]. Here, the Figures 4 and 5 display various
emotional speech files along with their corresponding spectrograms from the RAVDESS dataset.
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Figure 4. Angry emotional speech signal along with their corresponding spectrograms
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Figure 5. Fear emotional speech signal along with their corresponding spectrogram

4. EXPERIMENTAL STUDIES

Before building the proposed fusion based network model using 1D-CNN and 2D-CNN, we trained
and evaluated the emotional voice dataset, comparing their accuracies to the proposed network model
SER_DLFNet which consists of 1D and 2D CNNs+LSTM. The 1D network processes 1D audio vectors,
whereas the 2D network processes spectrograms. Figures 6 and 7 shows how the LFLB collects local
features, which are then input into the LSTM layer to capture global features and contextual dependencies.
The LSTM output includes both immediate and a long-term background data. An additional fully
interconnected layer connects directly to the LSTM layer.

zb=bt+ 27wt (12)
Lastly, a softmax layer is employed to classify the emotion of the input data, determining the

prediction probability for each class. The class label y has various potential interpretations. The Softmax
function can be defined as in (14), and ultimately, the predicted class label y is computed using (15).

Softmax(z;) =p; = kez;,i =0,1.. (14)
2e”
j=0
y = arg maxp; (15)
L
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Figure 7. 2D CNN+LSTM

To reduce the hazards of overfitting and underfitting in trials, numerous innovative solutions have
been proposed. Overfitting happens when a model memorizes data rather than improving prediction, which is
usually caused by a complex or overtrained deep network. Methods like cross-validation, regularization, BN,
and early pausing are employed to overcome this. The experimental data used in our investigation was split at
random into two sets: training (80%) and testing (20%) for SER with good accuracy and generalization. Only
accurate models are recorded to avoid overfitting, which occurs when extensive training leads to poor
performance on new data. Early stopping checks model performance on a validation dataset and stops
training when the validation error no longer improves.

5.  EXPERIMENTAL RESULTS

The SER_DLFNet, a fusion-based DL network for SER, was designed, trained, and evaluated with
RAVDESS. The model’s performance was evaluated using objective metrics such as average accuracy,
precision, and recall. The number of training epochs in our proposed network was chosen iteratively by
experimenting with different numbers and comparing performance on a validation dataset. After evaluating
various epoch settings, it was discovered that the model with 500 epochs achieved the best balance of
underfitting and overfitting, resulting in optimal performance on the validation dataset. The hybrid
CNN+LSTM networks were trained and evaluated on the RAVDESS emotional speech dataset, which
contains audio clips sampled at a rate of 16 kHz and with a fixed duration of eight seconds. If an audio clip
exceeds eight seconds, it is segmented down, while shorter clips are padded to meet the eight-second length.
At the 16 kHz sample rate, a 128,000-bit vector describes each audio clip.

The FFT window length is configured to 2048, with a hop length of 512 during the calculation of
the log-Mel spectrogram. This process produces a log-Mel spectrogram comprising 251 frames and 128 Mel
frequency bins. The visualization of the log-Mel spectrogram can be presented as either a grid or a sequence
for analysis. In our experiments, the 128x251 matrices served as input to the 2D Hybrid network, enabling
the 2D-CNN+LSTM network to learn high-level features from these image-like patches.

Analysis of human emotions through speech using deep learning fusion technique ... (Chevella Anil Kumar)



322 a ISSN: 2302-9285

5.1. 1D-CNN

The proposed 1D CNN model for SER consists of six convolutional layers, each utilizing a Kernel
size of 1x5, followed by a single fully connected layer. This design incorporates zero padding and RelLu
activation functions to preserve information along the edges. Additionally, the model employs maximum
pooling with a size of 1x8, complemented by a dropout rate of 0.1 and BN. Through training this network
model for 500 epochs, an impressive average accuracy of 85.47% was achieved. The corresponding
confusion matrix for the network model, demonstrating an accuracy matching the aforementioned
percentage, is presented in Figure 8. These parameters collectively contribute to the effectiveness of the
proposed 1D CNN model in recognizing emotions from speech.

Figure 8. Confusion matrix of 1D-CNN

5.2. 2D-CNN

In the realm of 1D CNN, the convolution operation is limited to a single direction, whereas the 2D
CNN’s convolution Kernel operates in two dimensions, opening possibilities for applications in studying
time series data. The experiment was structured with six convolution layers, each featuring a 3x3 filter size,
zero padding to preserve edge information, and ReL U activation. The max-pooling procedure, executed on a
2x2 matrix, incorporated a dropout of 0.1 and BN. Training the network model for 500 epochs yielded an
impressive accuracy of 88.36%. The accompanying confusion matrix, illustrated in Figure 9, provides a
visual representation of the network model’s enhanced accuracy. This configuration demonstrates the
efficacy of the 2D CNN model in handling time series data and achieving improved performance in emotion
recognition tasks.

Gonfusion Matrix for 2D-CNN
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Figure 9. Confusion matrix of 2D-CNN

At last, LFLBs and LSTM were combined to create hybrid DL network models. Every LFLB
included a single stride, a 3x3 filter size, and no padding. Tables 1 and 2 illustrate strutures of LFLB and
LSTM, that the first and second LFLBs each had 64 convolution Kernels, the third and fourth LFLBs had
128 convolution Kernels, and the fifth and sixth LFLBs had 256. Following training and testing, the
suggested network models’ effectiveness was assessed using objective metrics on the RAVDESS database
across a range of epoch counts.
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Table 1. Structure of 4 LFLB+LSTM

Block name Qutput dimension  Kernel size  Stride
LFFB1 1C1 Lx64 3x3 1x1
1P1 L/4x64 4x4 4x4
LFFB2 1C2 L/4x64 3x3 1x1
1P2 L/16x64 4x4 4x4
LFFB3 1C3 L/16x128 3x3 1x1
1P3 L/64x128 4x4 4x4
LFFB4 1C4 L/64x128 3x3 1x1
1P4 L/256x128 4x4 4x4
L - 256x1
F K

Table 2. Structure of 6 LFLB+LSTM

Block name Output dimension  Kernel size  Stride
LFFB1 1C1 Lx64 3x3 1x1
1P1 L/4x64 4x4 4x4
LFFB2 1C2 L/4x64 3x3 1x1
1pP2 L/16x64 4x4 4x4
LFFB3 1C3 L/16x128 3x3 1x1
1P3 L/64x128 4x4 4x4
LFFB4 1C4 L/64x128 3x3 1x1
1P4 L/256x128 4x4 4x4
LFFB5 1C5 L/256x128 3x3 1x1
1P5 L/256x128 4x4 4x4
LFFB6 1C6 L/512x256 3x3 1x1
1P6 L/512x256 4x4 4x4
L - 512x1
F K

5.3. 1ID-CNN+LSTM

Initially, a 1D-CNN+LSTM network model was introduced with 4LFLB+LSTM layers, 64 fully
connected neurons, a batch size of 32, and a learning rate of 0.0001 utilizing the stochastic gradient descent
optimizer. The model was trained for several epochs, yielding accuracies of 77.35%, 78.65%, 90.94%, and
71.80% for 50, 100, 300, and 500 epochs, respectively. However, due to underfitting, the model’s accuracy
varied over epochs, resulting in frequent misclassification of some classes and contributing to the network
model’s overall low accuracy. To improve the model’s performance, we did additional training on the most
complex emotional classes, such as cases where happy was commonly misclassified as neutral and fear as
anger. This involved fine-tuning hyperparameters to achieve the optimal balance between underfitting and
overfitting, leading to improved performance on the validation dataset.

The network parameters were modified to include 6LFLB+LSTM layers, a batch size of 32, and a
learning rate of 0.001. The model was then retrained for 50, 100, 300, and 500 epochs, yielding accuracy
rates of 79.96%, 81.53%, 91.51%, and 80.25%, respectively. Figure 10 shows the accuracy vs the number of
epochs for the 1D-CNN+LSTM, which includes two distinct networks. Furthermore, Figure 11 depicts the
confusion matrix for improved accuracy of the 1D-CNN+LSTM network model after 300 epochs, with an
average accuracy of 91.51%, precision of 91.62%, and recall of 91.50%.

Accuracy of 1D-CNN+LSTM on RAVDESS
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o] 100 200 300 400 500
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Figure 10. 1D-CNN and LSTM: accuracy vs epochs
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Canfusion Matrix for 1IDCNN+LSTM for BLFLB+LSTM
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Figure 11. Confusion matrix of 1D-CNN and LSTM for 300 epochs with 6 LFLB and LSTM

5.4. 2D-CNN+LSTM

In a manner similar to the 1D-CNN+LSTM network model, the 2D-CNN+LSTM network model
also underwent an initial configuration. A network with 4LFLB+LSTM layers was proposed, featuring 64
fully connected neurons, a batch size of 32, a learning rate of 0.0001, and a momentum of 0.9. Stochastic
gradient descent optimizer was utilized, and the model was trained for different epoch counts, yielding
accuracies of 79.50%, 82.45%, 93.64%, and 85.72% for 50, 100, 300, and 500 epochs, respectively.

To improve the model’s performance, we modified the architecture to 6LFLB+LSTM and trained it
again on the most complicated emotional classes. This involved adding two additional LFLBs while keeping
the same hyperparameters as the 2D 4LFLB+LSTM configuration. The corresponding accuracies for 50, 100,
300, and 500 epochs were 80.85%, 84.76%, 95.52%, and 87.95%. Table 3 summarizes the proposed model
accuracies across various epoch counts. Figure 12 shows the accuracy versus the number of epochs for the
1D-CNN+LSTM, which uses two distinct networks. Furthermore, Figure 13 depicts the confusion matrix for
the enhanced accuracy network model after 300 epochs, with an average accuracy of 95.52%, precision of
95.61%, and recall of 95.51%.

Table 3. CNN and LSTM model accuracies vs Number of Epochs

1D-CNN and LSTM 2D-CNN and LSTM
Number Categorical accuracy of ~ Categorical accuracy of ~ Categorical accuracy of ~ Categorical accuracy of
of epochs  4LFLB+LSTM network  6LFLB+LSTM network  4LFLB+LSTM network  6LFLB+LSTM network

(%) (%) (%) (%)
50 77.35 79.96 79.50 80.85
100 78.65 81.53 82.45 84.76
300 90.94 91.51 93.64 95.52
500 71.80 80.25 85.72 87.95
Accuracy of 2D-CNN+LSTM on RAVDESS Confusion Mairix for 2DCNN+LSTM for SLFLB+LSTM

10 i
- ! 0.01

0.8 4 08
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Figure 12. 2D-CNN and LSTM: accuracy vs Figure 13. Confusion matrix of 2D-CNN and LSTM for
epochs 300 epochs with 6 LFLB and LSTM
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6. RESULT ANALYSIS

Initially, each model was given a unique architecture and set of hyperparameters before being
trained over a number of epochs. Accuracy levels were documented to evaluate each network model’s first
performance. Subsequently, to improve the performance of each network model, the architecture and
hyperparameters were fine-tuned, with an emphasis on reducing confusion in specific classes. This
adjustment resulted in significant improvements in the accuracy of the network models. Table 4 provides a
succinct overview of the proposed network models, including their best accuracies. The findings demonstrate
that the 2D hybrid network outperforms existing established methods in terms of accuracy, precision, and
recall.

Table 4. Different proposed network models accuracies for proposed system
Obijective metrics\network model 1-DCNN 2-DCNN 1-DCNNand LSTM 2-DCNNand LSTM

Accuracy 85.47 88.36 91.51 95.52
Precision 85.79 88.46 91.62 95.61
Recall 85.42 88.28 91.49 95.50

In this study, the proposed model was compared with existing DL algorithms, as presented in Table 5.
In our proposed model, the use of the ELU activation function, rather than ReLU, has played a critical role in
achieving superior accuracy compared to earlier studies by Zeng et al. [26] who employed a single CNN, and
by Jalal et al. [27] and Mustageem et al. [22], who used a hybrid network model (CNN+LSTM) with ReLU
activation function and only three convolution layers in their models with two LSTM layers [3]. ELU has a
significant benefit over ReLU in that it allows for the generation of negative outputs, which allows the neural
network to comprehend more complex and expressive characteristics. The ELU activation function produces
smoother outputs than ReLU and addresses the issue of dying ReL U, in which certain ReLU neurons become
inactive and emit zero outputs during training, resulting in a dormant neuron that contributes little to the
network’s learning process [16].

Table 5. Comparison of proposed versus other model performances on RAVDESS

Method Accuracy (%)  Precision (%) Recall (%)
Zeng et al. [26] 64.48 - -
Jala et al. [27] 69.40 - -
Mustageem et al. [22] 91.14 - -
Proposed model 95.52 95.61 95.50

7. CONCLUSION

This chapter examines 1D CNN, 2D CNN, 1D CNN and LSTM, and 2D CNN and LSTM DL
network models for SER. The goal is to understand local correlations and global context using both raw
audio recordings and speech signal spectrograms. To capture local features, a LFLB is used and an LSTM
layer handles the global features, which consists of context dependent information. Initially, each model was
proposed with a distinct architecture and set of hyperparameters, and it was trained over a variety of epoch
counts. The resulting accuracies were measured to assess the network models’ performance. To improve the
efficacy of each network model, the architecture and hyperparameters were fine-tuned, with a focus on
addressing the issues presented by the most confusing classes. This adjustment resulted in significant
improvements in the accuracy of the network models. It is critical to understand that the appropriate
architecture and hyperparameters for a DL network model might differ depending on the task and dataset. As
a result, testing with various configurations is necessary to determine the most effective one, taking into
account aspects such as the quality and quantity of training data.
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