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 This study introduces a compact dual-band rectifier utilizing a single and 

multi-stub matching network (MN) technique. The rectifier consists of two 

branches, each incorporating a single block stub and two blocks stub to 

generate two frequency susceptance blocks, subsequently transformed into a 

meandered line. The proposed rectifier operates at two frequency bands of 

0.7 GHz and 0.9 GHz and is fabricated on an RT/Duroid 5880 printed circuit 

board (PCB) with dimensions of 37×25×1.6 mm using an entire ground 

architecture. Simulation and measurement results show that the rectifier has 

a power conversion efficiency (PCE) of 67.77% and 66.35% at 0.7 GHz and 

70.31% and 71.22% at 0.9 GHz with input power of 0 dBm, respectively. 

The rectified voltage is 1.79 V DC across a 5 kΩ load terminal (RL) with 5 

dBm input power and is capable of sensing low input power down to -30 

dBm. This feature makes the rectifier a promising solution for powering 

low-power devices from ambient energy. 
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1. INTRODUCTION 

Radio frequency (RF) energy harvesting presents a sustainable solution for extending battery life in 

wireless networks, thus reducing environmental impact [1]–[3]. This technology enables low-power devices 

to harness RF energy from the environment or reliable sources, promoting self-sustainability and eco-

friendliness [2], [4]. Unlike other renewable sources such as solar or wind, RF energy is consistently 

available, making it a viable option for various applications [5]. Moreover, it facilitates proactive energy 

replenishment for wireless devices with quality service requirements [3]. RF energy can be harvested from 

diverse sources including wireless internet, mobile phones, and broadcasting stations. However, challenges 

such as low density and efficiency, especially over long distances, need to be addressed [6]. Hence, designing 

an effective RF harvester with high power conversion efficiency (PCE) is challenging [7].  

Over the past two decades, various rectenna designs have been investigated, including single-band 

and multiband rectennas, one-stage and multistage rectennas, arrays rectennas, circularly polarized rectennas, 

and compact rectennas for sensor networks [8], [9]. Advanced techniques, such as automatic impedance 

transforming, have expanded input ranges for single and dual-band rectifiers operating at 915 MHz and 

915/2450 MHz, as reported in [10]. Muhammad et al. [7] described a 0.9 GHz and 1.8 GHz dual-band 

rectenna featuring a modified π-section matching network (MN). A compact dual-band four-port ambient 
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rectenna operating at 0.915 GHz and 0.945 GHz was demonstrated in [11]. Additionally, a compact dual-

band rectifier with a single-stage T-type impedance matching network (IMN) operating at 0.915 and  

2.45 GHz is presented in [12]. Researchers [13], [14] present a triple-band rectifier consisting of a single 

voltage doubler and a single series diode rectifier topology respectively. A compact-size quad-band rectifier 

consisting of a multi-stub IMN has been reported in [15]. 

Despite these advancements, several studies have shown that the addition of parasitic elements can 

degrade the rectifier’s performance, leading to a larger electrical size [10], [12], [16]–[19]. For instance, the 

authors in [7] reported an improvement in PCE but with increased dimensions. The utilization of an MN 

reduces reflection losses in the antenna’s RF input power [20], [21]. The diode is critical in rectifying 

ambient RF into direct current (DC) power [7], [22]. To eliminate harmonics generated by the diodes, a low-

pass filter, known as the harmonic rejection filter (HRF), is designed and placed at the signal source’s input 

[23], [24]. The DC-pass filter improves signal quality by removing unwanted frequencies, making power 

transfer more efficient and providing a steady power source [13]. The load resistor (RL) is often complex and 

varies with frequency [25]. The characteristic impedance of the RF input source is typically 50 Ω [26], [27]. 

This paper proposes a dual-band (0.7 GHz and 0.9 GHz) efficient and compact rectenna for ambient 

RF energy harvesting with improved PCE. The GSM/900 frequency band is identified as a prevalent 

spectrum with substantial power density [7], [28], while the 700 MHz band is one of the three 5G pioneer 

bands in Malaysia [29]. The proposed rectifier is compact and efficient, minimizing reflection losses and 

harmonics through optimized impedance matching and filtering techniques. This novel approach addresses 

size and efficiency limitations in existing designs. The main contribution is an improved compact rectenna 

with high PCE for both GSM900 and 5G applications. The remainder of the report is organized as follows: 

section 2 covers the rectifier design, section 3 summarizes findings and discussions, and section 4 presents 

the conclusion. 

 

 

2. METHOD 

The proposed dual-band rectifier topology is depicted in Figure 1. The topology consists of an IMN, a 

Schottky diode, a DC-pass filter, and an RL. The design of the rectifier was carried out on 1.575 mm thick 

Roger’s substrates, which have a permittivity of 2.2 and a dielectric loss factor of 0.0009. The initial phase of 

the design process involved the simulation of the rectifier circuit using an advanced design system (ADS), 

which included essential components such as a diode, capacitor, and RL. The proposed rectifier circuit aims to 

obtain an outstanding performance operating at 0.7 GHz, and 0.9 at low input power. To mitigate the ripple and 

harmonic present in the diode output, a DC-pass filter with a capacitance of 470 pF was added in parallel with 

RL. Upon completing the design of the load resistance and DC pass filter, the next step involves evaluating the 

circuit input impedance at each operating frequency. The obtained input impedances at 0.7 GHz and 0.9 GHz 

are (177.316-j902.686 Ω) and (113.461-j708.086 Ω) respectively. The reason for choosing a -10 dBm input 

power is that the standard transceiver consistently operates below this threshold [30], [31]. Subsequently, the 

rectifier’s input impedance is matched with the 50 Ω input source from the antenna.  

The circuit topology of the rectifier, depicted in Figure 1(a) comprises key components, including a 

microstrip line (MLIN), a microstrip curved bend (MCURVE), a microstrip cross-junction (MCROSO), and 

a microstrip T-junction (MTEE). The IMN design implements a single and multi-stub matching approach, 

incorporating an open and shorted transmission line segment connected by TL1 and TL4, respectively, to 

improve the system’s overall performance. Single stub and multi stub matching are employed to precisely 

tune the electrical length and impedance, aligning the overall system impedance with the characteristic 

impedance of the transmission line. This minimizes signal reflections, ensuring efficient power transfer. 

Single stub matching efficiently matches complex loads to characteristic impedance using a 50 Ω 

transmission line for both the main line and stub. Stubs, either shorted or open circuits, create pure reactance 

at the attachment point for the desired frequency. In microstrip board applications, parallel stub matching is 

preferred for its simplicity. The choice between shorted or open stubs depends on design constraints, 

typically favoring the topology that results in the shortest length, usually less than half a wavelength (λ), for 

broader bandwidth [32]. A susceptance for a single stub can be expressed by (1) and (2): 

  

𝐵𝑇(𝑓𝑖) = −𝑌𝑇𝑐𝑜𝑡𝜃𝑇(𝑓𝑖), (1) 

(short-circuited stub) 

 

𝐵𝑇(𝑓𝑖) = 𝑌𝑇𝑐𝑜𝑡𝜃𝑇(𝑓𝑖), (2) 

(open-circuited stub) 

 

where θT represents the electrical length of the stub at the frequency, fi, BT, and YT represent the stub 

susceptance and admittance operating at the frequency, fi respectively.  
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In (1) and (2), a longer electrical length generally decreases susceptance magnitude. However, the 

specific outcome varies based on the stub type (short circuit or open circuit) and the chosen sign convention 

in the equation. Extending the electrical length of either the short-circuited or open-circuited stub enables 

finer tuning of the introduced reactive component. This facilitates achieving the desired impedance 

transformation and aligns the system impedance with the characteristic impedance of the transmission line. 

The multi-stub IMN was derived from a combination of the short and open single stub and can be expressed 

as (3)-(5): 

 

𝐵𝑇(𝑓𝑖) = −𝑌𝑇𝑐𝑜𝑡𝜃𝑇(𝑓𝑖)−𝑌𝑇𝑐𝑜𝑡𝜃𝑇(𝑓𝑖), (3) 

(shorted-shorted stub) 

 

𝐵𝑇(𝑓𝑖) = 𝑌𝑇𝑐𝑜𝑡𝜃𝑇(𝑓𝑖)−𝑌𝑇𝑐𝑜𝑡𝜃𝑇(𝑓𝑖), (4) 

(open-shorted stub) 

 

𝐵𝑇(𝑓𝑖) = 𝑌𝑇𝑐𝑜𝑡𝜃𝑇(𝑓𝑖)+𝑌𝑇𝑐𝑜𝑡𝜃𝑇(𝑓𝑖), (5) 

(open-open stub) 

 

In the proposed rectifier circuit, the single stub is a short-circuited stub represented by TL2 while 

the multi-stub is an open-shorted stub represented by TL5, TL6, and TL8. The use of multiple stubs gives an 

advantage, especially having flexibility in the tuning process to achieve the desired frequency band. The 

straight MLIN, which consist of TL1, TL2, TL3, TL4, TL5, TL7, TL8, and TL9, have resulted in the 

enlargement of the rectifier’s size to 95×75 mm, as depicted in Figure 1(a). The overall circuit has been 

transformed into a compact design using a meandered line approach to reduce the proposed rectifier’s size 

while maintaining a high PCE as shown in Figure 1(b). The meandered line is built using multiple sets of 

MLIN and MCURVE, which are arranged based on the original length of MLIN. After being transformed, 

the size of the proposed rectifier is 25×37 mm which is only 13% of the original size. Based on the circuit 

configuration in Figure 1(b), the circuit parameters of the proposed rectifier have been optimized as shown in 

Table 1. The proposed rectifier circuit has an overall dimension of 37×25×1.575 mm. These parameter values 

are chosen based on the best impedance-matching results for each branch.  

 

 

  
(a) (b) 

 

Figure 1. The proposed dual-band rectifier: (a) original model layout and (b) model layout after transformed 

into meandered line 

 

 

The core components of a rectifier circuit are typically diodes or complementary metal-oxide-

semiconductor (CMOS) technology. However, for simplicity and low input signals, Schottky diodes are 

preferred over CMOS due to fewer design considerations and higher efficiency at low power levels. Schottky 

diodes, like HSMS-2850, with a low sensitive voltage and junction capacitance, are ideal for RF applications. 

A single-diode design offers better efficiency and reduced energy losses compared to multi-diode setups due 

to the existence of additional parasitic at the junction terminals, making it suitable for stable power response 

at low input and high-frequency situations. The choice of the HSMS-2850 Schottky diode ensures minimal 
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power dissipation and efficient rectification [33]–[36]. The nonlinear properties of the rectifying diode were 

simulated in ADS using a parameter sweep solver and a harmonic balance (HB). 

 

 

Table 1. The parameters for the rectifier circuit 
Parameters Width/length (mm) Parameters Width/width/width (mm) 

TL1 0.6/39.74 MTEE1 0.6/0.6/0.6 

TL2 0.6/20.03 MTEE2 0.6/0.6/0.6 
TL3 0.6/14.6   

TL4 0.6/55.4 Parameter Width/width/width/width (mm) 

TL5 0.6/30.7 MCROSO 0.6/0.6/0.6/0.6 
TL6 2.5/20.22   

TL7 0.6/21.55 Parameters Width/radius (mm)/ (θ=90o) 

TL8 0.6/27.4 MCURVE1 0.6/0.6 
TL9 0.6/5.4 MCURVE2 0.6/0.6 

TL10 2/3.2   

 

 

Figure 2 shows the result of the simulated PCE versus the RL at a range of input power (Pin). The 

proposed rectifier circuit is subjected to a simulation in which the RL is varied with an increment of 0.5 kΩ 

from 0.5 kΩ to 20 kΩ to determine its optimal PCE. To identify the peak value of Vout, a series range of RL 

values is evaluated at both operating frequencies for input powers ranging from -30 dBm to 0 dBm. The 

simulation results show that the proposed rectifier design performed well over a wide range of RL values, 

from 3.5 kΩ to 6.5 kΩ. The simulations show a better PCE throughout the 5 kΩ RL for operating frequencies 

of 0.7 GHz and 0.9 GHz. The results reveal that for input powers of 0 dBm or less, the rectifier circuit 

produces the maximum output DC power at a load resistance of 5 kΩ. 

 

 

 
 

Figure 2. Simulated efficiency sweeps against RL at the input power (Pin) range 

 

 

3. RESULTS AND DISCUSSION 

Figure 3(a) depicts the fabricated prototype of the proposed RF-rectifier circuit. A 50 Ω SMA port 

feeds the front end of the rectifier. The operating frequency of the rectifier is determined by the rectifier 

reflection coefficient (S11). To measure the S11 of the rectifier, a PNA network analyzer from Agilent was 

utilized. Figure 3(b) shows a good agreement between the simulated and measured S11, which resonates at 

0.7 GHz and 0.9 GHz. In the simulation, the S11 for frequencies of 0.7 GHz and 0.9 GHz are -12.61 dB and  

-22.06 dB, respectively. The measured value of S11 for a frequency of 0.7 GHz is -25.3 dB which is better 

than simulated, while for a frequency of 0.9 GHz, the S11 value is -14.09 dB which is a bit lower than 

simulated. 

The measurement setup for the rectified output voltage is shown in Figure 4. The rectified output 

voltage was measured using a multimeter, while the Rohde and Schwarz SMBV100A vector signal generator 

model emulated the RF signal. The RF-rectifier PCE against Pin is then evaluated by varying the input power 

Pin from -30 dBm to 5 dBm with a 5 dBm span for each operating frequency. 
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(a) (b) 

 

Figure 3. The proposed rectifier circuit design: (a) fabricated circuit and (b) result of reflection  

coefficient, S11 

 

 

  
  

Figure 4. Measurement setup of rectified output voltage 

 

 

Figure 5(a) depicts the output DC voltage (Vdc) versus the input power, Pin of the proposed rectifier. 

For an input range of -30 dBm to 5 dBm, the measured output voltage showed excellent agreement with the 

simulated results. In measurement, the circuit attained a maximum output voltage of 1.79 V and 1.72 V at  

0.7 GHz and 0.9 GHz with an input power of 5 dBm, respectively. The difference between measured and 

simulation output voltage is only 2% and 1.74% at 0.7 GHz and 0.9 GHz bands for 0 dBm of input RF 

power, respectively. Figure 5(b) shows the simulated versus measured PCE of the proposed rectifier. The 

PCE is calculated using the measured output voltage (Vout), as expressed in (6): 

 

𝜂(%) = 𝑃𝑜𝑢𝑡 (
1

𝑃𝑖𝑛
)  𝛸 100% =  𝑉𝑜𝑢𝑡

2 (
1

𝑅𝐿 𝑋 𝑃𝑖𝑛
) 𝛸 100% (6) 

 

where ⴄ represents PCE and Pout represents the rectified output power. Pin represents the input power. Vout 

represents the rectified output DC voltage. 

As depicted in Figure 5(b), the measured result of the proposed rectifier attained a peak PCE of 

66.35% and 71.22% at 0.7 GHz and 0.9 GHz with 0 dBm of input power, respectively. Meanwhile, the 

maximum measured PCE at -10 dBm input power is 48.01% and 58.65%, while at -20 dBm input power, the 

maximum PCE is 22.88% and 25.74% for 0.7 GHz and 0.9 GHz frequencies, respectively. These findings 

emphasize the viability of the proposed rectifier for low-power applications. 
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(a) (b) 

 

Figure 5. The results of the proposed rectifier: (a) output DC voltage versus input RF power and (b) PCE 

versus input RF power 

 

 

Table 2 shows state of art from literature review on dual-band rectifier design. The comparison was 

made based on size, diode technology, the substrate used, and the efficiency of the rectifier. The proposed 

rectifier is superior in terms of size reduction with an improved PCE at low input power compared to the 

previous work reported in [7], [10], [12], [17], [19], [37], [38]. A unique feature of the proposed dual-band 

rectifier is its reduced circuit complexity, leading to lower parasitic effects. In comparison to other studies, 

the proposed design offers several advantages, such as its compact size, affordability, and ease of fabrication. 

 

 

Table 2. Comparison between the previous works and the proposed dual-band rectifier 
Ref. Size (λg) Freq. (GHz) PCE (%) at -10 dBm Substrate (𝜀r) Diode 

Muhammad et al. [7] 0.75×0.15 0.9, 1.8 52, 50 FR-4 (5.4) HSMS2850 

Huang et al. [10] 0.39×0.29 0.915, 2.45 38, 22 Arlon AD255 (2.55) HSMS2822, HSMS2852 

Liu et al. [12] 0.35×0.17 0.9, 2.45 20, 5 Arlon AD255 (2.55) HSMS2862 
0.9, 2.45 52, 45 Arlon AD255 (2.55) SMS7630 

Quddious et al. [16] 0.16×0.12 0.915, 2.45, 56, 60 RT5880 (2.2) SMS7630 

Rotenberg et al. [17] 0.38×0.17 1.7, 2.4 - Taconic TLY-5 (2.2) HSMS2828 
Liu et al. [18] 0.18×0.09 0.915, 2.45 36, 1 Arlon AD255 (2.55) HSMS2862 

Chandravanshi et al. [19] 1.1×0.84 1.8, 2.45 45, 38 Polyimide (4) SMS7630 

Guo et al. [37] 0.63×0.31 2.6, 3.5 38, 33 RO4003C (3.55) SMS7630-079LF 
Mattsson et al. [38] 1.37×0.45 2.45, 5.5 20, 2 FR4 (4.5) HSMS2852 

Shen et al. [39] 0.18×0.08 0.9, 1.8 31, 31 RT5880 (2.2) HSMS2850 

This work 0.09×0.13 0.7, 0.9 56.24, 56.57 RT5880 (2.2) HSM2850 

Note: The PCE value at -10 dBm is estimated based on the graph presented by the authors. 

 

 

4. CONCLUSION 

This paper presents the compact dual-band rectifier for ambient RF energy harvesting operating at 

0.7 GHz and 0.9 GHz frequency bands. The IMN of the dual-band RF rectifier is designed using a single stub 

and multi-stub MN, incorporating additional degrees of freedom to enhance impedance characteristics across 

the entire design frequency spectrum. To suit internet of thing (IoT) applications, the rectifier size has been 

reduced by 87% from the original size while retaining a high PCE. The proposed rectifier attained peak 

simulated and measured PCE values of 67.77% and 66.35% at 0.7 GHz and 70.31% and 71.22% at 0.9 GHz, 

correspondingly for an input power of 0 dBm. Moreover, the rectifier achieved a 1.79 V DC output voltage 

across a 5 kΩ RL when subjected to 5 dBm input power. The harvested energy from the proposed rectifier 

can be incorporated into the new IoT-based architectures, low power wide area networks (LPAWNs). 
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