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 Power system cyber security is crucial due to their criticality. Cybersecurity 

is essential to protect vital infrastructure as power systems digitize. Meta-

heuristic and deep learning techniques are used to improve power system 

cyber security in this paper. To evaluate their performance, the suggested 

approach is compared to traditional supervised machine learning algorithms 

including artificial neural networks (ANNs), convolutional neural networks 

(CNNs), and support vector machines (SVMs). The technique optimizes 

deep learning model hyper parameters and architectures to detect cyber 

risks. Cyberattacks on power systems can cause service outages and 

cascading failures with extensive social implications. Meta-heuristic and 

deep learning algorithms are integrated to improve power system cyber 

security in this study. Deep learning is good at pattern recognition and 

anomaly detection, while meta-heuristic algorithms optimize efficiently. A 

complete threat detection and mitigation strategy is proposed by merging 

these methodologies. The proposed methodology tests classic supervised 

machine learning algorithms such ANNs, CNNs, and SVMs. Simulations 

showed the algorithm worked better. It beat competition in accuracy, 

precision, recall, and F1-score. 
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1. INTRODUCTION 

Integrating information and communication technology into power networks has transformed 

electricity generation, transmission, and distribution. These advances have many benefits, but they also make 

us vulnerable to cyberattacks. Malicious actors target power system infrastructures to disrupt services, ruin 

the economy, or risk people. Thus, protecting power systems from cyberattacks is essential for their 

reliability and security [1]. Information and communication technology has changed power systems. These 

improvements have improved power generation, transmission, and distribution efficiency, dependability, and 

flexibility, but they have also raised cyber security concerns. Due to power grids' growing reliance on 

interconnected digital systems, cyberattacks endanger energy supply chain stability [2]. Power outages and 

blackouts caused by cyberattacks can have major economic and societal consequences. These attacks can 

jeopardize critical infrastructure integrity, availability, and confidentiality by exploiting control, 
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communication, and data management system flaws. Thus, utilities, regulators, and governments worldwide 

emphasize power system cyber security [3]. Power system cyber security uses rule-based, intrusion, and 

anomaly detection. Traditional security measures cannot detect and neutralize cyber breaches in real time in 

modern power systems [4]. Meta-heuristic algorithms and deep learning models improve power system cyber 

security to solve these issues. Using evolutionary algorithms, particle swarm optimization (PSO), and 

simulated annealing (SA), intrusion detection, vulnerability assessment, and resource allocation can be 

optimized. These algorithms find near-optimal results in large search areas, making them ideal for dynamic 

and uncertain power system cyber threats [5]. Deep learning is good at pattern recognition, anomaly 

detection, and domain-wide categorization. Convolutional neural networks (CNNs) and recurrent neural 

networks (RNNs) detect complicated cyber-attack patterns in power system data streams. Deep learning 

algorithms trained on massive data sets can acquire comprehensive representations of normal and harmful 

behavior to identify novel and sophisticated cyber threats [6]. Restricted Boltzmann machines (RBMs) 

improve natural-inspired artificial root foraging optimization. The RBM and natural-inspired artificial root 

foraging optimization can help smart grid intrusion detection and categorization. RBMs learn unsupervised 

from unlabeled data. This tech may create a multi-dataset learning system. This may help with minimal 

annotated data [7]. This work increases power system cyber security with meta-heuristics and deep learning. 

These computational approaches can detect threats, assess vulnerabilities, and develop adaptive security 

strategies. The study discusses literature, methods, advantages and cons, and case studies and experiments to 

verify the strategy works. This research improves cyber security to defend vital infrastructure and power 

systems from new cyberattacks. 

Due to critical infrastructure digitization and interconnection, academics and industry study power 

system cyber security. A comprehensive literature evaluation covers traditional power system cyber security 

and revolutionary meta-heuristic and deep learning algorithms [8]. Intrusion, anomaly, and rule-based power 

system cyber security dominate. Rule-based methods use signatures and patterns to detect cyber hazards. 

Rule-based methods can detect well-defined attacks but not unique or complicated threats that deviate from 

patterns [9]. Intrusion detection system (IDS) checks network traffic and system operations for malicious 

activities and unauthorized access. Signature-based IDS look for attack signatures in network packets or 

system logs, while anomaly-based IDS use statistical models or machine learning algorithms to detect 

anomalous behavior. Anomaly-based IDS may have high false positives and low scalability in large power 

systems [10]. Meta-heuristic algorithms' near-optimal findings and vast search area help cyber security. 

Many cyber security applications use Georgia, PSO, SA, and ant colony optimization (ACO) meta-heuristics 

[11]. For intrusion detection, resource allocation, and cryptographic key generation, power system cyber 

security uses meta-heuristic algorithms. GA-based intrusion detection enhances accuracy, while PSO 

dynamic resource allocation reduces denial of service (DoS). CNNs and RNNs spot power system and cyber 

anomalies. CNNs scan network traffic and power grid satellite images for cyber security. RNNs infer 

temporal dependencies from sequential power system sensor and control device time-series data [12]. Deep 

learning algorithms recognized power system data stream intrusions, exfiltration, and malware distribution 

recently. Deep learning learns complex cyber threat patterns using large labeled datasets and powerful neural 

network topologies [13]. Deep learning and meta-heuristics may help power system cyberdefense. Meta-

heuristic methods improve deep learning model hyperparameters like learning rates, regularization 

parameters, and network designs. Deep learning helps meta-heuristic computers adapt to complex cyber 

threats by improving feature representation and pattern identification [14]. Numerous research uses meta-

heuristic and deep learning algorithms for intrusion detection, malware analysis, and vulnerability 

assessment. Genetic programming-based feature selection for deep learning models and PSO-based 

hyperparameter optimization for CNNs improve power system data cyber threat detection [15]. 

Cybersecurity protects power systems from threats but not sophisticated attackers. Deep learning detects 

abnormalities; meta-heuristic algorithms optimize. Combining computations boosts power system security. 

Integrate meta-heuristic and deep learning methods to study power system cyber security innovations and 

issues [16]. The literature review covers power system security. Most systems catch power system data fraud. 

To predict its anomalous response to deceptive input, the system's usual behavior was analyzed. Using 

feature-based analysis, deep learning and machine learning algorithms predict accurately. Metaheuristics-

based feature optimization evaluates deep learning-based smart grid supervisory control and data acquisition 

(SCADA) security vulnerability identification. 

 

 

2. METHOD 

Meta-heuristic algorithms are effective optimization methods for complicated and dynamic cyber 

security situations. In power systems, where essential infrastructure reliability and security are paramount, 

meta-heuristic algorithms provide efficient threat detection, vulnerability assessment, and resource allocation. 

This section discusses meta-heuristic algorithms and their use in cyber security, followed by traditional 
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supervised machine learning algorithms like artificial neural networks (ANNs), CNNs, and support vector 

machines (SVMs) [17]. Meta-heuristic algorithms optimize using natural or human behavior. These 

algorithms iteratively search solution spaces for complex problem near-optimal solutions. Genetic 

algorithms, PSO, SA, ACO, and evolutionary techniques are meta-heuristics [18]. Cyber security uses meta-

heuristic methods to optimize IDS parameters, generate cryptographic keys, and allocate network defense 

resources. These algorithms are flexible, scalable, and adaptable to changing situations, making them ideal 

for power system cyber threats [19]. 

ANN structure and function mimic biological brain networks. Weighted connections spread 

information and learn from training data to improve prediction. Cybersecurity employs ANNs for intrusion, 

malware, and anomaly detection. ANNs learn complicated data patterns and correlations to detect advanced 

cyber threats. Overfitting, vanishing gradients, and huge labeled training data can harm ANNs [20]. Photos 

and time-series signals are grid-like data for CNNs. CNN layers are completely linked, pooling, and 

convolutional. CNNs learn spatial patterns by hierarchically extracting input data features. CNNs detect 

dangers in network traffic visualizations and surveillance camera recordings. Spatial patterns and local data 

linkages help CNNs spot visual anomalies and criminal activities. CNN training and inference may need 

huge labeled data and processing [21], [22]. SVMs are supervised classification and regression models. Data 

is classified by SVMs using the hyperplane with the highest margin. Kernels help SVMs handle high-

dimensional data and nonlinear decisions. Cyber security uses SVMs for intrusion detection, malware 

classification, and network traffic analysis. Noise, sparsity, and high-dimensional data resistance allow SVMs 

to detect modest cyber threat patterns. SVMs need careful kernel function and regularization parameter 

selection for large datasets [23], [24]. RBMs neural networks replicate input probability distributions for 

unsupervised machine learning. Boltzmann Machines, stochastic generative models, model RBM complexity. 

RBMs have visible and buried neurons. Neurons in one layer are fully connected to those in the next but not 

each other. RBMs are "restricted" to simplify computation and enhance training efficiency, unlike Boltzmann 

Machines. Energy functions provide RBM energy values to visible and concealed unit configurations. Model 

parameters (weights, biases) and visible and hidden unit states affect energy function. The Boltzmann 

distribution models RBMs' visible and hidden unit probability distributions with higher probabilities for 

lower energy configurations. Contrastive divergence (CD) (training algorithm for RBM) educates RBMs. To 

close the RBM data distribution gap, network weights and biases are modified during training [25]. CD is 

suitable for large dataset RBM training since it approximates the log-likelihood function gradient. RBMs 

may learn hierarchical input feature representations and complex data linkages. AI and machine learning 

model probability distributions and create samples using RBMs. Artificial root foraging enhances power 

system sensor and data transmitter data. Internet of things (IoT) voltage and power sensors alert the base 

station to power concerns. Receivers build databases from data. The base station must examine all data for 

errors and missing data before building the dataset. Database storage may be reduced by providing data 

during dataset generation. Figure 1 shows the workflow of the proposed model. 

 

 

 
 

Figure 1. The workflow of the proposed model 
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The dataset has binary, three, and multi classes. The collection contains 15 sets of data on 37 power 

issue areas. Figure 2 shows the IEEE four-bus three-generator system converted to two-line transmission. 

The analysis test framework architecture is given. Although small, this system integrates the core notions of 

the power structure and is easy to understand. This work suggests classifier-iterative power system 

component monitoring. Circuit breakers (Bk1–Bk4) are toggled by two generator types and four IEDs, relays 

(R1–R4). Combining meta-heuristic algorithms and classical machine learning algorithms like ANNs, CNNs, 

and SVMs in cyber security professions is becoming increasingly common. Meta-heuristic algorithms 

optimize parameters and structures to increase machine learning model performance, durability, and 

efficiency. Traditional machine learning methods can define and categorize data to better meta-heuristic 

cyber threat detection. Meta-heuristic algorithms improve power system cyber security, while ANNs, CNNs, 

and SVMs classify patterns. Together, meta-heuristic and classical machine learning can increase power 

system cyber security. Novel approaches and practical obstacles in deploying integrated algorithms for real-

world cyber security need further study. This paper uses Mississippi State University's Oak Ridge national 

laboratory's power system assault detection dataset. The dataset has binary, three, and multi-class categories. 

One dataset contains 15 sets of data from 37 power system occurrences. The data is CSV except for the 

multi-class dataset. Table 1 displays dataset content. 

 

 

 
 

Figure 2. A brief description of the architecture of the power system 

 

 

Table 1. Describes the dataset that was employed 
Data class Data details Event count out 

Binary classification Natural event 

Attack event 

9 

28 

Three classifications No event 
Natural event 

1 
8 

Multi class classification Attack event 

All classes 

28 

37 

 

 

3. RESULTS AND DISCUSSION 

This section explains research results and provides a full commentary. Present results in figures, 

graphs, and tables for easy comprehension [14], [15]. Discussion can be divided into areas. This section 

compares traditional machine learning algorithms like ANNs, CNNs, and SVMs to the RBM augmented with 

an artificial root foraging optimization algorithm. Integration of meta-heuristic algorithms with regular 

machine learning techniques improves power system cyber security. Meta-heuristic optimization methods 

like genetic algorithms and PSO improve deep learning model accuracy, resilience, and scalability. The 

integrated strategy enhances adaptability and reactivity to shifting threat landscapes and system conditions. 

Integrating real-time threat intelligence and system status information into defense plans allows proactive 

threat identification and rapid response, reducing the impact of cyber-attacks on power grid operations. A 

single dataset was created from 15 sets of data from 37 power system event categories. In this study, 70% of 

the data is for training and 30% for testing. Figures 3-6 show the verified algorithms' F1-score, accuracy, 

precision, recall, and recall. Figure 3 shows the validated algorithms' accuracy from all three experiments. 
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Except for the ANN algorithm in the three-class classification experiment, the binary classification methods 

consistently outperformed the other two. The ANN algorithm performed somewhat better in the three-class 

classification experiment than the binary and multi-class studies. 

 

 

 
 

Figure 3. The precision of the investigations performed 

 

 

 
 

Figure 4. The accuracy of the experiments performed 

 

 

 
 

Figure 5. The recall score for the investigations that were conducted 
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Figure 6. Illustrates the F1-score of the investigations performed 
 

 

Figure 4 shows that the multi-class classification experiment was more precise than the three-class 

trial, but only the ANN method. These findings suggest that the ANN algorithm may be more precise in 

multi-class classification jobs. The CNN and SVM algorithms did not improve the multi-class classification 

experiment. Figure 5 shows that the ANN and SVM algorithms performed better in three-class classification 

than the other two experiments. The suggested random forest–restricted Boltzmann machine (RF-RBM) 

improves binary classification experiments due to the extraordinarily high sample counts for either class. The 

three-class classification experiment performs poorly due to the large fall in data for the no-event class, 

which creates an uneven distribution. In every experiment except the proposed RF-RBM, the three-class 

classification yields better F1-score estimations, as shown in Figure 6. The suggested algorithm outperforms 

the other three algorithms in three-class and multi-class classification, but it excels in binary classification. 

The results and discussions emphasize the need of merging meta-heuristic and classical supervised machine 

learning techniques in power system cyber security. The integrated strategy addresses developing cyber 

threats and vulnerabilities in a holistic and adaptable manner, providing critical infrastructure stability and 

security in the face of more sophisticated attacks. Further research and development should refine and 

enhance integrated algorithms to handle power system cyber security concerns and requirements. Moreover, 

we assess the findings of this study by comparing them to the outcomes of similar studies that utilized the 

identical dataset. The Table 2 displays the three-class classification dataset comparison. 
 

 

Table 2. Three-class classification dataset model comparison 
Model Accuracy Precision Recall F1-score 

SVM-ACO 77 79.6 76.3 NA 

GA-RBF SVM 89.1 88.8 90.8 84.7 

PSO-SVM 84.8 85.9 82.8 NA 
Proposed RF-RBM 93.4 94.2 91.3 89.5 

 

 

4. CONCLUSION 

Cyber security in power systems is crucial for critical infrastructure reliability and security. This 

study examines the integration of meta-heuristic algorithms with typical supervised machine learning 

methods like ANNs, CNNs, and SVMs to improve power system cyber security. This work offers a limited 

Boltzmann machine approach inspired by nature to identify and categorize smart grid system assaults. 

Artificial root forage optimization is based on biological root growth optimization. The artificial root 

foraging algorithm was used to fine-tune dataset features before the neural network algorithm to demonstrate 

optimization. The experimental investigation compared the proposed RF-RBM method to three leading 

neural network algorithms. The study included binary, three-class, and multi-class classification. The 

algorithm RF-RBM is best at detecting and categorizing power system cyberattacks, according to 

experiments. The algorithm's strong F1-score, good recall, precision, and accuracy demonstrate this. Using 

meta-heuristic and standard machine learning algorithms to improve power system cyber security seems 

promising. Integrating optimization and pattern recognition approaches provides a holistic and adaptable 

response to cyber threats and vulnerabilities. Further research and development should refine integrated 

algorithms, handle practical obstacles, and deploy effective cyber security solutions to protect power system 

essential infrastructure. The experimental study compares the proposed RF-RBM method against three 

cutting-edge neural network algorithms in classification. The trials show that RF-RBM is excellent for 
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cyberattack detection and classification in smart grid SCADA systems. The suggested algorithm has high F1-

score, good accuracy, precision, and recall. 
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