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Power system cyber security is crucial due to their criticality. Cybersecurity
is essential to protect vital infrastructure as power systems digitize. Meta-
heuristic and deep learning techniques are used to improve power system
cyber security in this paper. To evaluate their performance, the suggested
approach is compared to traditional supervised machine learning algorithms
including artificial neural networks (ANNSs), convolutional neural networks
(CNNs), and support vector machines (SVMs). The technique optimizes
deep learning model hyper parameters and architectures to detect cyber
risks. Cyberattacks on power systems can cause service outages and
cascading failures with extensive social implications. Meta-heuristic and
deep learning algorithms are integrated to improve power system cyber
security in this study. Deep learning is good at pattern recognition and
anomaly detection, while meta-heuristic algorithms optimize efficiently. A
complete threat detection and mitigation strategy is proposed by merging
these methodologies. The proposed methodology tests classic supervised
machine learning algorithms such ANNs, CNNs, and SVMs. Simulations
showed the algorithm worked better. It beat competition in accuracy,
precision, recall, and F1-score.
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1. INTRODUCTION

Integrating information and communication technology into power networks has transformed
electricity generation, transmission, and distribution. These advances have many benefits, but they also make
us vulnerable to cyberattacks. Malicious actors target power system infrastructures to disrupt services, ruin
the economy, or risk people. Thus, protecting power systems from cyberattacks is essential for their
reliability and security [1]. Information and communication technology has changed power systems. These
improvements have improved power generation, transmission, and distribution efficiency, dependability, and
flexibility, but they have also raised cyber security concerns. Due to power grids' growing reliance on
interconnected digital systems, cyberattacks endanger energy supply chain stability [2]. Power outages and
blackouts caused by cyberattacks can have major economic and societal consequences. These attacks can

jeopardize critical infrastructure

integrity, availability, and confidentiality by exploiting control,
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communication, and data management system flaws. Thus, utilities, regulators, and governments worldwide
emphasize power system cyber security [3]. Power system cyber security uses rule-based, intrusion, and
anomaly detection. Traditional security measures cannot detect and neutralize cyber breaches in real time in
modern power systems [4]. Meta-heuristic algorithms and deep learning models improve power system cyber
security to solve these issues. Using evolutionary algorithms, particle swarm optimization (PSO), and
simulated annealing (SA), intrusion detection, vulnerability assessment, and resource allocation can be
optimized. These algorithms find near-optimal results in large search areas, making them ideal for dynamic
and uncertain power system cyber threats [5]. Deep learning is good at pattern recognition, anomaly
detection, and domain-wide categorization. Convolutional neural networks (CNNs) and recurrent neural
networks (RNNs) detect complicated cyber-attack patterns in power system data streams. Deep learning
algorithms trained on massive data sets can acquire comprehensive representations of normal and harmful
behavior to identify novel and sophisticated cyber threats [6]. Restricted Boltzmann machines (RBMs)
improve natural-inspired artificial root foraging optimization. The RBM and natural-inspired artificial root
foraging optimization can help smart grid intrusion detection and categorization. RBMs learn unsupervised
from unlabeled data. This tech may create a multi-dataset learning system. This may help with minimal
annotated data [7]. This work increases power system cyber security with meta-heuristics and deep learning.
These computational approaches can detect threats, assess vulnerabilities, and develop adaptive security
strategies. The study discusses literature, methods, advantages and cons, and case studies and experiments to
verify the strategy works. This research improves cyber security to defend vital infrastructure and power
systems from new cyberattacks.

Due to critical infrastructure digitization and interconnection, academics and industry study power
system cyber security. A comprehensive literature evaluation covers traditional power system cyber security
and revolutionary meta-heuristic and deep learning algorithms [8]. Intrusion, anomaly, and rule-based power
system cyber security dominate. Rule-based methods use signatures and patterns to detect cyber hazards.
Rule-based methods can detect well-defined attacks but not unique or complicated threats that deviate from
patterns [9]. Intrusion detection system (IDS) checks network traffic and system operations for malicious
activities and unauthorized access. Signature-based IDS look for attack signatures in network packets or
system logs, while anomaly-based IDS use statistical models or machine learning algorithms to detect
anomalous behavior. Anomaly-based IDS may have high false positives and low scalability in large power
systems [10]. Meta-heuristic algorithms' near-optimal findings and vast search area help cyber security.
Many cyber security applications use Georgia, PSO, SA, and ant colony optimization (ACO) meta-heuristics
[11]. For intrusion detection, resource allocation, and cryptographic key generation, power system cyber
security uses meta-heuristic algorithms. GA-based intrusion detection enhances accuracy, while PSO
dynamic resource allocation reduces denial of service (DoS). CNNs and RNNs spot power system and cyber
anomalies. CNNs scan network traffic and power grid satellite images for cyber security. RNNs infer
temporal dependencies from sequential power system sensor and control device time-series data [12]. Deep
learning algorithms recognized power system data stream intrusions, exfiltration, and malware distribution
recently. Deep learning learns complex cyber threat patterns using large labeled datasets and powerful neural
network topologies [13]. Deep learning and meta-heuristics may help power system cyberdefense. Meta-
heuristic methods improve deep learning model hyperparameters like learning rates, regularization
parameters, and network designs. Deep learning helps meta-heuristic computers adapt to complex cyber
threats by improving feature representation and pattern identification [14]. Numerous research uses meta-
heuristic and deep learning algorithms for intrusion detection, malware analysis, and vulnerability
assessment. Genetic programming-based feature selection for deep learning models and PSO-based
hyperparameter optimization for CNNs improve power system data cyber threat detection [15].
Cybersecurity protects power systems from threats but not sophisticated attackers. Deep learning detects
abnormalities; meta-heuristic algorithms optimize. Combining computations boosts power system security.
Integrate meta-heuristic and deep learning methods to study power system cyber security innovations and
issues [16]. The literature review covers power system security. Most systems catch power system data fraud.
To predict its anomalous response to deceptive input, the system's usual behavior was analyzed. Using
feature-based analysis, deep learning and machine learning algorithms predict accurately. Metaheuristics-
based feature optimization evaluates deep learning-based smart grid supervisory control and data acquisition
(SCADA) security vulnerability identification.

2. METHOD

Meta-heuristic algorithms are effective optimization methods for complicated and dynamic cyber
security situations. In power systems, where essential infrastructure reliability and security are paramount,
meta-heuristic algorithms provide efficient threat detection, vulnerability assessment, and resource allocation.
This section discusses meta-heuristic algorithms and their use in cyber security, followed by traditional
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supervised machine learning algorithms like artificial neural networks (ANNs), CNNs, and support vector
machines (SVMs) [17]. Meta-heuristic algorithms optimize using natural or human behavior. These
algorithms iteratively search solution spaces for complex problem near-optimal solutions. Genetic
algorithms, PSO, SA, ACO, and evolutionary techniques are meta-heuristics [18]. Cyber security uses meta-
heuristic methods to optimize IDS parameters, generate cryptographic keys, and allocate network defense
resources. These algorithms are flexible, scalable, and adaptable to changing situations, making them ideal
for power system cyber threats [19].

ANN structure and function mimic biological brain networks. Weighted connections spread
information and learn from training data to improve prediction. Cybersecurity employs ANNSs for intrusion,
malware, and anomaly detection. ANNs learn complicated data patterns and correlations to detect advanced
cyber threats. Overfitting, vanishing gradients, and huge labeled training data can harm ANNs [20]. Photos
and time-series signals are grid-like data for CNNs. CNN layers are completely linked, pooling, and
convolutional. CNNs learn spatial patterns by hierarchically extracting input data features. CNNs detect
dangers in network traffic visualizations and surveillance camera recordings. Spatial patterns and local data
linkages help CNNs spot visual anomalies and criminal activities. CNN training and inference may need
huge labeled data and processing [21], [22]. SVMs are supervised classification and regression models. Data
is classified by SVMs using the hyperplane with the highest margin. Kernels help SVMs handle high-
dimensional data and nonlinear decisions. Cyber security uses SVMs for intrusion detection, malware
classification, and network traffic analysis. Noise, sparsity, and high-dimensional data resistance allow SVMs
to detect modest cyber threat patterns. SVMs need careful kernel function and regularization parameter
selection for large datasets [23], [24]. RBMs neural networks replicate input probability distributions for
unsupervised machine learning. Boltzmann Machines, stochastic generative models, model RBM complexity.
RBMs have visible and buried neurons. Neurons in one layer are fully connected to those in the next but not
each other. RBMs are "restricted" to simplify computation and enhance training efficiency, unlike Boltzmann
Machines. Energy functions provide RBM energy values to visible and concealed unit configurations. Model
parameters (weights, biases) and visible and hidden unit states affect energy function. The Boltzmann
distribution models RBMs' visible and hidden unit probability distributions with higher probabilities for
lower energy configurations. Contrastive divergence (CD) (training algorithm for RBM) educates RBMs. To
close the RBM data distribution gap, network weights and biases are modified during training [25]. CD is
suitable for large dataset RBM training since it approximates the log-likelihood function gradient. RBMs
may learn hierarchical input feature representations and complex data linkages. Al and machine learning
model probability distributions and create samples using RBMs. Atrtificial root foraging enhances power
system sensor and data transmitter data. Internet of things (IoT) voltage and power sensors alert the base
station to power concerns. Receivers build databases from data. The base station must examine all data for
errors and missing data before building the dataset. Database storage may be reduced by providing data
during dataset generation. Figure 1 shows the workflow of the proposed model.
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Figure 1. The workflow of the proposed model
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The dataset has binary, three, and multi classes. The collection contains 15 sets of data on 37 power
issue areas. Figure 2 shows the IEEE four-bus three-generator system converted to two-line transmission.
The analysis test framework architecture is given. Although small, this system integrates the core notions of
the power structure and is easy to understand. This work suggests classifier-iterative power system
component monitoring. Circuit breakers (Bk1-Bk4) are toggled by two generator types and four IEDs, relays
(R1-R4). Combining meta-heuristic algorithms and classical machine learning algorithms like ANNs, CNNs,
and SVMs in cyber security professions is becoming increasingly common. Meta-heuristic algorithms
optimize parameters and structures to increase machine learning model performance, durability, and
efficiency. Traditional machine learning methods can define and categorize data to better meta-heuristic
cyber threat detection. Meta-heuristic algorithms improve power system cyber security, while ANNs, CNNs,
and SVMs classify patterns. Together, meta-heuristic and classical machine learning can increase power
system cyber security. Novel approaches and practical obstacles in deploying integrated algorithms for real-
world cyber security need further study. This paper uses Mississippi State University's Oak Ridge national
laboratory's power system assault detection dataset. The dataset has binary, three, and multi-class categories.
One dataset contains 15 sets of data from 37 power system occurrences. The data is CSV except for the
multi-class dataset. Table 1 displays dataset content.
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Figure 2. A brief description of the architecture of the power system

Table 1. Describes the dataset that was employed

Data class Data details  Event count out
Binary classification Natural event 9
Attack event 28
Three classifications No event 1
Natural event 8
Multi class classification — Attack event 28
All classes 37

3. RESULTS AND DISCUSSION

This section explains research results and provides a full commentary. Present results in figures,
graphs, and tables for easy comprehension [14], [15]. Discussion can be divided into areas. This section
compares traditional machine learning algorithms like ANNs, CNNs, and SVMs to the RBM augmented with
an artificial root foraging optimization algorithm. Integration of meta-heuristic algorithms with regular
machine learning techniques improves power system cyber security. Meta-heuristic optimization methods
like genetic algorithms and PSO improve deep learning model accuracy, resilience, and scalability. The
integrated strategy enhances adaptability and reactivity to shifting threat landscapes and system conditions.
Integrating real-time threat intelligence and system status information into defense plans allows proactive
threat identification and rapid response, reducing the impact of cyber-attacks on power grid operations. A
single dataset was created from 15 sets of data from 37 power system event categories. In this study, 70% of
the data is for training and 30% for testing. Figures 3-6 show the verified algorithms' F1-score, accuracy,
precision, recall, and recall. Figure 3 shows the validated algorithms' accuracy from all three experiments.
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Except for the ANN algorithm in the three-class classification experiment, the binary classification methods
consistently outperformed the other two. The ANN algorithm performed somewhat better in the three-class
classification experiment than the binary and multi-class studies.
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Figure 3. The precision of the investigations performed
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Figure 5. The recall score for the investigations that were conducted
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Figure 6. lllustrates the F1-score of the investigations performed

Figure 4 shows that the multi-class classification experiment was more precise than the three-class
trial, but only the ANN method. These findings suggest that the ANN algorithm may be more precise in
multi-class classification jobs. The CNN and SVM algorithms did not improve the multi-class classification
experiment. Figure 5 shows that the ANN and SVM algorithms performed better in three-class classification
than the other two experiments. The suggested random forest—restricted Boltzmann machine (RF-RBM)
improves binary classification experiments due to the extraordinarily high sample counts for either class. The
three-class classification experiment performs poorly due to the large fall in data for the no-event class,
which creates an uneven distribution. In every experiment except the proposed RF-RBM, the three-class
classification yields better F1-score estimations, as shown in Figure 6. The suggested algorithm outperforms
the other three algorithms in three-class and multi-class classification, but it excels in binary classification.
The results and discussions emphasize the need of merging meta-heuristic and classical supervised machine
learning techniques in power system cyber security. The integrated strategy addresses developing cyber
threats and vulnerabilities in a holistic and adaptable manner, providing critical infrastructure stability and
security in the face of more sophisticated attacks. Further research and development should refine and
enhance integrated algorithms to handle power system cyber security concerns and requirements. Moreover,
we assess the findings of this study by comparing them to the outcomes of similar studies that utilized the
identical dataset. The Table 2 displays the three-class classification dataset comparison.

Table 2. Three-class classification dataset model comparison

Model Accuracy  Precision  Recall  Fl-score
SVM-ACO 77 79.6 76.3 NA
GA-RBF SVM 89.1 88.8 90.8 84.7
PSO-SVM 84.8 85.9 82.8 NA
Proposed RF-RBM 93.4 94.2 91.3 89.5

4. CONCLUSION

Cyber security in power systems is crucial for critical infrastructure reliability and security. This
study examines the integration of meta-heuristic algorithms with typical supervised machine learning
methods like ANNs, CNNs, and SVMs to improve power system cyber security. This work offers a limited
Boltzmann machine approach inspired by nature to identify and categorize smart grid system assaults.
Artificial root forage optimization is based on biological root growth optimization. The artificial root
foraging algorithm was used to fine-tune dataset features before the neural network algorithm to demonstrate
optimization. The experimental investigation compared the proposed RF-RBM method to three leading
neural network algorithms. The study included binary, three-class, and multi-class classification. The
algorithm RF-RBM is best at detecting and categorizing power system cyberattacks, according to
experiments. The algorithm's strong F1-score, good recall, precision, and accuracy demonstrate this. Using
meta-heuristic and standard machine learning algorithms to improve power system cyber security seems
promising. Integrating optimization and pattern recognition approaches provides a holistic and adaptable
response to cyber threats and vulnerabilities. Further research and development should refine integrated
algorithms, handle practical obstacles, and deploy effective cyber security solutions to protect power system
essential infrastructure. The experimental study compares the proposed RF-RBM method against three
cutting-edge neural network algorithms in classification. The trials show that RF-RBM is excellent for
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cyberattack detection and classification in smart grid SCADA systems. The suggested algorithm has high F1-
score, good accuracy, precision, and recall.
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