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 The non-prioritized (NP) channel assignment model is characterized by a 

high call dropping probability (CDP) of handover calls and an increasing 

mobile call traffic volume due to the proliferation of mobile devices. In this 

study, the one-dimensional Markovian NP model has been improved upon 

using an artificial neural network (ANN) as a prediction mechanism of CDP 

using predicted traffic intensity and channel parameters to assign calls of 

different types to channels. A simulation comparison of the CDP of existing 

NP channel assignment with the NP with traffic intensity (CDPT) and with 

the ANN traffic intensity prediction model (CDPANN) was carried out and 

the study shows that the CDP was reduced drastically when the NP channel 

assignment with ANN assisted trained model was used putting signal quality 

into consideration. The CDPT has reduced CDP by 3%, 15%, and 40%, 

while the CDPANN has reduced CDP by 6%, 20%, and 50% for signal 

quality factors of 0.2 (poor), 0.5 (good), and 0.8 (very good) respectively. 

This study has shown that under varying radio frequency signal quality 

conditions, the ANN assisted channel assignment approach will help 

minimise the problem of high CDP associated with NP channel assignment 

and thereby improve ubiquitous mobile communication. 
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1. INTRODUCTION 

The fast advancement of wireless communication networks has led to an increase in demand for 

mobile communication devices in recent years, with exponential growth in mobile communication call 

traffic, which is dictating an obvious need for more communication channels [1], [2]. Moreover, this constant 

advancement of wireless communication has increased the quality demand of various cellular networks [3], 

because the spectrum accessible to cellular systems is limited, a channel assignment method that is consistent 

with the aims of increasing channel capacity and reducing the expected high call dropping rate due to 

increased user traffic is required [4], [5]. A mobile station (MS), a base station (BS), and a mobile switching 

center (MSC) make up a fundamental cellular system [6]. The MSC is a network switching subsystem 

component that uses a channel assignment scheme to assign a voice channel to the MS [7], [8]. Channel 

assignment is assigning separate orthogonal or partially overlapped orthogonal channels to all the nodes in 

the communication range. The channel assignment method selected has an influence on system performance, 

particularly in terms of how calls are handled when a mobile user is moved from one cell to another [9]-[14]. 

Through analysis and simulation study, it was shown in [15]-[17] that dynamic guard channel (DGC) 

assignment scheme based on channel utilization reduces the call blocking probability in comparison to non-
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prioritized (NP), prioritized guard channel (PGC), and prioritized guard channel with queue (PGCQ)/buffer 

but has the obvious disadvantage of tradeoff of quality of service (QoS) between originating new calls and 

handover calls. On the other hand, the guard channels’ reservation and prioritized queuing assignment 

schemes give undue advantages to handover calls at the expense of originating new calls. Hence, the worst 

case is the NP channel assignment method, which prioritizes handover calls contrary to the mobile 

communication principle and with a very high call dropping probability (CDP) [16]-[18]. 

Omitola and Srivastava [18] considered the channel borrowing admission control scheme in 

LTE/LTE-A femtocell-macrocell networks and some system bandwidth were reserved for handover calls 

which can be borrowed by non real-time (NRT) new calls when handover calls are not available to reduce 

call blocking probability and it was discovered that the integration of channel borrowing with admission 

control was advantageous in terms of resource utilization, and reduction in call blocked and call dropped. The 

researchers [19], prioritized and NP schemes were considered. It was discovered that new calls have a higher 

call blocking probability in the NP scheme, which gives more consideration to handoff requests. The 

experience of high call blocking probability of new calls is due to the prioritization used. The researchers 

[20] looked into an optimal channel reservation (OCR) policy, which was designed for users that move from 

one cell to another, either from a 5G cell to a 4G cell, and so on. The policy reserves channels in relation to 

the target handoff CDP. The policy was applied to the global system for mobile communication (GSM) 900, 

and it was found that the CDP was below the target while the call blocking probability was minimized. 

To reduce the likelihood of traffic and provide higher-quality services in heavily congested cellular 

communication systems, a NP channel assignment scheme that reuses a voice channel was implemented to 

reduce the likelihood of blocked calls and increase the traffic carrying capacity of cellular systems. The 

significance of this research work is to create a better communication system for the public by enhancing 

service quality and avoiding communication system interruptions. It is to provide equal merit to new, and 

handover calls in a system [15]. The conceptual representation of a NP channel assignment scheme for a 

cellular communication system with channel capacity C being the total number of assignable channels is 

presented in [21]-[23] and the state transition diagram is depicted in Figure 1. Two types of traffic are 

arriving at the BS switch that is originating new calls traffic 𝜆𝑛 and ongoing handover calls traffic 𝜆ℎ, 

transiting one BS to another. The admitted calls are serviced at the rate 𝜇 on a first-come, first-served (FCFS) 

basis, and the traffics have equal contention for channel allocations. 

 

 

 
 

Figure 1. Markov chain states transition diagram of NP channel assignment [21]-[24]  

 

 

From the state transition diagram of Figure 1 [21]-[24] presented the state probability of NP channel 

assignment as (1) where P(i) is the probability of the system occupying any state in the interval 0 ≤ i ≤ C 

and the state is number of calls assigned to channels applying superposition theory or number of busy 
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channels. The normalization constant P(0) is obtained by summing all the state probabilities and is given  

as (2): 
 

P(i) =
(λn+αλh)i

i!μi . P(0), 0 ≤ i ≤ C  (1) 

 

P(0) = [1 + ∑ (
λn+λh

μ
)

i

.
1

i!

C
i=1 ]

−1

  (2) 

 

It has been said in [21]-[24] that when all the channels are busy or assigned that is the system is in the state C 

with state probability P(C), then the new call (originating from the BS) blocking probability PC(B) and the 

handover CDP PH(D) for handover traffic are equal. Hence, PC(B) = PH(D) = P(C) when i = C. 

It has been said in [25]-[27] that channel estimation models and invariably channel assignment 

models are designed with mathematical models, but complex environmental factors like multipath fading, 

distortions, and channel noise, to mention a few, affect the performance of these models [19]-[24], [28]. 

These impairments decrease the system’s performance. Recently, artificial intelligence (AI) has been 

explored for the area of wireless communication, such as machine learning based-wireless receivers. A 

survey of the different machine learning algorithms utilized for the network and communication aspects of 

vehicular movement was carried out [29]. The authors compared the machine learning based-solution to the 

conventional approach. Various machine learning algorithms such as support vector machine (SVM), 

artificial neural networks (ANNs), deep neural networks (DNNs), and their applications to communication, 

such as mobility prediction, dynamic routing, and congestion control, were highlighted. While [30] surveyed 

the exploration of machine learning for 5G wireless networks integration into the smart devices and how to 

efficiently analyze the stored data in them, make intelligence decisions, and observe the environments using 

various machine learning based solutions, [31] looked into the deep learning techniques for 6G wireless 

communication in the physical layer. These include feed-forward neural networks (FNN), DNNs, and 

autoencoder for channel modeling, source coding/decoding, and end-to-end communication, respectively. 

This shows the importance of AI algorithms in wireless communication even in the case of channel 

assignment as the algorithms can learn the relationship among different variables in the models and help 

resolve complexities in unrealistic assumptions and improve performance of channel estimation models  

[25], [32], [33] utilizing the simulation data obtained. This forms the basis of this study, which is channel 

assignment improvement in cellular communication using an ANN approach, and it is expected that high 

CDP will be reduced, and call quality will be improved.  

 

 

2. METHOD 

The design of NP channel assignment scheme based on traffic intensity presented in this article is 

such that the call traffics are assigned channels based on the traffic intensity to ensure conservation of scarce 

radio resources so that the total number of channels for originating new calls is 𝐾. It is variable and 

determined by the intensity of both traffic types. Hence, the assignable number of channels for handover calls 

becomes 𝐶 − 𝐾, which is also variable because 𝐶, the channel capacity is constant and 𝐾 is variable. The 

Markovian state diagram of the NP channel assignment presented in Figure 1 is applicable to the proposed 

NP channel assignment method based on traffic intensity. This is because it is based on FCFS, and the 

superposition theorem is equally applicable. The conceptual diagram with the ANN traffic comparator is 

shown in Figure 2, which combines the traffic using arrival rates based on the superposition theorem. 
 
 

 
 

Figure 2. Conceptual view of ANN traffic predictor 
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It considers the signal quality 𝛼 at a specific distance, and instant where 𝜌𝑛 and 𝜌ℎ are the traffic 

intensity of originating new calls and of handover calls, respectively, as given in (3) and (4). In (5) defines 

the channel capacity for the originating new calls based on traffic intensity [17]. The state model equations 

were derived from the state diagram. 

 

𝜌𝑛 =
𝜆𝑛

𝜇
  (3) 

 

𝜌ℎ =
𝛼𝜆ℎ

𝜇
  (4) 

 

𝐾 =
𝜌𝑛

𝜌𝑛+𝜌ℎ
. 𝐶  (5) 

 

The normalization constant 𝑃𝑁𝑃(0) for the NP channel assignment based on traffic intensity using 

the Markov chain is given as (6) while state probability 𝑃𝑁𝑃(𝑖) of the model for new calls arrival is given as 

(7) and the blocking probability of the originating new calls at the BS is 𝑃𝐶(𝐵) given as (8). 
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𝐾
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1
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  (8) 

 

The blocking probability of new (originating) call 𝑃𝐶 (𝐵) and CDP 𝑃𝐻(𝐷) for handover call traffic 

are equal in the conventional NP scheme but are not equal for this modified model because channel 

allocation is traffic intensity determined though the same Markov chain transition diagram is applicable 

because allocation is based on FCFS. Hence, the normalization condition for the handover traffic is as given 

in (9), and the state probability for channel assignment to the handover calls is given in (10). The handover 

calls can only be dropped when all the channels assignable based on traffic intensity have been fully 

allocated; therefore, the handover CDP 𝑃ℎ(𝐷) for the NP channel assignment scheme based on traffic 

intensity is given by (11). Call traffic arrival rate was modelled using a Poisson distribution. 
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The experimental setup for the ANN model has an input layer of four input neurons that characterize 

the data set’s four properties. When I=1:20, the for loop was used to optimize the number of neurons in the 

hidden layer (where I signifies the hidden layer size) as shown in Figure 3. The inputs were alpha, arrival rate 

of new calls, arrival rate of handover calls, and CDP. CDP based on traffic intensity (CDP_TI) in (11) was 

used as the output. The data was fed to the neural network model after it had been cleaned, pre-processed, 

and encoded. The design of the ANN model was done in such a way that 70% of the data was used for 

training and 30% was used for testing. This procedure used supervised learning, in which the network was 

given an input vector during training and generated an output vector. This output vector was contrasted with 

the desired or goal output vector. An error signal was produced if the actual output vector varied from the 

target output vector. This is a Feed-forward ANN where data travels in one direction between the input and 

output nodes. The same tiers of nodes used to transmit data forward were not used to transmit information 

backwards. A sigmoid function was employed as an activation function, although a rectified linear activation 

unit (RELU) function could be a preferable alternative. The dataset was trained using the Levenberg-

Marquardt algorithm, and MATLAB R2020a was used to run the simulation. 
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Figure 3. Experimental neural network setup 

 

 

3. RESULTS AND DISCUSSION 

The results of simulation experiments carried out in this study are presented and discussed in this 

section. Comparative simulation studies of the three models were carried out to determine their performance 

with respect to handover CDP. Simulation parameters and assumed values are presented in Table 1 and are 

the same for the three handover scenarios experimented based on the signal quality, which is dependent on 

the distance of the MS from the BS that is degrading from high (0.8) to low (0.2) and also serves as a 

mobility factor. Consideration was given to congestion through high traffic arrival rate and other system 

parameters, including service rate being held constant. The simulation was repeated for varied signal quality 

factors, and the results are presented graphically in Figures 4 to 6, respectively, and discussed. 

 

 

Table 1. Simulation parameters and assumed values 
S/N Parameter assignment/assumption table  

1. BS transmitter power 23 dBm 

2. BS antenna gain 18 dB 

3. MS antenna gain 0 dB 
4. Propagation model Free space model 

5. BS antenna height  +30 m above ground 
6. MS antenna height +2 m above ground 

7. RSS quality factor MS distance from BS based, 0.8 (high), 0.5 (good), 0.2 (low) 

8. Signal fading 12 dB 
9. System service rate 1.0 

10. RSS threshold 4 dB 

11. Number of channels 12 
12. Type of handover MAHO 

 

 

 
 

Figure 4. CDP with traffic intensity and CDP with ANN against call arrival rate for the signal quality 𝛼=0.2 
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Figure 5. CDP with traffic intensity and CDP with ANN against call arrival rate for the signal quality 𝛼=0.5 
 
 

 
 

Figure 6. CDP with traffic intensity and CDP with ANN against call arrival rate for the signal quality 𝛼=0.8 
 
 

The graph in Figure 4 shows that even with a signal quality of 0.2, there was still a difference in the 

CDP values of the conventional model when compared to call dropping probabilities with traffic intensity 

(modified model) and the ANN-trained model. However, compared to the rest, the CDP with ANN was 

lower. Figure 5 shows that there was a significant difference in the CDP values without traffic intensity and 

ANN at a good signal quality of 0.5. Both the CDP with ANN and the CDP with traffic intensity were 

reduced. However, compared to the rest, the CDP with ANN was lower and better. 

The graph in Figure 6 shows a further decline in the values of the CDP for both the modified and 

ANN models, showing the effect of good signal quality on handover, as it is common knowledge that signal 

strength is an important factor for a successful handover in mobile communication. Hence, the modified 

model and the ANN trained model both showed improved performance for much better signal quality, with 

reduced CDP, with the ANN trained model being the least. Both the CDP with ANN and the CDP with 

traffic intensity were reduced. However, the CDP with the ANN was significantly better and had less 

probability of call drops than the others. Additionally, it was shown that using ANN reduces call drops better, 

even at high call arrival rates, which also depicts a state of system congestion. 

 

 

4. CONCLUSION 

This research work has been able to solve the problem of high CDP of NP channel assignment in 

mobile communication handover by using the one-dimensional Markov chain analysis to model the states 

and to derive the CDP of NP channel assignment scheme based on traffic intensity which is a modified NP 

channel assignment method to reduce the high CDP. The data from the simulation experiment was used to 

train an ANN-based version of the modified NP channel assignment model developed in this study to 

investigate the effect of trained ANN on the model. This brought about further enhancement of the model to 
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predict traffic intensity and the corresponding CDP as a mechanism of assigning handover calls to a channel. 

The simulation study carried out showed that when the signal quality is over 80%, the high CDP of the 

conventional NP channel assignment was drastically reduced by 40% by the NP channel assignment based on 

traffic intensity only and a 50% reduction in call drops using ANN assisted model for NP channel assignment 

in MAHO. With this finding, it has been established that a significant reduction in high CDP of NP channel 

assignment is achievable using the ANN-assisted model, which obviously has dual adverse effects of 

improved call quality and reduced call drop rate in cellular networks with the signal quality measurement. 

Moreover, future works can be towards the deployment of this model in real-world network environments of 

different architectures and enhancing channel assignment schemes and queueing models of cellular network 

handover with deep learning models. 
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