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The non-prioritized (NP) channel assignment model is characterized by a
high call dropping probability (CDP) of handover calls and an increasing
mobile call traffic volume due to the proliferation of mobile devices. In this
study, the one-dimensional Markovian NP model has been improved upon
using an artificial neural network (ANN) as a prediction mechanism of CDP
using predicted traffic intensity and channel parameters to assign calls of
different types to channels. A simulation comparison of the CDP of existing
NP channel assignment with the NP with traffic intensity (CDPT) and with
the ANN traffic intensity prediction model (CDPANN) was carried out and
the study shows that the CDP was reduced drastically when the NP channel
assignment with ANN assisted trained model was used putting signal quality
into consideration. The CDPT has reduced CDP by 3%, 15%, and 40%,
while the CDPANN has reduced CDP by 6%, 20%, and 50% for signal
quality factors of 0.2 (poor), 0.5 (good), and 0.8 (very good) respectively.

This study has shown that under varying radio frequency signal quality
conditions, the ANN assisted channel assignment approach will help
minimise the problem of high CDP associated with NP channel assignment
and thereby improve ubiquitous mobile communication.
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1. INTRODUCTION

The fast advancement of wireless communication networks has led to an increase in demand for
mobile communication devices in recent years, with exponential growth in mobile communication call
traffic, which is dictating an obvious need for more communication channels [1], [2]. Moreover, this constant
advancement of wireless communication has increased the quality demand of various cellular networks [3],
because the spectrum accessible to cellular systems is limited, a channel assignment method that is consistent
with the aims of increasing channel capacity and reducing the expected high call dropping rate due to
increased user traffic is required [4], [5]. A mobile station (MS), a base station (BS), and a mobile switching
center (MSC) make up a fundamental cellular system [6]. The MSC is a network switching subsystem
component that uses a channel assignment scheme to assign a voice channel to the MS [7], [8]. Channel
assignment is assigning separate orthogonal or partially overlapped orthogonal channels to all the nodes in
the communication range. The channel assignment method selected has an influence on system performance,
particularly in terms of how calls are handled when a mobile user is moved from one cell to another [9]-[14].
Through analysis and simulation study, it was shown in [15]-[17] that dynamic guard channel (DGC)
assignment scheme based on channel utilization reduces the call blocking probability in comparison to non-
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prioritized (NP), prioritized guard channel (PGC), and prioritized guard channel with queue (PGCQ)/buffer
but has the obvious disadvantage of tradeoff of quality of service (QoS) between originating new calls and
handover calls. On the other hand, the guard channels’ reservation and prioritized queuing assignment
schemes give undue advantages to handover calls at the expense of originating new calls. Hence, the worst
case is the NP channel assignment method, which prioritizes handover calls contrary to the mobile
communication principle and with a very high call dropping probability (CDP) [16]-[18].

Omitola and Srivastava [18] considered the channel borrowing admission control scheme in
LTE/LTE-A femtocell-macrocell networks and some system bandwidth were reserved for handover calls
which can be borrowed by non real-time (NRT) new calls when handover calls are not available to reduce
call blocking probability and it was discovered that the integration of channel borrowing with admission
control was advantageous in terms of resource utilization, and reduction in call blocked and call dropped. The
researchers [19], prioritized and NP schemes were considered. It was discovered that new calls have a higher
call blocking probability in the NP scheme, which gives more consideration to handoff requests. The
experience of high call blocking probability of new calls is due to the prioritization used. The researchers
[20] looked into an optimal channel reservation (OCR) policy, which was designed for users that move from
one cell to another, either from a 5G cell to a 4G cell, and so on. The policy reserves channels in relation to
the target handoff CDP. The policy was applied to the global system for mobile communication (GSM) 900,
and it was found that the CDP was below the target while the call blocking probability was minimized.

To reduce the likelihood of traffic and provide higher-quality services in heavily congested cellular
communication systems, a NP channel assignment scheme that reuses a voice channel was implemented to
reduce the likelihood of blocked calls and increase the traffic carrying capacity of cellular systems. The
significance of this research work is to create a better communication system for the public by enhancing
service quality and avoiding communication system interruptions. It is to provide equal merit to new, and
handover calls in a system [15]. The conceptual representation of a NP channel assignment scheme for a
cellular communication system with channel capacity C being the total number of assignable channels is
presented in [21]-[23] and the state transition diagram is depicted in Figure 1. Two types of traffic are
arriving at the BS switch that is originating new calls traffic A, and ongoing handover calls traffic 4,
transiting one BS to another. The admitted calls are serviced at the rate u on a first-come, first-served (FCFS)
basis, and the traffics have equal contention for channel allocations.
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Figure 1. Markov chain states transition diagram of NP channel assignment [21]-[24]

From the state transition diagram of Figure 1 [21]-[24] presented the state probability of NP channel
assignment as (1) where P(i) is the probability of the system occupying any state in the interval 0 <i < C
and the state is number of calls assigned to channels applying superposition theory or number of busy
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channels. The normalization constant P(0) is obtained by summing all the state probabilities and is given
as (2):

P(i)=a%i?“)i-P(0),OSisc n
¢ (i) 1]t
P©) = |1+ 3¢, (22) 1] "

It has been said in [21]-[24] that when all the channels are busy or assigned that is the system is in the state C
with state probability P(C), then the new call (originating from the BS) blocking probability P-(B) and the
handover CDP Py (D) for handover traffic are equal. Hence, P:(B) = P4(D) = P(C) wheni = C.

It has been said in [25]-[27] that channel estimation models and invariably channel assignment
models are designed with mathematical models, but complex environmental factors like multipath fading,
distortions, and channel noise, to mention a few, affect the performance of these models [19]-[24], [28].
These impairments decrease the system’s performance. Recently, artificial intelligence (Al) has been
explored for the area of wireless communication, such as machine learning based-wireless receivers. A
survey of the different machine learning algorithms utilized for the network and communication aspects of
vehicular movement was carried out [29]. The authors compared the machine learning based-solution to the
conventional approach. Various machine learning algorithms such as support vector machine (SVM),
artificial neural networks (ANNSs), deep neural networks (DNNSs), and their applications to communication,
such as mobility prediction, dynamic routing, and congestion control, were highlighted. While [30] surveyed
the exploration of machine learning for 5G wireless networks integration into the smart devices and how to
efficiently analyze the stored data in them, make intelligence decisions, and observe the environments using
various machine learning based solutions, [31] looked into the deep learning techniques for 6G wireless
communication in the physical layer. These include feed-forward neural networks (FNN), DNNs, and
autoencoder for channel modeling, source coding/decoding, and end-to-end communication, respectively.
This shows the importance of Al algorithms in wireless communication even in the case of channel
assignment as the algorithms can learn the relationship among different variables in the models and help
resolve complexities in unrealistic assumptions and improve performance of channel estimation models
[25], [32], [33] utilizing the simulation data obtained. This forms the basis of this study, which is channel
assignment improvement in cellular communication using an ANN approach, and it is expected that high
CDP will be reduced, and call quality will be improved.

2. METHOD

The design of NP channel assignment scheme based on traffic intensity presented in this article is
such that the call traffics are assigned channels based on the traffic intensity to ensure conservation of scarce
radio resources so that the total number of channels for originating new calls is K. It is variable and
determined by the intensity of both traffic types. Hence, the assignable number of channels for handover calls
becomes C — K, which is also variable because C, the channel capacity is constant and K is variable. The
Markovian state diagram of the NP channel assignment presented in Figure 1 is applicable to the proposed
NP channel assignment method based on traffic intensity. This is because it is based on FCFS, and the
superposition theorem is equally applicable. The conceptual diagram with the ANN traffic comparator is
shown in Figure 2, which combines the traffic using arrival rates based on the superposition theorem.
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Figure 2. Conceptual view of ANN traffic predictor
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It considers the signal quality a at a specific distance, and instant where p,, and p,, are the traffic
intensity of originating new calls and of handover calls, respectively, as given in (3) and (4). In (5) defines
the channel capacity for the originating new calls based on traffic intensity [17]. The state model equations
were derived from the state diagram.

An
Pn = 7 (3)
A
Pn = aﬂ—h 4)
Pn
" pnton’ ¢ ®)

The normalization constant P, (0) for the NP channel assignment based on traffic intensity using
the Markov chain is given as (6) while state probability Py, (i) of the model for new calls arrival is given as
(7) and the blocking probability of the originating new calls at the BS is P.(B) given as (8).
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The blocking probability of new (originating) call P.(B) and CDP P4 (D) for handover call traffic
are equal in the conventional NP scheme but are not equal for this modified model because channel
allocation is traffic intensity determined though the same Markov chain transition diagram is applicable
because allocation is based on FCFS. Hence, the normalization condition for the handover traffic is as given
in (9), and the state probability for channel assignment to the handover calls is given in (10). The handover
calls can only be dropped when all the channels assignable based on traffic intensity have been fully
allocated; therefore, the handover CDP P, (D) for the NP channel assignment scheme based on traffic
intensity is given by (11). Call traffic arrival rate was modelled using a Poisson distribution.
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The experimental setup for the ANN model has an input layer of four input neurons that characterize
the data set’s four properties. When 1=1:20, the for loop was used to optimize the number of neurons in the
hidden layer (where | signifies the hidden layer size) as shown in Figure 3. The inputs were alpha, arrival rate
of new calls, arrival rate of handover calls, and CDP. CDP based on traffic intensity (CDP_TI) in (11) was
used as the output. The data was fed to the neural network model after it had been cleaned, pre-processed,
and encoded. The design of the ANN model was done in such a way that 70% of the data was used for
training and 30% was used for testing. This procedure used supervised learning, in which the network was
given an input vector during training and generated an output vector. This output vector was contrasted with
the desired or goal output vector. An error signal was produced if the actual output vector varied from the
target output vector. This is a Feed-forward ANN where data travels in one direction between the input and
output nodes. The same tiers of nodes used to transmit data forward were not used to transmit information
backwards. A sigmoid function was employed as an activation function, although a rectified linear activation
unit (RELU) function could be a preferable alternative. The dataset was trained using the Levenberg-
Marquardt algorithm, and MATLAB R2020a was used to run the simulation.
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Figure 3. Experimental neural network setup

3. RESULTS AND DISCUSSION

The results of simulation experiments carried out in this study are presented and discussed in this
section. Comparative simulation studies of the three models were carried out to determine their performance
with respect to handover CDP. Simulation parameters and assumed values are presented in Table 1 and are
the same for the three handover scenarios experimented based on the signal quality, which is dependent on
the distance of the MS from the BS that is degrading from high (0.8) to low (0.2) and also serves as a
mobility factor. Consideration was given to congestion through high traffic arrival rate and other system
parameters, including service rate being held constant. The simulation was repeated for varied signal quality
factors, and the results are presented graphically in Figures 4 to 6, respectively, and discussed.

Table 1. Simulation parameters and assumed values

SIN Parameter assignment/assumption table
1. BS transmitter power 23 dBm
2. BSantennagain 18 dB
3. MS antenna gain 0dB
4. Propagation model Free space model
5.  BSantenna height +30 m above ground
6.  MS antenna height +2 m above ground
7. RSS quality factor MS distance from BS based, 0.8 (high), 0.5 (good), 0.2 (low)
8.  Signal fading 12dB
9.  System service rate 1.0
10.  RSS threshold 4dB
11.  Number of channels 12
12.  Type of handover MAHO
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Figure 4. CDP with traffic intensity and CDP with ANN against call arrival rate for the signal quality «=0.2
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Figure 6. CDP with traffic intensity and CDP with ANN against call arrival rate for the signal quality «=0.8

The graph in Figure 4 shows that even with a signal quality of 0.2, there was still a difference in the
CDP values of the conventional model when compared to call dropping probabilities with traffic intensity
(modified model) and the ANN-trained model. However, compared to the rest, the CDP with ANN was
lower. Figure 5 shows that there was a significant difference in the CDP values without traffic intensity and
ANN at a good signal quality of 0.5. Both the CDP with ANN and the CDP with traffic intensity were
reduced. However, compared to the rest, the CDP with ANN was lower and better.

The graph in Figure 6 shows a further decline in the values of the CDP for both the modified and
ANN models, showing the effect of good signal quality on handover, as it is common knowledge that signal
strength is an important factor for a successful handover in mobile communication. Hence, the modified
model and the ANN trained model both showed improved performance for much better signal quality, with
reduced CDP, with the ANN trained model being the least. Both the CDP with ANN and the CDP with
traffic intensity were reduced. However, the CDP with the ANN was significantly better and had less
probability of call drops than the others. Additionally, it was shown that using ANN reduces call drops better,
even at high call arrival rates, which also depicts a state of system congestion.

4. CONCLUSION

This research work has been able to solve the problem of high CDP of NP channel assignment in
mobile communication handover by using the one-dimensional Markov chain analysis to model the states
and to derive the CDP of NP channel assignment scheme based on traffic intensity which is a modified NP
channel assignment method to reduce the high CDP. The data from the simulation experiment was used to
train an ANN-based version of the modified NP channel assignment model developed in this study to
investigate the effect of trained ANN on the model. This brought about further enhancement of the model to
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predict traffic intensity and the corresponding CDP as a mechanism of assigning handover calls to a channel.
The simulation study carried out showed that when the signal quality is over 80%, the high CDP of the
conventional NP channel assignment was drastically reduced by 40% by the NP channel assignment based on
traffic intensity only and a 50% reduction in call drops using ANN assisted model for NP channel assignment
in MAHO. With this finding, it has been established that a significant reduction in high CDP of NP channel
assignment is achievable using the ANN-assisted model, which obviously has dual adverse effects of
improved call quality and reduced call drop rate in cellular networks with the signal quality measurement.
Moreover, future works can be towards the deployment of this model in real-world network environments of
different architectures and enhancing channel assignment schemes and queueing models of cellular network
handover with deep learning models.
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