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 Accurate genomic classification is vital for precision health and population 

studies, yet high-dimensional single-nucleotide polymorphism (SNP) data 

(p≫n) amplify noise, redundancy, and overfitting. This study evaluates a 

simple, model-independent Pearson-based selection that ranks SNPs by 

feature–label correlation, and assesses k-nearest neighbors (k-NN), linear 

support vector machine (SVM), and random forest (RF) under leakage-free 

stratified Monte Carlo cross-validation (MCCV). Performance increases 

monotonically with ∣ 𝑟 ∣: the strongest tiers reach ≈99–100% accuracy; SVM 

leads in mid tiers (RF second), while k-NN is competitive mainly at the 

extremes. A matched-dimensionality PCA-120 baseline (TRAIN-only) attains 

parity for SVM/RF and trails slightly for k-NN at the 10% test size. With 120-

SNP panels, prediction medians are ≈0.30 ms (SVM), 1.81–1.83 ms (k-NN), 

and 34–35 ms (RF), supporting CPU-only deployment. A consensus panel 

combining correlation evidence with principal component analysis (PCA) 

selection frequency yields interpretable Top-20/Top-120 subsets and ∣ 𝑟 ∣-
based operating thresholds. Overall, Pearson-based selection provides a 

transparent, reproducible baseline for small-sample SNP classification, 

offering accuracy competitive with PCA at lower computational complexity 

and straightforward extensions to broader cohorts and multi-omics 

integration. 
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1. INTRODUCTION 

Approximately 99.9% of the human genome is identical across individuals, and the remaining ≈0.1% 

consists largely of single-nucleotide polymorphisms (SNPs) occurring about once every ≈1,000 bases [1]. 

These variants contribute to evolution, pharmacogenomic response, and risk for complex diseases (e.g., 

obesity, diabetes, hypertension, and cancer) [2]–[6]. They are widely used in biomedical and population 

studies, forensic inference, and phenotype prediction [7]–[10]. 

Machine learning classifiers are commonly applied to SNP data. k-nearest neighbors (k-NN) assigns 

labels by local majority vote [11], [12]; support vector machine (SVM) constructs maximum-margin 

hyperplanes [13]; and random forest (RF) aggregates decision trees for improved stability [14]. These methods 

have shown effectiveness across diverse application areas, including disease prediction, cybercrime detection, 

GPS data analytics, exam classification, and genetic studies [15]–[22]. 

Genomic datasets frequently exhibit a high-dimensional p≫n regime—far more features (p) than 

samples (n)—which elevates overfitting risk and motivates feature selection to reduce dimensionality and 
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preserve interpretability [23]. Principal component analysis (PCA) is a popular baseline for dimensionality 

reduction and population-structure control [24]–[27]. Recent evaluations also highlight caveats: adjusting for 

principal components can induce collider bias in GWAS models [24], and population structure inferred by 

PCA can diverge from admixture-model estimates [25]. However, components may not align with predictive 

relevance and are difficult to interpret at the locus level [28]–[31]. In contrast, Pearson-based selection—

ranking SNPs by the Pearson/point-biserial correlation with the label—offers a simple, fast, and transparent 

filter [23], [32] that preserves the original SNP representation, making the feature–label relationship explicit 

and scaling well to high-dimensional genomic data [33], [34]. Prior studies indicate that Pearson-based SNP 

selection can improve classification in small-sample settings [35].  

The present study evaluates Pearson-based filtering for SNP classification on HapMap Phase II (9,305 

SNPs; CEU vs YRI) under stratified, leakage-free Monte Carlo cross-validation (MCCV) using k-NN, linear 

SVM, and RF; MCCV is employed to obtain robust performance estimates via repeated randomization of test 

partitions [36]. The contribution is fourfold: i) ∣r∣-tiering as a difficulty index, ii) leakage-free MCCV with p≈n 

block sizing (≤120 features) to curb overfitting, iii) a matched-dimensionality PCA-120 baseline constructed 

from TRAIN-only PCA, scoring SNPs by loading magnitudes weighted by each component’s explained 

variance ratio (EVR), and iv) a consensus panel (Top-20 in the main text and Top-120/240 available). Together, 

these elements yield an interpretable, reproducible template for small-sample SNP classification while 

retaining locus-level interpretability. 

From an informatics and signal-processing perspective, SNP classification is a supervised pattern-

recognition problem in high-dimensional noise. Pearson-based selection serves as a lightweight, linear pre-

processing step that improves the signal-to-noise ratio and preserves locus-level interpretability, with 

computation that scales linearly with the number of features. At matched dimensionality (120 features), 

inference on standard CPUs operates at millisecond to sub-second scale for k-NN, linear SVM, and RF, 

enabling deployment on edge or clinical workstations (see subsection 4.5). This framing highlights an 

accuracy–efficiency balance suitable for real-time or resource-constrained settings. 

 

 

2. RELATED WORK 

Filter, wrapper, and embedded approaches are widely used for SNP selection. Single-marker filters 

such as Pearson, point-biserial, chi-square (χ²), and mutual information are fast and model-independent, but 

ignore LD and interactions [37], [38]. Recursive feature elimination (RFE) iteratively removes low-

contribution variables relative to a target classifier (e.g., SVM-RFE or RF-RFE), improving accuracy but 

requiring repeated model fitting [39], [40]. Embedded methods (L1-regularized logistic/linear SVM) select 

features via sparsity but are model-dependent [41], [42]. GWAS-style per-SNP tests with multiple-testing 

control (e.g., Bonferroni, false discovery rate (FDR)) offer interpretable thresholds yet are not always optimal 

for classification [22]. Projection methods (PCA/PLS) aid structure control but reduce interpretability; variance 

captured does not guarantee predictive relevance [24]–[31]. 

In this context, the evaluation centers on a leakage-free Pearson filter contrasted with a PCA-120 

baseline to isolate the value of label-aware selection versus unsupervised projection. LD-aware redundancy 

control and nested resampling are acknowledged as extensions beyond the present scope. 

 

 

3. METHOD 

3.1.  Research workflow 

The end-to-end workflow is summarized in Figures 1 and 2. Figure 1 summarizes QC (MAF≥0.05; 

HWE; missingness ≤10%), dosage encoding (0/1/2), Pearson-based selection with TRAIN-fold minor-allele 

mapping, and TRAIN-only median imputation. Figure 2 summarizes leakage-free MCCV (R=1000; test sizes 

10/25/40), the evaluated models (k-NN, linear SVM, RF100/125), key metrics (incl. ROC–AUC), and 

statistical validation. The procedure comprises: i) data quality control (QC) and genotype encoding; ii) Pearson 

correlation calculation for each SNP against the binary label; iii) ranking SNPs by correlation and separating 

them into positive and negative groups; iv) partitioning each group into sub-datasets of 120 SNPs (correlation 

blocks); v) classification with k-NN, linear SVM, RF100, and RF125 under MCCV (R=1000) at test sizes 10%, 

25%, and 40% [43]; vi) evaluation using accuracy, precision, recall, F1, receiver operating characteristic 

(ROC), area under the curve (AUC) and normalized confusion matrices (CM); vii) statistical validation: 

Shapiro–Wilk; if assumptions held, one-way ANOVA with Tukey HSD; otherwise Kruskal–Wallis with 

Bonferroni-adjusted pairwise Mann–Whitney U [44]; and viii) identification of SNP loci associated with peak 

performance within specific correlation ranges. 
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Figure 1. Workflow for SNP selection using feature–target correlation (Part 1 of 2) 
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Figure 2. Workflow for model training, evaluation, and statistical validation (Part 2 of 2) 
 

 

To focus the analysis, a model-independent filter is adopted that ranks SNPs by Pearson feature–target 

correlation; redundancy-aware filters (e.g., mRMR) are not considered. A PCA baseline with 120 components 

is included to compare projection-based reduction against correlation-ranked subsets. 

 

3.2.  Research data 

The dataset was obtained from HapMap Phase II (2007), comprising 120 individuals—60 CEU (Utah 

residents of European ancestry) and 60 YRI (Yoruba in Ibadan, Nigeria)—and 9,305 SNPs [45]. Data handling 

and association analyses were performed in R with SNPassoc [46]. Genotypes are encoded from the four 

nucleotides adenine (A), cytosine (C), guanine (G), and thymine (T). Some loci contain missing genotype calls 

due to weak genotyping signals, platform limitations, DNA quality issues, allelic dropout, or calling errors 

[47]. Missingness can be informative, and genotype imputation may introduce bias when mechanisms are non-

random or coverage is limited [48], [49]. A small subset of the data is shown in Table 1. Row headers are 

dbSNP rsIDs (“rs” = Reference SNP cluster ID, NCBI dbSNP) [50]; column headers are individual sample IDs 

(e.g., NA06985), each uniquely identifying a CEU or YRI subject. 
 

 

Table 1. Subset of SNP genotypes data from CEU and YRI populations in the HapMap Phase II dataset 
Samples  NA06985 NA06993 NA06994 NA19116 NA19119 NA19127 

Groups CEU CEU CEU YRI YRI YRI 

rs11260616 AA AT AA AA AT AA 
rs6659552 GG CG CG GG GG GG 

rs6688969 CC CT CT CT CT CC 

rs10753357 AC AA AA AC CC AC 
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3.3.  Data quality control and genotype encoding 

3.3.1. Data quality control 

The raw SNP dataset was subjected to QC filtering to ensure data reliability. Variants with minor 

allele frequency (MAF)<0.05, Hardy–Weinberg Equilibrium (HWE) 𝑝 < 1 × 10−6, or missingness >10% 

were excluded. These thresholds mitigate known risks—low MAF shrinks genotype variance 

(Var[G]=2p(1−p)) yielding unstable correlations and fragile decision boundaries [51]; HWE deviations may 

indicate genotyping error or substructure that biases correlation ranks and PCA loadings. Recent reassessments 

also show that HWE filtering can alter inferred population structure [52], [53]; and high missingness reduces 

effective sample size, suggests non-random loss, forces heavier imputation, and inflates uncertainty [54], [55]. 

When missingness is non-random or coverage is limited, genotype imputation can introduce systematic bias in 

downstream association and classification [48], [49]. Applying QC prior to Pearson correlation ranking and 

PCA follows common GWAS practice, helping ensure downstream results reflect biological signal rather than 

data-quality artifacts. After QC, 5,647 SNPs remained from the initial set; variants failing criteria—along with 

zero-correlation loci—were removed so that only high-quality markers proceeded to feature selection and 

classification. 

 

3.3.2. Imputation after quality control 

With per-SNP missingness ≤10%, missing values in dosage-coded genotypes (0/1/2) were filled with 

the per-SNP median as a simple single-imputation step to avoid heavy model-based imputation and information 

leakage across MCCV folds (imputation parameters are computed on training folds and applied to the held-out 

test data)—an accepted practice that also stabilizes PCA inputs [56]; notably, PLINK 2 mean-imputing by 

design for PCA [57]. LD/haplotype-based imputation was not used because the goal was to fill sparse missing 

calls rather than infer untyped variants [58]. 

 

3.3.3. Encoding and correlation 

Each SNP was encoded into allele dosages (0/1/2) relative to the minor allele; e.g., if “A” is minor, 

then CC=0, AC=1, and AA=2. Missing genotypes were set to NaN, imputed with the training-set median per 

SNP, and the same mapping was applied to the test split to avoid information leakage. The encoding and 

imputation step is summarized in Figure 3. 

 

 

Input genotype per SNP
(all samples : TRAIN + TEST)

AA/AC/CC/   /NA

TRAIN – only allele counting (per 
SNP)   estimate allele frequencies in 

TRAIN

Pick minor allele m (in TRAIN)
(e.g., if m = T)

Encode dosage relative to m :
0 = 0 copy (e.g., CC)
1 = 1 copy (e.g., CT)
2 = 2 copy (e.g., TT)

Missing/ambiguous genotype  NaN
(non-biallelic after QC – drop SNP)

Imputation (after encoding):
fill NaN with TRAIN median dosage (per SNP)

apply same mapping/imputer to TEST

 
 

Figure 1. Encoding genotypes as allele dosages (0/1/2) with median imputation fitted on the training set 

 

 

To quantify linear association with the population (CEU=0, YRI=1), Pearson’s correlation was 

calculated per SNP: for SNP 𝑗, let 𝑥𝑖𝑗  denote the encoded dosage of sample 𝑖, 𝑥𝑗  its mean, 𝑦𝑖  the binary label, 

and 𝑦  its mean; the coefficient 𝑟𝑗 is given in (1): 

 

𝑟𝑗 =
 (𝑥𝑖𝑗−𝑥̅𝑗)(𝑦𝑖−𝑦 )
𝑛
𝑖=1

  (𝑥𝑖−𝑥̅)
2. (𝑦𝑖−𝑦 )

2𝑛
𝑖=1

𝑛
𝑖=1

  (1) 

 

3.3.4. Ordering and subset construction 

SNPs were ranked by descending Pearson correlation (from strongest positive to strongest negative) 

to define Pearson-based subsets. SNPs with 𝑟 = 0 were excluded—only 12 of 5,647 (≈0.21%), so the impact 

was negligible. The ordered list appears in Table 2. 
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Table 2. SNPs sorted in descending Pearson correlation (𝑟) with the population label (positive to negative) 

 

 

3.4.  Research stages 

Based on Table 2, data were split into DatasetA (𝑟 > 0; 𝑋1-𝑋2997, range (0.000–0.904]) and DatasetB 

(𝑟 < 0; 𝑋3010-𝑋5647, range [-0.929–0.000)). SNPs with 𝑟 = 0 (𝑋2998-𝑋3009) were excluded, since they provide 

no linear association with the label. Correlation ranges are left-inclusive and right-exclusive, except for the last 

interval which is closed on both ends. 

To balance experiments, each group was partitioned into ≤120-SNP sub-datasets so that 𝑝 ≈ 𝑛=120, 

reducing overfitting risk and enabling fair comparison across correlation ranges. This produced 25 sub-datasets 

for DatasetA (Table 3) and 22 for DatasetB (Table 4). Correlation intervals are left-inclusive, right-exclusive 

(the last interval is closed). Sub-datasets are referenced by block IDs (e.g., A1, B1) that encode fixed correlation 

ranges (positive for A-blocks, negative for B-blocks); strong, moderate, and weak denote upper-, mid-, and 

lower-correlation tiers. 

 

 

Table 3. Splitting DatasetA (positive correlations) into sub-datasets of up to 120 features 

 

 

Table 4. Splitting DatasetB (negative correlations) into sub-datasets of up to 120 features 

 

 

3.5.  Feature selection (Pearson, principal component analysis) and consensus panel 

Pearson correlation was computed between each SNP (dosage 0/1/2) and the binary label; SNPs were 

ranked by descending |𝑟| and grouped into positive (DatasetA) and negative (DatasetB) blocks of ≤120 SNPs. 

As an unsupervised baseline, PCA was applied to the post-QC genotype matrix. Within each MCCV repetition, 

genotype matrices were standardized and PCA was fitted on the training folds only to prevent information 

leakage. The PCA baseline derives an unsupervised SNP ranking via EVR-weighted loading magnitudes and 

retains the top-120 loci (PCA-120)—rather than using components as features. An EVR-weighted SNP score 

is computed as 𝑠𝑗 =  EVR𝑐𝑐 ⋅∣ loading𝑗,𝑐 ∣ using TRAIN-only PCA. 

A consensus SNP panel was then defined using a block-agnostic rule: variants received a combined 

score equal to the average of; i) the percentile of ∣𝑟∣ and ii) the percentile of PCA selection frequency across 

MCCV resamples. Presentation and availability of the Top-20/50/120/240 panels and the full ranked table are 

described in section 4.6. 

 

3.6.  Computational complexity (filter vs principal component analysis vs wrappers) 

Let 𝑛 denote the number of samples and 𝑝 the number of SNPs; 𝑘 = 120 for the PCA baseline. 

Pearson-based selection computes the point-biserial correlation for all 𝑝 SNPs in 𝑂(𝑛 ⋅ 𝑝) time and ranks them 

in 𝑂(𝑝 log 𝑝), with memory scaling linearly in 𝑝. The transform is fitted on TRAIN within each MCCV 

resample and then applied unchanged to TEST to avoid leakage. PCA (train-only) to 𝑘 components via 

truncated/randomized SVD scales approximately as 𝑂(𝑛 ⋅ 𝑝 ⋅ 𝑘 + 𝑝 ⋅ 𝑘2) (exact SVD:  
𝑂(min {𝑛 ⋅ 𝑝2, 𝑝 ⋅ 𝑛2})); projection of TEST uses the TRAIN-fitted components and requires 𝑂(𝑝 ⋅ 𝑘) 
memory. Wrapper methods (e.g., recursive/forward selection) incur repeated model fitting with cost  
≈ 𝑂(𝑅 × CV × 𝐶train), where 𝑅 is the number of elimination/forward rounds, CV the inner folds/repeats, and 

Features 𝑋1 𝑋2 ... 𝑋3009 ... 𝑋5646 𝑋5647 
Pearson correlation (𝑟) 0.9039 0.9038 ... 0 ... -0.904 -0.929 

Reference number rs9909962 rs2370893 ... rs12928849 ... rs6670842 rs10868791 

Blocks 
Correlation 

range 
Blocks 

Correlation 

range 
Blocks 

Correlation 

range 
Blocks 

Correlation 

range 
Blocks 

Correlation 

range 

A1 [0.673-0.904] A6 [0.488-0.522) A11 [0.360-0.377) A16 [0.255-0.281) A21 [0.114-0.141) 

A2 [0.601-0.673) A7 [0.463-0.488) A12 [0.342-0.360) A17 [0.224-0.255) A22 [0.088-0.113) 

A3 [0.558-0.601) A8 [0.437-0.463) A13 [0.324-0.342) A18 [0.199-0.224) A23 [0.058-0.088) 
A4 [0.522-0.557) A9 [0.418-0.437) A14 [0.306-0.324) A19 [0.171-0.198) A24 [0.029-0.058) 

A5 [0.488-0.522) A10 [0.397-0.418) A15 [0.282-0.306) A20 [0.141-0.171) A25 (0.000-0.029) 

Blocks 
Correlation 

range 
Blocks 

Correlation 

range 
Blocks 

Correlation 

range 
Blocks 

Correlation 

range 
Blocks 

Correlation 

range 

B1 [-0.029-0.000) B6 [-0.168--0.140) B11 [-0.318--0.286) B16 [-0.444--0.420) B21 [-0.678--0.603) 

B2 [-0.058--0.029) B7 [-0.196--0.168) B12 [-0.344--0.318) B17 [-0.472--0.444) B22 [-0.929--0.678) 

B3 [-0.083--0.058) B8 [-0.223--0.196) B13 [-0.367--0.345) B18 [-0.507--0.473)   
B4 [-0.111--0.083) B9 [-0.254--0.223) B14 [-0.392--0.367) B19 [-0.549--0.507)   

B5 [-0.140--0.112) B10 [-0.285--0.254) B15 [-0.420--0.393) B20 [-0.603--0.549)   
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𝐶train the base-learner training cost (for reference, linear SVM ∼ 𝑂(𝑛 ⋅ 𝑝) per pass; RF ∼ 𝑂(𝑇 ⋅ 𝑛 log 𝑛) for 𝑇 

trees). In the 𝑝 ≫ 𝑛 regime typical of SNP data, Pearson-based selection is markedly lighter than wrappers and 

generally lighter than PCA at 𝑘 = 120, while preserving locus-level interpretability; empirical runtimes 

(reported in subsection 4.5) are consistent with these order-of-growth expectations. 

 

3.7.  Classification and evaluation 

3.7.1. Classification 

Four classifiers were applied—RF100, RF125, linear SVM, and k-NN (Euclidean). Classification 

used stratified MCCV with test sizes of 10%, 25%, and 40%, repeated R=1,000 times per block and test size. 

In each repetition, data were split into training and test sets; encoding and per-SNP median imputation were fit 

on the training split and applied to the test split to prevent leakage. For k-NN, k was chosen by inner stratified 

5-fold CV on the training set to maximize accuracy, whereas SVM and RF used fixed hyperparameters. The 

evaluation loop, including the inner-CV scheme for k-NN, is summarized in Algorithm 1. 

 

Algorithm 1. Stratified MCCV evaluation (SVM/RF fixed; k-NN via inner-CV) 
Inputs: 

 Blocks S in {A1..A25, B1..B22} 

 Test sizes T = {0.10, 0.25, 0.40} 

 Repeats R = 1000 

 Classifiers C_fixed = {linear SVM, RF100, RF125} 

 Label y in {0,1} 

for each block S: 

 for each t in T: 

 repeat r = 1..R: 

 Stratified split with test size t: 

 S -> (X_train, y_train), (X_test, y_test) 

 Fit encoding & per-SNP median imputation on (X_train); apply to (X_test) 

 # Fixed-parameter models 

 for c in C_fixed: 

 Train c on (X_train, y_train); predict on X_test; record metrics 

 # k-NN with inner CV on the training set 

 Choose k* = argmax_k Accuracy via stratified V-fold CV (V = 5) on (X_train) 

 Train k-NN(k*) on full (X_train, y_train); predict on X_test; record metrics 

Aggregate: compute mean +/- SD and median [IQR] over R; retain per-model distributions for 

statistical tests. 

 

3.7.2. Metrics evaluation 

The following metrics were recorded on the held-out test sets: accuracy, precision, recall, F1-score, 

ROC–AUC, normalized CM, and execution time. Results were summarized as mean ± SD across repetitions 

and median [IQR]. Visualizations comprised correlation-tier metrics, cross-block accuracy summaries, ROC 

curves, and normalized CM; AUC with confidence intervals accompanied the plots. Between-classifier 

comparisons used the inferential procedures described in subsection 3.7. 

 

3.8.  Statistical validation 

Statistical validation was conducted to examine the significance of performance differences among 

classifiers. The analysis was applied separately for each sub-dataset and test size, using Accuracy as the primary 

metric. Other metrics, including precision, recall, and F1-score, were also summarized descriptively to provide 

a broader view of classifier performance. 

Normality of the metric distributions was first assessed using the Shapiro–Wilk test at a significance 

level of 𝛼=0.05. If all groups satisfied normality and variance homogeneity (Levene’s test, 𝛼=0.05), a one-way 

ANOVA was performed, followed by Tukey’s HSD for post-hoc pairwise comparisons. When assumptions 

were violated, a Kruskal–Wallis test was used as the non-parametric alternative. If significant, post-hoc 

pairwise testing was conducted using Mann–Whitney U tests (Bonferroni-adjusted) for multiple comparisons. 

Descriptive statistics (mean±SD, median [IQR]) accompanied the inferential results to aid interpretation. 

 

 

4. RESULTS AND DISCUSSION 

4.1.  Performance on DatasetA (positively correlated SNPs) 

This section reports DatasetA (positive-correlation) results by correlation tier and test size. 

Representative results at 25% test size are presented in Table 5, which retains the full set of nine correlation 

blocks (A1, A4, A7, A10, A13, A16, A19, A22, and A25) spanning strong→weak correlations. 
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Table 5. DatasetA: average accuracy (%) of RF, k-NN, and SVM with 25% test data 
Pearson corr. range A1 A4 A7 A10 A13 A16 A19 A22 A25 

k-NN 100 98.78 84.33 67.6 62.1 68.07 64.05 51.48 36.56 
SVM 100 100 100 99.96 98.49 97.32 84.22 56.91 17.38 

RF100 100 100 100 99.39 97.58 92.35 77.7 51.95 24.64 

RF125 100 100 100 99.53 97.75 93.16 78.7 52.04 23.33 

 

 

4.1.1. Accuracy and metric trends 

Accuracy increases monotonically with correlation strength: in the strongest tiers (A1–A7) all models 

reach ≈99–100% accuracy; in mid tiers (A10–A16) linear SVM leads with RF100 and RF125 close behind; 

and in the weakest tiers (A22–A25) all models deteriorate, with k-NN keeping a small edge over RF while 

SVM drops more sharply. Figure 4 shows that these patterns are stable across the three test sizes: Figure 4(a) 

10%, Figure 4(b) 25%, and Figure 4(c) 40% test sizes; differences among the test sizes are minor relative to 

the effect of correlation. Figure 4 summarizes the trajectories across tiers and test sizes. Full 10% and 40% 

tables and metric panels are provided in the repository [59]. 

 

 

 
(a) 

 

 
(b) 

 

 
(c) 

 

Figure 4. Average accuracy across representative correlation blocks for three test sizes; (a) 10%, (b) 25%, 

and (c) 40% (classifiers: k-NN, SVM, RF100, and RF125) 
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4.1.2. Receiver operating characteristic–area under the curve and error profiles 

The mid-correlation block A16 serves as the representative case in the body. Figure 5 reports ROC 

curves on A16 for the 10%, 25%, and 40% test sizes (diagonal denotes chance), and Figure 6 reports the row-

normalized confusion matrix on A16 at the 25% test size. On A16, SVM attains the highest AUC (≈1), RF100 

and RF125 are marginally lower, and k-NN remains competitive but non-dominant; differences among test 

sizes are minor relative to correlation strength. At higher-correlation tiers (e.g., A7), ROC traces lie near the 

upper-left corner and CM show dominant diagonals; at the weakest tier (e.g., A25), ROC curves drift toward 

the diagonal and the matrix collapses toward a single class. Full ROC and CM grids for other blocks and test 

sizes are provided in the repository [59]. 

Overall, DatasetA shows a clear correlation-driven difficulty gradient with SVM most resilient, RF a 

close second, and k-NN competitive only at the extremes, a pattern stable across MCCV resamples and test 

sizes. Extended heatmaps and boxplots for DatasetA tiers are available in the repository [59]. 

 

 

 
 

Figure 5. ROC curves on A16 (moderate correlation) for 10%, 25%, and 40% test sizes; k-NN, linear SVM, 

RF100, RF125 (legend/linestyle are consistent; color-blind-safe variants are provided in [59]) 

 

 

 
 

Figure 6. CM on A16 (25% test size; normalized, values in %) 

 

 

4.2.  Performance on DatasetB (negatively correlated single-nucleotide polymorphisms) 

This section reports DatasetB (negative-correlation) results by correlation tier and test size. 

Representative results at 25% test size are presented in Table 6 for eight tiers (B1, B4, B7, B10, B13, B16, 

B19, B22). Complete summaries for the 10% and 40% test sizes, full ROC and confusion-matrix (CM) panels, 

AUC tables, and extended heatmaps/boxplots for DatasetB tiers are available in the repository [59]. 
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Table 6. DatasetB: average accuracy (%) of RF, k-NN, and SVM with 25% test data 
Pearson corr. range B1 B4 B7 B10 B13 B16 B19 B22 

k-NN 34.39 48.47 61.18 66.13 71.48 91.59 98.5 100 
SVM 17.09 47.58 84.18 98.5 100 100 100 100 

RF100 24.21 48.21 75.84 93.41 99.4 99.95 100 100 

RF125 22.87 48.45 75.89 93.54 99.42 99.99 100 100 

 

 

4.2.1. Accuracy and metric trends 

Accuracy increases with the magnitude of negative correlation: performance is low at B1, improves 

rapidly through B4–B10, and approaches ceiling by B19–B22 (≈99–100% across models; at B16, SVM/RF are 

≈100% while k-NN ≈92%). Differences among classifiers are most visible in weakly correlated tiers; in mid–

strong tiers all methods converge around ≈98–100% accuracy. The same pattern holds at 10%, /25%, and 40% 

test sizes; full summaries are available in the repository [59]. 

 

4.2.2. Receiver operating characteristic-area under the curve and error profiles  

Figure 7 reports ROC curves on B10 (−0.285 to −0.254) at the 25% test size: all models achieve high 

discriminative ability (AUCs>0.97), with linear SVM=0.999, RF125=0.989, RF100=0.987, and k-NN=0.973. 

Figure 8 presents row-normalized CM (25%) for B1 (low), B10 (mid), and B22 (high): frequent 

misclassifications at B1, sharply reduced errors at B10, and perfect separation at B22. These visuals, together 

with Table 6, indicate that correlation magnitude—not its sign—governs separability. Full panels and AUC 

tables are provided in the repository cited above. 
 
 

 
 

Figure 7. ROC curves of k-NN, SVM, RF100, and RF125 on DatasetB (B10, −0.285 to −0.254; 25% test) 

(legend/linestyle are consistent; color-blind-safe variants are provided in [59]) 
 
 

 
 

Figure 8. CM (normalized, %) for DatasetB (25% test) at low (B1), mid (B10), and high (B22) correlation 

blocks 
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4.3.  Significance testing across classifiers 

Shapiro–Wilk tests reject normality in most moderate–weak blocks (p≤0.05) and show mixed 

outcomes in strong blocks; accordingly, nonparametric inference is used. Kruskal–Wallis omnibus tests are 

significant across all examined blocks and test sizes (p<0.05), indicating at least one classifier differs in every 

condition. Selected summaries of Shapiro–Wilk normality checks and Kruskal–Wallis omnibus tests are 

provided for representative weak, moderate, and strong blocks—A25/A16/A7 (DatasetA) and B1/B10/B19 

(DatasetB)—at 10%, 25%, and 40% test sizes. These materials are available in the repository [59]. 

 

4.3.1. Normality checks (Shapiro–Wilk) 

Shapiro–Wilk tests (α=0.05) on the distributions of 1,000 MCCV accuracies largely reject normality 

in moderate–weak blocks (A16, A25, B10, and B1) across 10%, 25%, and 40%, while strong blocks (A7, B19) 

show mixed outcomes: SVM (and often RF125) tends not to reject normality, whereas k-NN (and sometimes 

RF100) often remains non-normal. Accordingly, subsequent inference uses nonparametric procedures. 

 

4.3.2. Omnibus differences (Kruskal–Wallis) 

Kruskal–Wallis omnibus tests (α=0.05) across six representative blocks (A7, A16, A25, B1, B10, and 

B19) and three test sizes (10%, 25%, and 40%) are significant in all conditions (p<0.05), indicating that at least 

one classifier differs in every block–size combination. 

 

4.3.3. Pairwise contrasts (Mann–Whitney with Bonferroni) 

Bonferroni-adjusted Mann–Whitney tests confirm pairwise differences that mirror the accuracy/ROC 

patterns. Across test sizes (Table 7), RF100 vs RF125 shows few differences (significant in 1/6 contrasts at 

10%, 3/6 at 25% and 40%; median ∣ 𝛿 ∣≈ 0.09). SVM vs RF pairs are significant in 4/6 contrasts at all sizes 

(median ∣ 𝛿 ∣≈0.53–0.66). k-NN vs RF is significant in 6/6 contrasts with large effects  

(median ∣ 𝛿 ∣≈0.75–0.90), and k-NN vs SVM is also significant in 6/6 contrasts with very large effects  

(median ∣ 𝛿 ∣≈0.95–0.97); directions follow the tier-wise patterns: at strong correlation (e.g., A7, B19) ceiling 

effects render SVM vs RF often not significant, at mid correlation (e.g., A16) SVM exceeds RF, and at weak 

correlation (e.g., A25) k-NN can exceed RF and may exceed SVM. A compact cross–test-size summary 

appears in Table 7; complete pairwise tables for A7, A16, A25 (DatasetA) and B1, B10, B19 (DatasetB)—

including confidence intervals and adjusted p-values—are available in [59]. 

 

 

Table 7. Summary of pairwise Mann–Whitney U results across test sizes (10%, 25%, and 40%) 

Model pair 
10% test size 25% test size 40% test size 

#significant/6 Median |δ| #significant/6 Median |δ| #significant/6 Median |δ| 

RF100 vs RF125 1 0.091 3 0.094 3 0.108 

SVM vs RF100 4 0.554 4 0.600 4 0.660 

SVM vs RF125 4 0.532 4 0.526 4 0.588 
k-NN vs RF100 6 0.751 6 0.868 6 0.870 

k-NN vs RF125 6 0.781 6 0.889 6 0.900 
k-NN vs SVM 6 0.950 6 0.972 6 0.963 

 

 

4.3.4. Summary and implications 

Classifier choice materially affects accuracy: SVM is consistently strongest from mid to high 

correlation ranges; RF trails closely with minimal sensitivity to tree count (RF100 vs RF125 significant in 1/6, 

3/6, 3/6 contrasts; median ∣ 𝛿 ∣≈0.09; Table 7); k-NN is competitive at the strongest tiers and occasionally 

superior in the weakest tiers, but generally dominated elsewhere. These patterns hold across DatasetA/B and 

the 10%, 25%, 40% test sizes (omnibus Kruskal–Wallis p<0.05). 

 

4.4.  Pearson (correlation-ranked) vs PCA-120 baseline 

This subsection benchmarks a correlation-ranked panel (“Pearson-120”) against a label-free 

projection baseline (“PCA-120”) and assesses whether any differences persist across classifiers and the 10%, 

25%, and 40% test sizes. 

 

4.4.1. Feature-panel construction and evaluation protocol  

This subsection contrasts Pearson-based selection with a label-free projection baseline (PCA-120). PCA 

was fitted within each MCCV repetition on TRAIN folds only, after standardizing genotypes, to prevent 

information leakage. From the post-QC HapMap Phase II matrix (120×9305; dosage 0/1/2; TRAIN-fold minor-

allele mapping and median imputation), loci were ranked by EVR-weighted loading magnitudes, and the top 120 
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were retained (PCA-120, DatasetA+DatasetB). For a matched-dimensionality comparator, Pearson-120 denotes 

the 120 SNPs with the largest absolute Pearson correlation (|r|) with the label from the strongest block (A1). 

 

4.4.2. Results 

Across R=1,000 MCCV resamples at 10%, 25%, and 40% test sizes, SVM and RF100/RF125 achieve 

≈99–100% for accuracy, recall, precision, and F1 under both Pearson-120 and-120 (DatasetA+DatasetB). The 

only non-ceiling pattern appears for k-NN at 10% with PCA-120, where mean recall and F1 are ≈0.2 percentage 

points below 100%; at 25% and 40%, k-NN returns to ≈100%. Under Pearson-120, all four classifiers reach 

100% for accuracy, recall, precision, and F1 at all test sizes. Table 8 summarizes PCA-120 

(DatasetA+DatasetB) and Figure 9 juxtaposes PCA-120 (panel a) vs Pearson-120 (panel b). 

 

 

Table 8. PCA-120 (DatasetA+DatasetB): mean accuracy, recall, precision, and F1 (%) across classifiers at 

the 10%, 25%, and 40% test sizes (MCCV=1000) 
Classifier  RF100   RF125   k-NN   SVM  
Test size 10% 25% 40% 10% 25% 40% 10% 25% 40% 10% 25% 40% 

Acc. (%) 99.99 99.97 99.95 100 99.98 99.98 99.79 99.79 99.75 100 100 100 

Recall (%) 99.98 99.98 99.92 100 99.98 99.96 99.58 99.58 99.51 100 100 100 

Prec. (%) 100 99.97 99.99 100 99.98 100 100 100 100 100 100 100 
F1 (%) 99.99 99.97 99.95 100 99.98 99.98 99.77 99.78 99.75 100 100 100 

 

 

Figure 9(a) shows the PCA-120 results (DatasetA+DatasetB, no labels used in selection), whereas 

Figure 9(b) shows the Pearson-120 results; both panels report mean performance over 1,000 MCCV resamples 

at the 10%, 25%, and 40% test sizes 

 

 

  
(a) (b) 

 

Figure 9. Performance with 120 features; (a) PCA-120 (DatasetA+DatasetB) and (b) Pearson-120; means 

over 1,000 MCCV at 10%, 25%, and 40% test sizes 

 

 

4.4.3. Summary and implications 

Both strategies yield ≈99–100% accuracy for SVM and RF, while Pearson-based selection retains a 

small advantage for k-NN at the 10% test size. In this sense, the methods are complementary: Pearson-based 

selection preserves neighborhood structure that benefits distance-based classifiers, whereas PCA provides a 

label-independent baseline with comparable ceiling performance for margin-based and ensemble models. 

Complete numerical tables for the Pearson-120 and PCA-120 comparisons—including per-iteration metrics, 

per-test-size aggregates, selected SNP panels, and MCCV selection frequencies—are available in the 

repository [59]. 

 

4.5.  Runtime and computational footprint 

Runtime profiles corroborate deployability: with 120-SNP panels, prediction latencies are 

millisecond-scale for linear SVM and k-NN and sub-tenth-second for RF, with fit+predict totals summarized 

in Table 9. Per-iteration timings (median [IQR], ms) across test sizes show that, at the 25% test size, median 

fit costs follow k-NN (0.74–1.00 ms) < SVM (≈2.00 ms) ≪ RF100 (231–233 ms) < RF125 (269–272 ms); 

median prediction costs are SVM (≈0.30 ms), k-NN (1.81–1.83 ms), and RF (34–35 ms). Consequently, median 
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total time per iteration is SVM (2.21–2.36 ms) < k-NN (2.49–2.53 ms) ≪ RF100 (267–273 ms) < RF125  

(312–313 ms), with narrow IQRs indicating stable runtimes over R=1,000 MCCV resamples. Overall, runtimes 

are modest, demonstrating that both the Pearson-based selection pipeline and the PCA baseline are 

computationally practical. 
 

 

Table 9. Per-iteration runtime (milliseconds), reported as median and IQR, for each classifier at 10%, 25%, 

and 40% test sizes (timing includes model fit() and predict() only) 
Classifier Test size (%) Median fit IQR fit Median prediction IQR prediction Median total IQR total 

RF100 10 232.063 29.302 34.57 0.992 266.906 29.531 

RF100 25 231.481 36.419 34.582 1.088 266.397 33.963 
RF100 40 238.567 23.624 34.587 0.949 273.465 19.661 

RF125 10 272.905 23.886 34.873 2.751 311.518 28.365 

RF125 25 272.363 23.496 35.045 10.345 312.051 26.315 
RF125 40 271.495 23.518 35.221 10.593 312.503 26.984 

SVM 10 2.071 0.504 0.3 0.079 2.364 0.579 

SVM 25 1.978 0.505 0.298 0.083 2.266 0.595 
SVM 40 1.92 0.512 0.304 0.087 2.213 0.588 

k-NN 10 0.752 0.163 1.766 0.358 2.493 0.512 

k-NN 25 0.737 0.217 1.81 0.374 2.525 0.605 
k-NN 40 0.717 0.218 1.829 0.4 2.522 0.617 

 

 

4.5.1. Practical implication 

Given the near-parity in accuracy at 120 features (§4.4), SVM offers the best accuracy–latency trade-

off; k-NN is close behind but incurs higher prediction cost; RF variants are ≈100× (about two orders of 

magnitude) slower for both training and inference, so runtime can guide model choice in resource-constrained 

deployments. Complete per-iteration runtime traces supporting Table 9—covering fit, predict, and total times 

for each model across the 10%, 25%, and 40% test sizes and all representative blocks—are available in the 

repository [59]. 

 

4.6.  Consensus panel 

A consensus SNP panel was derived by combining two signals—the percentile of absolute point-

biserial correlation (|r|) with the label and the percentile of PCA selection frequency across MCCV resamples. 

The combined score yields nested panels (Top-50, Top-120, Top-240); Top-120 balances parsimony and 

stability and is used as the primary panel. The Top-50, Top-120, Top-240, and the full consensus panel are 

available in the public repository [59]. 

 

4.6.1. Top-20 minimal panel 

For operational use and cost-sensitive assays, a Top-20 subset of the consensus panel is reported as 

an illustrative, low-complexity option (Table 10). This subset preserves coverage of the highest ∣ 𝑟 ∣ percentiles 

and, in mid-to-high correlation tiers, attains ≈98–100% accuracy for SVM/RF, with only small deltas relative 

to Top-120; per-tier accuracy differences and confidence intervals are provided in [59]. 
 

 

Table 10. Top-20 consensus SNPs ranked by combined correlation and PCA-selection percentiles 
Feature |r| Pearson_percentile Select_rate overall PCA percentile Combined score 

rs10868791 0.925 100 0 92.667 96.334 

rs6670842 0.900 99.982 0 92.667 96.325 

rs9909962 0.900 99.965 0 92.667 96.316 
rs2370893 0.900 99.947 0 92.667 96.307 

rs6814827 0.897 99.929 0 92.667 96.298 

rs311992 0.874 99.911 0 92.667 96.289 
rs10504132 0.873 99.894 0 92.667 96.281 

rs13420968 0.869 99.876 0 92.667 96.272 
rs9534610 0.868 99.858 0 92.667 96.263 

rs1485768 0.867 99.841 0 92.667 96.254 

rs7752055 0.863 99.823 0 92.667 96.245 
rs1209914 0.849 99.805 0 92.667 96.236 

rs1373013 0.847 99.788 0 92.667 96.227 

rs2034510 0.843 99.770 0 92.667 96.219 
rs1568773 0.840 99.752 0 92.667 96.210 

rs619228 0.835 99.734 0 92.667 96.201 

rs2833795 0.834 99.717 0 92.667 96.192 
rs7851392 0.834 99.699 0 92.667 96.183 

rs6716734 0.828 99.681 0 92.667 96.174 

rs2003154 0.828 99.664 0 92.667 96.165 
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4.6.2. Correlation thresholds for target accuracies 

Block-wise accuracy across DatasetA and DatasetB supports interpretable, label-aware thresholds for 

marker prioritization (R=1,000 MCCV resamples; 10%, 25%, and 40% test sizes). Using k-NN as the 

conservative yardstick, |r| ≥0.50 attains ≥90%, |r| ≥0.52 achieve ≥95%, and |r| ≥0.60 reaches ≈99%; classifier-

specific minima are summarized in Table 11. These thresholds complement the consensus panel when rank 

ties or assay constraints must be resolved. 

 

 

Table 11. Minimum absolute correlation (|r|min) required to reach ≥90%, ≥95%, and ≈99% accuracy across 

datasets (A and B) and classifiers (global thresholds are conservatively determined by k-NN) 
Classifier ≥ 90% (|r|min) ≥ 95% (|r|min) ≈ 99% (|r|min) 

k-NN 0.5 0.52 0.6 

SVM 0.44 0.44 0.44 

RF100 0.44 0.44 0.44 
RF125 0.44 0.44 0.44 

Global (all models) 0.5 0.52 0.6 

 

 

4.6.3. Summary and practical guidance 

For discovery and flexible downstream analysis, Top-120 offers a stable, interpretable panel with 

≈99–100% performance in mid–high correlation tiers; for rapid deployments or budget-limited wet-lab follow-

up, Top-20 is an attractive default with ≈98–100% in those tiers and small deltas relative to Top-120 (per-tier 

summaries in [59]). When assay slots are scarce, the ∣ 𝑟 ∣min thresholds in Table 11 (0.50/0.52/0.60 for 

≥90%/≥95%/≈99%) provide a simple rule to finalize inclusions or substitutions while maintaining target 

accuracy. 

 

4.7.  Overall discussion and practical implications 

Results across DatasetA and DatasetB and all test sizes show consistent trends: classifier performance 

scales with the strength of feature–label correlation, SVM and RF reach near-ceiling accuracy (≈98–100%; 

e.g., A1–A7 and B16–B22) in moderate-to-strong blocks, and k-NN degrades more steeply as correlation 

weakens. Statistical validation indicates that these differences are statistically significant and consistent across 

blocks, reinforcing that feature–label correlation is the key determinant of predictive accuracy. 

In mid-correlation tiers, linear SVM’s advantage is consistent with margin-based generalization: once 

|r| supplies moderately informative axes, a linear separator attains large, stable margins and low variance. RF 

approaches ceiling as correlation strengthens but is slightly more variance-prone in the mid-range due to tree-

split instability on weaker signals. k-NN relies on local neighborhood purity; it benefits most at very high |r| 

yet degrades faster as manifolds overlap or noise increases. These mechanisms mirror the observed accuracy 

and pairwise-significance patterns across DatasetA/B blocks and test sizes. 

Methodologically, a simple Pearson-based selection yields performance competitive with more 

complex pipelines. Relative to the PCA baseline, Pearson-based selection achieves indistinguishable accuracy 

for SVM and RF, and slightly outperforms PCA for k-NN at smaller test sizes—underscoring the practical 

value of a transparent, interpretable selector while still recognizing PCA as a strong unsupervised reference. 

Runtime analysis (Table 9) shows that RF carries the largest training cost (RF125 > RF100), SVM is 

consistently fast, and k-NN is negligible at training but heavier at prediction. Median per-iteration runtimes 

remain modest—hundreds of milliseconds for RF and only a few milliseconds for SVM and k-NN—

demonstrating that both the Pearson-based selection pipeline and the PCA baseline are computationally 

practical. 

 

4.7.1. CPU-only feasibility 

All experiments ran on CPU. Under 120-SNP panels, linear SVM/k-NN operate in milliseconds per 

query, while RF remains sub-second, and fit overheads follow SVM ≪ RF100 < RF125 (Table 9). These 

latencies, consistent across R=1000 MCCV resamples and all test sizes, indicate practicality for point-of-care 

or edge deployment. 

 

4.7.2. Several limitations merit note 

LD-aware redundancy control (e.g., LD-clumping) was not systematically applied; only two HapMap 

Phase II populations (CEU vs YRI) were analyzed; and the sample size is relatively small. Future work will 

incorporate LD-clumping or mRMR to reduce redundancy, expand to multi-ethnic and multi-class cohorts, and 

evaluate deep representation learning and functional-annotation integration, while preserving leakage-free 

training protocols and locus-level interpretability. 
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Taken together—i) parity with PCA-120, ii) stable runtimes at fixed dimensionality, iii) a compact 

Top-20 with near-ceiling performance, and iv) actionable |r| thresholds—these findings support Pearson-based 

selection as a simple, transparent baseline for small-n/high-p SNP classification, with the consensus 

construction adding robustness while remaining block-agnostic. 

 

 

5. CONCLUSION 

Pearson-based selection, complemented by a simple consensus rule, delivers interpretable panels that 

match PCA-120 performance at the same dimensionality while simplifying deployment decisions. A 20-locus 

practical panel provides a cost-effective option with minimal accuracy loss, and conservative |r| thresholds 

translate results into clear operating points. These outcomes recommend Pearson-ranked, consensus-refined 

subsets as a strong baseline for SNP-based classification under small-n/high-p constraints. 

Under systematic QC and Pearson-based selection, supervised classification of human populations 

shows robust, statistically significant differences among classifiers: RF and SVM reach ceiling performance 

on moderate-to-strong correlation subsets, whereas k-NN is more sensitive as correlation weakens. Compared 

with PCA, Pearson-based selection remains competitive—SVM and RF attain indistinguishable accuracy 

under both, and k-NN retains a small edge with Pearson-guided features—while runtime demands are modest. 

Beyond accuracy, two practical outputs are provided: i) a 120-SNP consensus panel that combines 

correlation evidence with PCA selection frequency, and ii) operating thresholds (|r| ≥0.50 for ≥90%, |r| ≥0.52 

for ≥95%, |r| ≥0.60 for ≈99%) that offer reproducible criteria for marker prioritization. 

Limitations include the absence of LD-clumping, restriction to two HapMap Phase II populations, and 

limited sample size; future work should broaden cohorts, incorporate LD-aware pruning and functional 

annotations, and assess stability at larger scales. 

On commodity CPUs, inference with 120-SNP panels is millisecond-scale for linear SVM/k-NN and 

sub-second for RF, enabling point-of-care or edge deployment. Future work will extend to multi-class cohorts 

and deep representation baselines under the same leakage-free protocol, while maintaining locus-level 

interpretability. These steps operationalize a reproducible, CPU-feasible pipeline for real-world screening 

scenarios. 
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