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 Texture analysis is a fundamental approach in image processing for 

identifying specific patterns or structures. One widely used method is the 

grey-level co-occurrence matrix (GLCM), which computes the frequency of 

pixel value pairs at certain distances and angles. This study adapts the 

GLCM method for 1D electroencephalogram (EEG) signal analysis, 

focusing on extracting features such as contrast, energy, homogeneity, 

correlation, and entropy. EEG signals are normalized to the range 0–255, 

and the extracted features are classified using a support vector machine 

(SVM). Experimental results show that combining features across multiple 

distances (d=1 to 20) achieves classification accuracy of 78.8% for five 

classes (Z/O/N/F/S), 94.0% for three classes (O/F/S), and 94.3% for another 

three-class group (Z/N/F). The method shows strong performance for short 

to medium distances and fewer class combinations. However, performance 

declines when dealing with more complex class sets and longer distances, 

where texture features become less effective. The drop in accuracy for 

Z/O/N/F/S beyond d=5 underscores the challenges of maintaining feature 

robustness at extended distances. Despite this, GLCM remains a promising 

approach for EEG signal classification. Future work should focus on 

optimizing distance parameters and feature combinations to further enhance 

classification performance. 
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1. INTRODUCTION 

The Texture analysis is used in image processing to recognize specific patterns or structures within 

images [1]. This method has applications in various fields, such as pattern recognition [2], image 

classification [3], and object detection [4]. Texture analysis utilizes the statistical and spatial characteristics 

of pixels within an image to identify and describe the existing patterns [5]. Through texture analysis, valuable 

information from images can be extracted and used in diverse applications [6]. Various techniques for texture 

analysis have been developed, including gray level run length (GLRL) [7] and gray level difference matrix 

(GLDM) [8], [9]. A commonly utilized method is the grey-level co-occurrence matrix (GLCM) [10], which 

computes the frequency of pairs of pixels with specific intensities appearing at particular distances and angles 

in an image. 

Several studies have employed GLCM as a texture analysis method. For instance, brain tumor 

analysis utilizes parameters such as energy, dissimilarity, homogeneity, and contrast [11]. Similarly, these 

https://creativecommons.org/licenses/by-sa/4.0/
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parameters have been applied in research on bone X-ray images of musculoskeletal radiographs [12], 

demonstrating the versatility of GLCM across different domains. Other studies combined GLCM with first-

order statistics, achieving a model with 97.00% accuracy when applied to three-class data [13]. However, 

most existing studies have focused on applying GLCM to two-dimensional medical images, whereas the 

current study explores its adaptation to one-dimensional EEG signals. Unlike conventional approaches that 

directly extract GLCM features from grayscale images, this study modifies GLCM to analyze the spatial 

relationships between signal amplitudes over time, effectively capturing temporal dependencies in EEG data. 

In this study, we modified GLCM for application to 1D signals, similar to previous modifications of 

the GLDM. The features extracted from the GLCM will be used for epileptic seizure classification using an 

SVM. The classification features include contrast, energy, homogeneity, correlation, and entropy. The 

adapted GLCM method is expected to function as an alternative for analyzing EEG seizure signals through 

texture analysis. 

 

 

2. METHOD 

This study aimed to test the GLCM texture analysis method for EEG signal classification. Because 

EEG signals are 1D, whereas GLCM was originally designed for texture analysis of 2D images, a 

modification process was required. EEG signals were normalized or scaled to a range of 0-255. 

Subsequently, GLCM was computed only in the 0° direction. The features from the GLCM were extracted. 

The final step involved classification using SVM. Figure 1 illustrates the steps involved, and the details of 

each process are described in the following subsections. 

 

 

 
 

Figure 1. Block diagram for the system 

 

 

2.1.  Dataset 

The EEG data used in this study were collected by Andrzejak et al. [14] from the University of 

Bonn, Germany, sampled at 173.61 Hz with an EEG device frequency range from 0.5 Hz to 85 Hz. To reduce 

noise artifacts, a low-pass filter (LPF) at 40 Hz was applied during the data-acquisition process. Each dataset 

consisted of 4096 samples with a total duration of 23.6 seconds. All category classes of data were included in 

this study and divided into various class-division scenarios for further analysis. The main objective of this 

study was to identify the most effective combination of data classes. Details regarding the types of classes 

within this dataset are presented in Table 1. 

 

 

Table 1. EEG dataset description 

Set 
EEG 
signal 

Name 
of file 

Amount Description 

A Normal Z 100 Sets A and B contain surface EEG recordings conducted on five healthy volunteers using a 

standardized electrode placement scheme. The volunteers were in a relaxed state with eyes 

open (A) and eyes closed (B). 

B Normal O 100 

C Interictal N 100 Data set C contains EEG recordings from the hippocampal formation in the hemisphere 

opposite the epileptogenic zone. 

D Interictal F 100 Data set D contains EEG recordings from the epileptogenic zone. Both recordings from 
data set C and D were obtained during seizure-free periods. 

E Ictal S 100 Set E is a collection of epileptic seizure activities recorded from the hippocampal focus. 

 

 

2.2.  Normalization 

EEG signals represent electrical brain activity recorded on the scalp surface. These signals typically 

have many dimensions, are highly complex, and often require transformation or normalization for further 

analysis. In this approach, the one-dimensional EEG signal is transformed to a scale ranging from 0 to 255 to 

align it with the intensity range commonly used in digital images. 

Normalization involves adjusting the amplitude values of the EEG signal to fit within the 0 to 255. 

This process involves adjusting the minimum and maximum values of the EEG signal to encompass the 
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desired intensity range. By doing so, EEG signals, which originally had varying value ranges, could be 

standardized for further analysis using the GLCM. The normalization can be achieved using (1) [15]: 

 

𝑦(𝑖) = 𝑓𝑙𝑜𝑜𝑟 
𝑥(𝑖)−𝑚𝑖𝑛(𝑥)

𝑚𝑎𝑥(𝑥)−min(𝑥)
𝑥256 (1) 

 

2.3.  Gray-level co-occurrence matrix  

GLCM measures the frequency of pixel pairs with specific intensity values appearing in an image at 

specific distances and directions [16]. GLCM represents a matrix that illustrates how combinations of 

grayscale levels of these pixel pairs appear throughout an image [17]. ℎ(𝑖1, 𝑖2|𝜃) refers to the GLCM used to 

depict the frequency of occurrence of pixel pairs with intensities 𝑖1, 𝑖2 at the direction or angle θ within an 

image. The GLCM was first introduced in 1973 by Haralick, who introduced 14 basic features. Since then, 

GLCM has undergone various developments leading to the use of up to 20 or more features. Several 

commonly used features in GLCM are described in (2)–(6) [6], [18]. In (2) to (6) can be used to compute the 

features from the GLCM [6], [18]: 

 

𝑦𝐴𝑆𝑀 = ∑ ∑ 𝑃(𝑖, 𝑗)2
𝑗𝑖  (2) 

 

𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡 = ∑ (𝑖1 − 𝑖2)2𝑝(𝑖1, 𝑖2)𝑖1
 (3) 

 

𝐻𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑖𝑡𝑦 = ∑ ∑
𝑝(𝑖1,𝑖2)

1+|𝑖1−𝑖2|𝑖1𝑖1
 (4) 

 

𝐸𝑛𝑒𝑟𝑔𝑦 = ∑ ∑ 𝑝2(𝑖1, 𝑖2)𝑖1𝑖1
 (5) 

 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = − ∑ ∑ 𝑝(𝑖1, 𝑖2)𝑖1𝑖1
log 𝑝(𝑖1, 𝑖2) (6) 

 

GLCM is generally used for texture analysis of images that utilize pixel values from [19], [20], and 

angle calculations in the image can be performed at angles of 0°, 45°, 90°, and 135°. This is a representation 

of an image that is basically in two dimensions so that the angles can be calculated. In addition, GLCM also 

has a distance parameter that defines how the value of the neighboring pixel pairs is set. 

 

2.4.  Modification of grey-level co-occurrence matrix 

When the GLCM is applied to one-dimensional signals, it can use only one direction or angle, 

typically denoted by θ=0. Thus, it becomes ℎ(𝑖1, 𝑖2|0). This notation provides an indication of how 

frequently two consecutive or nearby intensity values occur within a signal. Because the angle is only 

calculated at one angle, the use of GLCM in 1-dimensional signals is more prevalent. Figure 2 illustrates the 

conceptual difference between the 2D and 1D GLCM computations. Specifically, Figure 2(a) shows the 

calculation of the 2D GLCM at certain angles corresponding to 1. The first value (5,4) corresponds to the 0-

degree angle, (7,2) corresponds to the 45-degree angle, (3,3) corresponds to the 90-degree angle and (4,2) to 

the 135-degree angle. In contrast, the 1D treatment considers only the 0-degree angle, as shown in  

Figure 2(b). There are several considerable distinctions regarding the dimensions of the processed data, the 

number of angles considered, and the number of conditions of the procedure. The 2D GLCM is meant for 

two-dimensional images such as paintings, in an attempt to calculate the GLCM matrix when the image is 

rotated at four different angles: 0°, 45°, 90°, and 135°. However, the 1D GLCM is for one-dimensional data, 

which is the signal; therefore, only one angle was considered. Both have the same intention of measuring the 

frequency of pairs consisting of intensity values placed a certain distance apart. However, the conditions of 

1D GLCM are more straightforward and do not require as many conditions as 2D GLCM. Similar to images, 

once the GLCM is computed, the output undergoes a second procedure to extract the features of the GLCM 

using (2)-(6). This study used the Python programming language to help apply the GLCM to images. 

The use of GLCM in direct one-dimensional signal processing, for example, during biometric data 

processing, including EEG signals, has led to significant developments in signal texture analysis. The GLCM 

obtains pairs of intensity values perpendicular to the angular position of the analyzed signal, which helps 

detect linear intensity change patterns. Such an approach increases the analysis speed by eliminating the need 

to convert 1D data to two-dimensional images. Modifying the GLCM transformation level is also novel for 

feature texture extraction, where subtle or complex variations are desired, thus facilitating accurate signal 

classification. 

 

 



Bulletin of Electr Eng & Inf  ISSN: 2302-9285  

 

Modification of grey-level co-occurrence matrix for epileptic … (Donny Setiawan Beu) 

3261 

 
(a) 

  

 
(b) 

 

Figure 2. Illustration degree calculation for; (a) 2-dimensional and (b) 1-dimensional 

 

 

The modified GLCM for one-dimensional data aims to overcome the limitations of the conventional 

GLCM designed for texture analysis in two-dimensional images. This approach adapts GLCM by 

considering the spatial relationship between data points in a 1D signal, for example, by constructing a co-

occurrence matrix based on pairs of signal amplitude values within a certain time window. In addition, the 

variation in distance and orientation is adapted into the temporal domain to capture the dynamic patterns of 

EEG signals, allowing for more accurate detection of epilepsy patterns. By combining statistical features 

from 1D GLCM with machine learning or deep learning methods, this approach can improve the 

performance of epilepsy classification compared to conventional methods that only use frequency- or time-

based features, making it more effective in capturing the complexity of EEG signals. 

 

2.5.  Support vector machine 

Originally designed as a linear classifier, the support vector machine (SVM) has since been 

developed into a powerful solution for addressing nonlinear classification tasks. The SVM fundamentally 

seeks to discover the most suitable hyperplane that can effectively distinguish between two sets of data [21]. 

This hyperplane can be a straight line in the case of two-dimensional data or a linear surface in higher 

dimensions, separating the two groups of data [22]. The optimal hyperplane is determined by maximizing the 

margin, which is the distance between the hyperplane and the closest points of each class of data, referred to 

as the support vectors. To handle nonlinear classification problems, the SVM utilizes a method known as the 

kernel trick. This method allows the SVM to perform classification in feature spaces that have nonlinear 

shapes, such as circles or ellipses, without explicitly transforming the data into a higher-dimensional space. 

 

 

3. RESULTS AND DISCUSSION  

Figure 3 shows the original and normalized EEG signals. Upon visual inspection, both graphs 

appear identical in terms of their graphical representation. However, the values of these two signals differed 

numerically. This difference may not be visually apparent but can affect further analysis of the EEG signal. 

The normalized EEG signal then proceeds to the GLCM computation. Figure 3(a) retains the same value as 

the original dataset, whereas Figure 3(b) is normalized using the min-max method. This normalization 

process transforms the value range of the EEG signal to a scale between 0 and 255. This step is crucial to 

ensure that the signal can be processed by the GLCM algorithm, which requires data in 2D format with 

limited intensity values. 

Figure 4 (in Appendix) shows a box plot of the feature-extraction results at a distance of 10. As 

shown in Figure 4(a), Class Z exhibits the highest contrast values and significant variability, indicating 

considerable intensity differences in its texture. The homogeneity in Figure 4(b) shows that category F has 

greater variability, suggesting a less uniform texture than the other categories. Figure 4(c) shows that the 

correlation in categories Z and O has higher values with a broader distribution, indicating that pixel 

intensities in these categories are more correlated with each other. Category Z in Figure 4(d) also exhibits 

higher entropy values with a broader distribution, indicating a more random and complex texture. The energy 

values are shown in Figure 4(e), where all categories have very low values, but category Z has slightly lower 

values, suggesting that the texture might have more uniform intensities and lower energy. This explanation 

highlights the suitability of the SVM for classification in this study because it is effective in high-dimensional 

spaces and can be used for both linear and nonlinear classification. 
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(a) 

 

 
(b) 

 

Figure 3. Displays the sample data; (a) before normalization and (b) after normalization 

 

 

The performance of the classification system at different distances shows both advantages and 

disadvantages, primarily influenced by the distance parameter's effect on classification outcomes. As shown 

in Table 2, the method achieves higher classification accuracy at shorter distances, particularly between d=1 

and d=5, where texture features are more discriminative for EEG signal classes. For the five-class set 

Z/O/N/F/S, the highest accuracy reached was 68.2% at distances d=2–4. This is reasonable, given that the 

method performs best when local texture information is emphasized. However, as the distance increases, the 

classification accuracy declines, dropping to 44.2% at d=20. This decrease is attributed to the complexity of 

the five-class set, where increased distance leads to less distinguishable textures, reducing feature reliability. 

 

 

Table 2. Classification accuracy 

Distance 
Accuracy 

Z/O/N/F/S (%) O/F/S (%) Z/N/F (%) 

d=1 63.2 90.3 87.0 
d=2 68.2 92.0 86.7 

d=3 68.2 91.0 88.3 

d=4 68.2 90.0 89.7 
d=5 67.8 90.0 90.0 

d=10 54.6 72.7 77.3 

d=15 50.4 76.3 70.0 
d=20 44.2 66.7 68.0 

d=1-20 78.8 94.0 94.3 

 

 

In contrast, simpler class sets like O/F/S and Z/N/F maintained high classification accuracy across 

distances, exceeding 94%, although slight declines were noted at greater distances. These results suggest that 

the proposed method excels when classifying fewer categories with stronger, more consistent textures. The 

highest recorded accuracies were 94.0% for O/F/S and 94.3% for Z/N/F, based on averaged results over all 

distances. While GLCM provides more than just classification accuracy, offering insights into signal texture 

and subtle variations, it is also computationally efficient due to its operation on 1D signals. This enhances 

processing speed and emphasizes local texture patterns, which are essential for EEG signal analysis. 
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Nevertheless, the method's limitations become evident with increasing class complexity and distance. 

Therefore, improvements are needed—such as refining feature selection or adjusting the distance 

parameter—to enhance performance on complex datasets. Future work should aim to improve the method’s 

robustness for broader class sets and greater distances, while maintaining high accuracy. 

This research reveals varying performance results whereby distances are defined as scales, 

consistent with previous GLDM-related studies. In relation to studies that work with scale aspects, this study 

provided better results. As shown in Table 3, the relevance of the different feature extraction and 

classification methods resulted in different accuracies. The empirical mode decomposition (EMD) and 

extraction of desirable processes through entropy achieved 86.3% accuracy with classification using a SVM. 

On the other hand, another research embedded the EMD method supplemented with several entropy types, 

including Shannon entropy, spectral entropy and permutation entropy, and achieved 97.3% accuracy. This 

implies that the integration of multi-entropy types boosts classification efficiency. 

 

 

Table 3. Comparison with previous research 
Ref Dataset Method Features extraction Classifier Result (%) 

Wijayanto and Rizal 

[23] 

Bonn University EMD Shannon entropy, spectral 

entropy, and permutation entropy 

SVM 97.3 

Wijayanto et al. [24] Bonn University - Wavelet entropy SVM 94.3 
Rizal et al. [25] Bonn University Hjorth descriptor - SVM 99.5 

Our work Bonn University GLCM modified ASM, homogeneity, contrast, 
energy, and entropy 

SVM 94.3 

 

 

Classification using the wavelet packet decomposition (WPD) approach as well as extraction using 

Shannon and Renyi entropy, yielded an accuracy of 85.64%. This difference could be due to the differences 

in the data sets used. Interestingly, the Hjorth Descriptor approach applied to the Bonn University dataset 

yielded a very high accuracy of 99.5%. This shows that multi-scale descriptors are also highly effective in the 

classification of EEG signals in the case of epilepsy detection. This study, which modified the GLCM 

method with feature extraction, such as angular second moment (ASM), homogeneity, contrast, energy, and 

entropy, achieved an accuracy of 94.3%. These results demonstrate that this study competes well with 

previous studies using scale-based approaches and provides competitive outcomes for detecting epileptic 

seizures through EEG signal analysis. 

Various techniques have been employed for EEG signal analysis, including EMD, wavelet entropy, 

WPD, and Hjorth descriptors. Wavelet entropy and WPD offer multi-resolution decomposition, making them 

effective in capturing irregular and transient frequency changes in EEG signals. Meanwhile, Hjorth 

descriptors focus on the temporal characteristics of signals, such as variations in amplitude, frequency, and 

signal complexity. Although each of these methods has distinct advantages, they tend to require high 

computational resources and may not effectively capture spatial relationships or texture patterns, especially 

when analyzing 1D EEG signals. 

In contrast, the GLCM offers a simpler and more computationally efficient approach for analyzing 

spatial textures in 1D signals like EEG. GLCM captures the relative positioning of intensity value pairs, 

enabling the detection of linear intensity variations without converting 1D data into 2D structures. While 

GLCM may not fully capture frequency information, its speed and effectiveness in classifying EEG signals 

make it advantageous, particularly for applications that prioritize local texture patterns. Based on findings, 

the use of short distances (d=1 to d=5) in GLCM yields the highest classification accuracy, especially for 

simpler class sets like O/F/S and Z/N/F. However, accuracy tends to drop significantly with longer distances 

(d=10, d=15, and d=20), suggesting that texture features become less discriminative. Therefore, further 

optimization—such as refining distance parameters or combining GLCM with other feature extraction 

methods—is needed to enhance performance in more complex classification tasks involving longer spatial 

dependencies. 

 

 

4. CONCLUSION 

In this study, the GLCM was modified to analyze EEG signals. This technique involves measuring 

the frequency of the occurrence of pixel pairs with specific intensity values in an image at specified distances 

and angles. Five features were used to characterize each signal. The experimental results showed that using 

only one feature or a single distance did not yield a satisfactory accuracy. The best accuracy was attained by 

utilizing a combination of five features and incorporating distance ranges from 1 to 20, employing an SVM 

as the classifier. The distance parameters have a notable impact on the classification performance of the 

signals. 
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The use of GLCM in direct one-dimensional signal processing, for example, during biometric data 

processing, including EEG signals, has led to significant developments in signal texture analysis. The GLCM 

obtains pairs of intensity values perpendicular to the angular position of the analyzed signal, which helps 

detect linear intensity change patterns. Such an approach increases the analysis speed by eliminating the need 

to convert 1D data to two-dimensional images. Modifying the GLCM transformation level is also novel fot 

feature texture extraction, where subtle or complex variations are desired, thus facilitating accurate signal 

classification. The ability to apply GLCM directly to 1D signals, such as EEG, reduces the computational 

complexity and enhances the processing speed, offering a more efficient approach for real-time signal 

analysis. This study suggests using short distances (d=1 to d=5) to achieve maximum accuracy in EEG signal 

classification using GLCM. Although there is no conclusive method to ascertain the exact optimal distance 

leading to the highest accuracy, the suggested approach remains promising for future advancements. The 

classification performance can be significantly enhanced by exploring different signal manipulation 

techniques. Moreover, the direct application of GLCM to EEG signals presents the possibility of adapting 

this technique to other forms of time-series or sequential data analysis, thereby creating a wider range of 

applications in signal processing fields. However, this method still faces challenges in handling highly 

complex or noisy signal patterns, which may affect the accuracy at higher distances. Future work should aim 

to optimize the GLCM by refining the feature selection process and adapting the method to better handle 

noisy signals and larger, more complex datasets. 
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Figure 4. Features d=10; (a) contrast, (b) homogeneity, (c) correlation, (d) entropy, and (e) energy 
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