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Lung cancer remains the leading cause of cancer-related mortality
worldwide, emphasizing the need for early, accurate, and scalable detection
methods. Low-dose computed tomography (LDCT) has improved early
diagnosis, yet challenges like image noise, low contrast, and subtle nodule
features often limit reliable interpretation in large-scale screening. This
paper proposes a computationally efficient computer-aided detection
(CADe) framework that integrates a rotation-invariant, spatially localized
integral transform feature extraction with a U-Net-based classifier to
enhance lung nodule detection and segmentation. The approach strengthens
spatial feature representation while maintaining low computational and
memory demands, enabling real-time use in resource-limited clinical
settings. Implemented in MATLAB and evaluated on the Cancer Imaging
Archive (TCIA) dataset, the system achieved 99.32% classification
accuracy, 88.88% specificity, 84.21% precision, 87.3% intersection over
union (loU), and 92.9% dice similarity coefficient (DSC). These results
show clear improvements over conventional methods, particularly in
rotational robustness and efficiency—Kkey requirements for scalable
screening. Although precision and loU could be further optimized, the
framework demonstrates strong potential for clinical adoption. By providing
accurate, fast, and robust nodule analysis, this work advances practical high-
performance tools for early lung cancer detection, especially in resource-
constrained environments, ultimately contributing to better patient survival
rates.
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1. INTRODUCTION

Lung cancer remains one of the deadliest cancers worldwide, accounting for approximately 18% of
all cancer-related deaths [1]. The World Health Organization (WHO) estimates that by 2030, lung cancer will
be responsible for about 17 million deaths globally. Early detection significantly improves outcomes, with
survival rates reaching nearly 50% when the disease is diagnosed at an early stage [1]. Chest X-ray imaging
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is often used as an initial screening tool; however, its limited ability to detect small nodules and lack of cross-
sectional imaging reduce its diagnostic effectiveness, making it more suitable for preliminary screening than
definitive diagnosis [1], [2]. Consequently, advanced imaging modalities such as MRI, PET, PET/CT, and
PET/MRI are frequently employed, each providing distinct benefits and trade-offs in terms of diagnostic
accuracy, cost, and clinical utility [3].

Computed tomography (CT) is another imaging modality widely used for lung cancer diagnosis. It
employs X-rays and is among the most effective techniques for detecting lung lesions [3]. In recent years,
low-dose computed tomography (LDCT) has demonstrated significant improvements in early lung cancer
detection [3]. Compared with chest X-ray imaging, conventional CT involves higher radiation exposure,
measured in milli-seivert (mSv). However, LDCT performed at 25 mA and 80 kV, with a radiation dose of
22.3 mGy-cm (approximately 0.3 mSv), does not compromise sensitivity for lung cancer detection [4]. The
radiation dose associated with LDCT (0.3-0.6 mSv) is substantially lower than that of standard CT, which
ranges from 3.5 to 7 mSv [3], [4]. Owing to its high spatial resolution, CT imaging enables reliable detection
of small pulmonary nodules. Figure 1 illustrates CT images of a normal lung and a patient with confirmed
lung cancer.

)
A

Figure 1. CT image with lung cancer (right) and another without lung cancer (left)

Although CT imaging is highly sensitive, it presents challenges in visually distinguishing between
benign and malignant lesions [5]. Consequently, manual interpretation is prone to misdiagnosis, highlighting
the need for automated diagnostic systems. Computer-aided detection (CADe) and computer-aided diagnosis
(CADX) have therefore emerged as effective approaches for the early detection of lung cancer [1].

Most CADe systems follow a similar pipeline comprising signal acquisition, preprocessing,
segmentation, and classification [5]. Extensive research has been conducted on CADe systems to minimize
diagnostic errors and reduce the risk of misclassification. In this context, techniques based on integral
transforms have demonstrated considerable potential.

The present work proposes a novel approach for lung tumor detection in chest CT images by
combining spatially localized integral transforms with convolutional neural network (CNN)-based
classification. Various methodologies can be adopted in the development of a CADe system. In this study,
three key stages are emphasized: spatial image enhancement, integral transforms, and image classification.
Spatial domain enhancement: Image enhancement is a fundamental component of most CADe systems,
addressing multiple aspects of image quality, including saturation, sharpness, noise reduction, tonal
adjustment, tonal balance, and contrast enhancement [6]-[8]. Among spatial enhancement techniques, power-
law (gamma) transformation is widely used and is mathematically expressed in (1):

s=cr¥ (@)

where ¢ and y are positive constants that control image brightness and contrast, respectively; r denotes the
input pixel intensity and s represents the transformed intensity for a given grayscale image [8], [9]. Gamma
correction can be classified as either global or local [8]. In global gamma correction, a single gamma value
(y) is applied to the entire image [8]. However, applying a global power-law transformation may lead to
over-enhancement or under-enhancement in certain regions of the image [8]. Consequently, it is more
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effective to apply different gamma values to different regions to achieve improved image enhancement. In
this context, several adaptive approaches for determining gamma values have been proposed in the literature.

In a previous study by Rahman et al. [8], the gamma value was computed based on local image
contrast information. Using Chebyshev’s criterion, if at least 75% of a distribution lies within 40 (where o is
the standard deviation) of its mean, the image is classified as having low contrast; otherwise, it is considered
to have normal (moderate-to-high) contrast. Accordingly, Rahman et al. [8] defined separate formulations for
computing the gamma values for low-contrast and moderate-to-high-contrast images, as given in (2) and (3),
respectively.

y = —log,o 2

[1—(;21.+tr)]

Yy = exp 3)
where, 1 and o are the mean and standard deviations.

As for the brightness, an image is considered bright if the mean value of the pixels (u) > 0.5
(assuming the image is normalized between 0 and 1). If not, it is considered dark. For an image considered
bright, the value of ¢ is assumed unity, and the gamma transform is computed by (1) using c=1. If not, the
gamma transform is computed using (4):

rY

S = “)
where u is the mean of the image.

Another spatial-domain enhancement technique reported in the literature is the successive mean
quantization transform (SMQT). SMQT is an image processing method primarily used to enhance images
and compress their dynamic range. It operates by recursively partitioning the data into two groups based on
their mean values and performing quantization at each iteration [7]. At each stage of the transformation, the
data is separated into upper and lower subsets according to the mean, and these subsets are further subdivided
in subsequent iterations. The level of detail preserved during the transformation depends on the number of
iterations performed. As a result, SMQT quantizes the data while retaining essential structural information,
making it particularly suitable for applications such as contrast enhancement, dynamic feature extraction, and
dynamic range compression in images [7].

Another spatial-based segmentation approach is the watershed technique. This method interprets an
image as a three-dimensional surface, where the third dimension represents pixel intensity, thereby modeling
the image as a topographic landscape [9]. However, direct application of the watershed algorithm often leads
to over-segmentation due to noise and local irregularities in the image gradient. To address this issue, a
marker-based watershed approach is commonly employed to regulate the segmentation process. In this
method, markers are defined as connected components within the image, where internal markers correspond
to objects of interest and external markers represent the background regions [9].

Integral transform techniques are also widely used in image processing, including the two-
dimensional Fourier transform and the two-dimensional Hartley transform. These transforms convert images
from the spatial domain into the spatial-frequency (wavenumber) domain, enabling alternative
representations that facilitate improved image analysis and processing [9]. Such transformations offer several
advantages, including computational efficiency, enhanced signal representation, and improved image sensing
and processing. The discrete forms of the 2D Fourier transform and the 2D Hartley transform are presented in
(5) and (6), respectively.

F(u,v) = 2¥5 2955 f (%, ) exp_jzn(%Jr%) (5)
- _ 1
H(u,v) = Y5 2920 f(x,y) ~cas (’L—x + %) ©)

where f is the input image and cas(6) = cos(0) + sin (6).

Hartley transform is the same as Fourier transform, but it computes the coefficients of the Fourier
transform in the real space without involving complex arithmetic. The Fourier and Hartley transforms are
known to be adequate for analyzing 2D images, which are stationary in that the images’ frequency
characteristics do not change spatially. For images that show spatial frequency variation (a good example is
medical images), joint space-wave number transforms are already available for a better localized analysis.
These include the 2D Gabor transform and the 2D wavelet transform [10], [11].
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Image processing, such as filtering of an image, could be done in the space-frequency domain. For
example, a log Gabor filtering was used in Ajil and Sreeram [12] for image preprocessing on CT images due
to its reduced DC value and extendedness at high frequency. The discrete 2D Gabor transform is given in (7).

—jem (Y
Gl Lwv) =Y, %, )9 — k,y — Dexp 2"t w) (7)

where g is a localizing window function allowed to translate in x and y directions.

The Gabor transform has been used in different applications, including image filtering and feature
extraction [12]. The main drawback of the Gabor transform is that it uses a fixed-width sliding window. This
makes it challenging to effectively track spatial frequency variations in an image in the Gabor domain [13],
and the wavelet transform was introduced to circumvent this main drawback of the Gabor transform.

The 2D wavelet transform is a spatially localized transform like the Gabor transform but applies
multi-resolution analysis as opposed to the fixed localizing window used in Gabor filters [10]-[14]. The 2D
wavelet transform is given by (8):

Wy (mm,5,7) = 7%, B, £ (6,9) 92 0m,m)(x =,y =) ®)

@Z[m,n] is the scaled and translated version of the wavelet function at the discrete indices m and n,
s represents the scale parameter, and z represents the translation parameter. We have seen many applications
of the Wavelet transform reported in various literature. For example, Gabralla et al. [15] showed an
application of the wavelet transform in the effective filtering of images corrupted specifically by Gaussian
and speckle kinds of noise. Wavelet domain image enhancement has also been used for image segmentation
and enhancement. According to Khalifa et al. [16], the discrete 2D wavelet transform was used to segment
MRI brain images using 4 different filter banks: the low pass, high pass horizontal, high pass vertical, and
high pass diagonal. Then, using those output images, clustering and segmentation of the original image was
carried out using fuzzy C-means (FCM) clustering. The wavelet transform, unlike the Gabor transform, does
not have a direct relation with the Fourier transform, and the transform may not be invertible depending on
the type of mother wavelet used.

The Stockwell (S) transform is another integral transform used to process an image in the space-
frequency domain [17], [18]. The S-transform is essentially a phase correction of the wavelet transform [17].
The S-transform keeps the referenced phase information, while the wavelet transform does not. Compared to
wavelets, the S-transform does have a direct relation with the natural complex Fourier transform, which
makes it easier to implement and calculate its inverse [17]. The S-transform is designed in such a way that it
has better frequency resolution at lower frequencies and better time resolution at higher frequencies [17]. The
2D version of the discrete S transform has been used in different filtering and other image processing
applications. The 2D discrete S-transform is given by [18].

—(tx—2)?u? —(ty-y)*v?

— |uv| 2 2 —jom(EL Y
S(‘rx, Ty, U, v) =2x 2y f(x,Y) N exp ¢ 2% exp Gt 9)
- —(tx—0)%u? —(ry-y)*v?
uv 212 213 i i
where Tt exp represents the window function.

According to Assefa et al. [19], the rotation invariant 2D S-transform was proposed for use in the
texture analysis of color images, extending the definition of the S-transform from complex (2D) to the
quaternion (4D) space. This transform is used later in the current research through the Hartley
transformation. The rotation invariant version of the 2D S-transform proposed in Assefa et al. [19] is given
by (10):

(u2+v?) . ux vy
212 exp_jzn(ﬁ"'ﬁ) (10)

uZ+p? exp—{(rx—x)2+(ry—y)2}
2nr?

S(Tx,Ty,u; V) = Dx Zy fxy)

for some constant r.

Image classification: many works have been proposed in the area of image classification. Specific to
lung cancer detection based on CT images, the main aim is to differentiate between benign and malignant.
Machine learning is the best way of classification. There are different machine learning categories:
supervised, unsupervised, semi-supervised, and reinforcement learning. In most cases the conventional
machine learning does not apply to medical images due to the dynamic nature of the images [1], [20], [21].
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Deep learning is a supervised learning paradigm that employs multi-layer neural networks for model
training. This hierarchical structure enables deep learning models to capture complex image features and
relationships, often achieving superior performance compared to conventional machine learning approaches.
Commonly used supervised deep learning architectures include CNNs, long short-term memory (LSTM),
recurrent neural networks (RNNs), and gated recurrent units (GRUs) [1], [22].

Lee et al. [23] demonstrated the application of CNNs for lung nodule segmentation and discussed
several deep learning—based segmentation techniques. These include fully convolutional networks (FCNs),
which replace fully connected layers with convolutional layers to achieve large receptive fields, enabling
segmentation through coarse class score maps generated via feed-forward processing of input images.
Another prominent approach is Mask Region-based CNN (Mask R-CNN), which performs object detection
while simultaneously producing segmentation masks. SegNet is another semantic, pixel-wise segmentation
model that has been widely applied in medical imaging [24].

Among these methods, U-Net has gained significant attention due to its effectiveness and extensive
use in medical image segmentation. A summary of related studies employing different classification methods
is provided in Table 1. An analysis of the studies summarized in Table 1 reveals that many existing methods
depend on large-scale datasets for training and evaluation, requiring substantial computational resources such
as high memory capacity and powerful GPUs.

Table 1. Comparison of datasets used, methods, and accuracies for different papers

Dataset/no. of image Year of
Author Purpose data Method Result publication
Lakshmanaprabu Lung CT-image 70 images ODNN classifier with Accuracy 2018
et al. [20] classification to benign, MGSA 94.56%
malignant, and normal
Cifci [21] Lung CT-image TCIA dataset/ SegChaNet Accuracy 2022
classification to benign, 46,698 images 98.9%
malignant, and normal
Hu et al. [22] Lung segmentation Raw images of Supervised and Accuracy 2020
hospitals/ unsupervised learning with ~ 97.11%
13,000 images image erosion and dilation
Lee et al. [23] Lung segmentation LIDC U-Net Accuracy 2018
95.02%

In contrast, the current research focuses on developing a computationally efficient and accurate
approach that operates with limited resources and smaller training datasets. Accordingly, a CT-based lung
cancer detection framework is proposed, which integrates a spatially localized integral transform for feature
extraction with a U-Net-based classification model. The approach utilizes images from The Cancer Imaging
Archive (TCIA), selected based on their responses to marker-controlled watershed and area filtering
techniques. It is important to note that the proposed method is primarily designed to detect lung cancers
located in peripheral regions, rather than those situated in central lung areas.

2. METHOD
2.1. Materials used

The proposed system was implemented using an image dataset obtained from TCIA database [25].
CT lung images with the specified characteristics were employed for testing and validation, as summarized in
Table 2. The complete lung cancer detection and classification framework was developed using the
MATLAB platform, chosen for its extensive built-in functions, ease of rapid prototyping, availability of pre-
trained networks, comprehensive documentation, and suitability for academic research. The proposed
algorithm was executed on a system equipped with an Intel Core i5 processor operating at 2.5 GHz, 8 GB of
RAM, and a Microsoft Windows operating system.

Table 2. Image information
Resolution  Depth CT-model Type of compression
512x512 16 bits  Helical mode scan  DICOM

2.2. Procedures
Image pre-processing: after evaluating the dataset images, the histograms of the input images
showed no significant noise distribution; therefore, no prior image smoothing was applied. Image selection
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was performed as the first step. The dataset images were initially chosen based on their suitability for
segmentation using marker-controlled watershed and area filtering techniques.

Pre-processing focuses on isolating the lung region exclusively, as most lung malignancies—
particularly non-small cell lung cancer—originate in the lung parenchyma. This approach also effectively
separates large blood vessels near the central region, thereby improving the accuracy of the final
classification.

Subsequently, 81 lung images were selected from the dataset. Marker-controlled watershed
segmentation was used to separate relevant structures from the CT images. Through observation and
quantitative analysis, the lung region was found to occupy approximately 10-35% of the image area. Based
on these limits, an area filter was designed to retain only the lung region.

BW (x,y) = Area{MarkerW|[I(x,y)]} (11)

I(x,y) is the input image from the dataset. Marker{W?} shows the implementation of the marker-controlled
watershed algorithm on an image. Area[ ] shows the implementation of area filtering with the mentioned
parameters on a marker-controlled watershed segmented image.

Following lung segmentation, the image is cropped and resized. Image cropping comes first,
followed by image resizing. The input image has 16-bit depth and 512x512 resolution. This image is
transformed into a 4D signal (512x512x512x512) by feature extraction. 137 gigabytes of internal RAM are
needed for this (which is unattainable for low resource settings). Therefore, image cropping and scaling are
done to make the image size appropriate for processing. Parts of the image that are unsuitable for diagnosis,
such as the dark portion of the CT scan, are cropped out. The results of marker-controlled watershed and area
filtering are used to determine the cropping. By translating vertically and horizontally from the white pixels,
this image (BW(X, y), binary image) gives us both vertical and horizontal cropping dimensions. By applying
the acquired dimensions to the original image, it is accomplished automatically. To lessen the impact of
aliasing that can happen when scaling the image later, cropping is done first. By cropping an image, its
original size would be reduced to about 25% of its original size (to 256x256) without compromising the
quality. As a consequence, using image scaling greatly decreased aliasing. Bicubic interpolation of an
integrated MATLAB function is used for the resizing. The final image was 120x150 pixels and was
normalized between [0,1]. After that, an image picture is subjected to Wiener filter smoothing with a 3x3
window size to eliminate any noise that may have resulted from earlier processes.

I'(x,y) = wiener[cropresize(I(x,y))] (12)
BW'(x,y) = cropresize(BW (x,y)) (13)

For image I' (x, y) the dimensions for cropping are obtained from image BW (x,y). BW'(x,y) is the cropped
image of BW (x, y) that will be used later.

Image enhancement: at this stage, two techniques of spatial domain image enhancement were
implemented on the pre-processed images: SMQT and the adaptive gamma correction, both introduced
earlier. The first enhancement was used to create a better contrast image. An 8-level SMQT was used in this
regard. Here, the cropped and resized image from the previous stage will be enhanced. Before using the
SMQT, the depth of the image will be reduced from 16-bit to an 8-bit image. This will ensure fast
computation and efficient memory consumption for the later stage. The SMQT delivers quantization to the
pixel intensities of the image. The quantization characterizes the image intensities with finite intensity values.
This does ensure the reduction of image information to only specific groups of pixel intensities. This would
help for characterizing the image by specific intensity feature, which will later be used in image feature
extraction and segmentation. However, the enhancement might introduce some unnecessary intensity values.
For example, boundary valued (only slightly greater than the mean) intensities might acquire false intensities.
Thus, the brightness-controlled adaptive gamma correction (discussed in the literature) was implemented to
reduce this error. This enhancement would correct contrast and brightness as well. The formula for the
process is shown in (14):

f(x,y) = brigthness controlledgamma[SMQT (I'(x,y))] (14)

Image feature extraction and segmentation: an integral transform-based approach was implemented
to extract useful features. The transform domain gives another perspective on image analysis. There are
different integral transform methods, one of which is the Fourier transform. The Fourier transform is a very
basic and useful approach that gives only the frequency information of the signal. It has no information
concerning the spatial location of frequencies, which makes it difficult to decide between useful edge and
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noise. As a result, a better technique is a space-frequency approach. Space-frequency integral transform gives
both spatial and frequency information with relative resolution for both parameters. There are different
space-frequency approaches; short-time Fourier transform (STFT) is one with a constant window size and
limited space-frequency resolution. As compared to STFT, wavelet transform can achieve better space-
frequency resolution by providing variable window size. However, wavelet transform invertibility depends
on the choice of the wavelet. Moreover, no direct relation with Fourier transform makes it difficult to
interpret and implement basic operations on the transformed domain. Thus, rotation-invariant spatially
localized transform is chosen to better suit the feature extraction. The rotational-invariant integral transform
has better invertibility while maintaining a direct relation with the Fourier transform as compared to the
wavelet transform. In addition, the rotation invariance nature makes a robust feature extraction that does not
vary with rotation motion. Thus, the rotation invariant spatially localized integral transform method was
chosen for feature extraction.

Thus, after the image preprocessing and spatial enhancement, the image will be transformed to the
space-frequency domain, resulting in a 4-dimensional signal. It is implemented using the Hartley transformation,
using even and odd calculations without complex computation as shown in (15). It contains the spatial
coordinates and their respective frequency components (z,, 7, u, v). For a single pixel, there are the row (u)

and column (v) frequency components. Then, the power of the transform is calculated as shown in (16):

(u2+v2)

2 2 2
F(toTyu,v) =3, 3y f(x, y) L exp_{(rx_x)h’(ry_y) P %cas(% +2 (15)

2mr?2 N

F'(Ty, Ty, U, V)=F4(1y, Ty, U, V) (16)

In (15) calculates the rotation invariant integral transform of the input image f(x, y) resulting
in 4-dimension F(rx, Ty, U, v). While (16) calculates the Fourier power of the transformed 4D signal
resulting in F'(t,, 7y, u,v). After determining the power of the spectrum image, different statistics were
tried to fork out the better features. Different statistics (mean, median, standard deviation, and sum) were
tested. And the sum responded well. The sum of the power spectrum is implemented by summing up the
frequency components and reducing the signal dimension to become 2-dimension. The process is shown in
a7:

G(X,Y)=2Zu Zv F'(T4,Ty, U, ) 17

After calculating the sum of the power spectrum, the result matrix is normalized between [0,1],
which is suitable for further calculation. Then, different gamma values were tested on the resulting image,
and the 10" root was found adequate with the best response. Then, the resulting image is subtracted from the
normalized spatial-enhanced image.

G'(%y) = f(x,y) — Go(x, ) (18)

Since the tumor has different signatures from the other nodules, this procedure will eliminate pixels
that are non-cancerous. Then, the cropped and resized marker-controlled watershed segmented image from
the preprocessing is imposed on the original image and smoothed with a 7x7 wiener filter. Finally, the
resulting image will be added to G'(x,y).The process is shown in (19):

G"(xy) = G'(x,y) + wiener[BW'(x,y) + I'(x,¥)] (19)

Then, finally, a simple thresholding of the image G"(x,y) is done as a result of which the cancer
nodule would always yield a constant signature map (green in HSV plot or 0.125-0.29 in double image. This
procedure is used to amplify the tumor signature more and make it suitable for the U-net architecture. Then,
after, the thresholded image G"(x,y) is used for CNN-based classification scheme training together with an
annotated binary image (ground truth).

Image classification: for image classification, CNN-based U-NET semantic image segmentation was
implemented. The U-NET was chosen since the main aim of U-NET itself is for medical image
segmentation, and it can learn from a few images when the images are well-suited for segmentation. The
feature extraction and earlier stages of the proposed system can successfully deliver suitable images for the
U-NET classification training. In addition, U-NET is simple, easy to train, implements fewer control
parameters, absence of intermediate layers makes it an ideal choice for classification. Even though U-NET
++ has better accuracy, the U-NET weakness is filled with the feature extraction scheme of this approach. It
is implemented here without any modification. The images from feature extraction and annotation (ground
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truth) were used for the training. From 81 images, 49 (29 are abnormal) images are used for training and 32
(17 are abnormal) for testing.

Conventionally, the training and testing split ratio is 80:20. In this research, since the target is to
minimize the resources used for training, 60% of the data randomly chosen from feature-extracted and
annotated images, was used, and the rest for testing. All images are resized to 128x128, which helps to
integrate with the U-NET classification. The classification categories are background (0-normal lung) and
foreground (1-tumor). An inbuilt MATLAB function, unetLayers, was used to implement U-NET CNN
architecture for its simplicity and low resource requirement. The U-NET here implements 46 layers, encoders
(for down sampling), and decoders (for up-sampling), drop-out (to avoid overfitting), and pixel classification
(to measure the discrepancy between ground truth and predicted).

The cross-entropy loss function is implemented. The encoder contains the convolutional layers
followed by rectified linear units (ReLU). The convolutional layer convolves the input lung image and the
weight matrix for the extraction of features. The ReLU is an activation function that calculates the maximum
value of the result. This will produce a non-linear relation among features. Then, the features go through max
pooling for down sampling of the signal. The decoder localizes the features spatially and reconstructs the image.
A skip connection is used to link the decoder with the encoder. It contains upsampling, concatenation, and
convolution layers with ReLU. The U-NET implemented here does not use pre-trained CNNSs. It is implemented
by encoders and decoders. However, different hyperparameter combinations have been tried. These
hyperparameter combinations are (epochs [200,100,50,10], optimizers [Adam, sgdm], mini batches [2, 4, 10]
and encoder depth [3, 5]). The U-NET implementation using the SGD optimizer, 50 epochs, 4 mini-batch sizes,
and an initial learning rate of 1e-3 yielded the best result. After classification, simple morphological image
cleaning was done through image opening by implementing a disk structuring element of size 1.

Testing and validation: there are two ways of testing the algorithm, based on qualitative output and
measurable (quantitative) parameters. The quantitative parameters are measured in terms of true positive
(TP), true negative (TN), false positive (FP), and false negative (FN). Since the main aim of the research is to
differentiate between the normal nodules of the lung (blood vessels and normal spots) from tumors. In this
regard, TP means the white spot (nodule) in the CT images of the lung classified to be a tumor as compared
with the ground truth. And TN means a nodule in the CT image of the lung classified to be non-tumor/normal
as compared to the ground truth. FP is a nodule wrongly classified as a tumor, and FN tumor wrongly
classified as normal. Thus, while testing, the total number of nodules is counted. Then, the respective values
for the TN, TP, FP, and FN are counted accordingly. Based on their count result, the accuracy, specificity,
and sensitivity are calculated using (20)—(23). Based on these assumptions, the following parameters are
calculated.

Accuracy = L) — (20)
TP+TN+FP+FN
Sensitivity = P (21)
Specificity = prevpe—. (22)
In addition, the F1-score has also been used.
F1 — score = L (23)
2+«TP+FP+FN

On the other hand, the segmentation and classification accuracy parameters are the intersection over
union (loU) and dice similarity coefficient (DSC) calculated using (24) and (25). 1, and Iy represent the
classified image and the ground truth image, respectively.

_ lanipg|
10U =208 (24)
DSC = 2#|1anIp| (25)
[1al+|1B]

Figure 2 illustrates the overall workflow of the proposed method. The process begins with an input
CT image of size 512x512 pixels. Following preprocessing, the image is enhanced to improve visual quality
and feature visibility. The enhanced image is then subjected to the feature extraction stage, and the resulting
features are subsequently used for classification. Representative outputs from each processing stage are
shown sequentially up to the final classification result.
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Figure 2. Summary of the methodology

3. RESULTS AND DISCUSSION
Selected qualitative and quantitative results have been presented here to demonstrate the
effectiveness of the proposed cancer detection scheme, accompanied by discussions.

3.1. Qualitative results

Results from image pre-processing: the input image is a DICOM image with 512x512 resolution and
16-bit depth, as was covered earlier in the process. Making this image suitable for the process to follow and for
feature extraction is, thus, the primary goal of the preprocessing. It entails scaling and cropping the image.
Figure 3 shows the results from the pre-processing of the DICOM images. The input image (to the left) is
displayed in Figure 3(a). Figure 3(b) is produced by applying marker-controlled watershed and area filtering to
the input image. Only the lung portion is segmented in the binary image. Since most cancer nodules develop in
the periphery of the lung parenchyma, segmenting the lung is crucial. In the technique, we referred to this
image as image-BW. Using this image, automated cropping dimensions are calculated by translating vertically
and horizontally from the lung edges. Using these dimensions, the original image is cropped and then resized
to a suitable resolution (120x150). After that, it is filtered with a 3x3 Wiener filter to smooth out any noise that
could have occurred in the process. The image is shown in Figure 3(c). This is the image labeled image-I’ in
the methodology section. Evaluating image-/’, it can be seen that the cropped-out part of the image is
unnecessary for the diagnosis. Moreover, the cropping and resizing did not affect the details inside the lung
parenchyma. As a result, it reasonably suits the process to follow and feature extraction.

e £ -..h'

_,p' “
- = KPPy
(b) (©

Figure 3. Results from the pre-processing of the DICOM images; (a) original DICOM image, (b) correctly
segmented lung part by marker-controlled watershed and area filtering, and (c) cropped, resized, and filtered image
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Results from spatial image enhancement: the image enhancement makes the image attain better
contrast. Figure 4 shows the results from the spatial image enhancement. Two techniques were implemented
for spatial image enhancement: the SMQT and brightness-controlled gamma correction. The input to this
procedure is the preprocessed image (image-1°), shown in the Figure 4(a). However, the image in Figure 4(b)
looks darker. Hence, brightness-controlled gamma correction is used to enhance this. This helps to have
better contrast with preserved intensity quantization and reduced darkness. In addition, the brightness-
controlled gamma correction will smooth out artificially created intensities at the boundary of each mean
calculation. The image result is shown in Figure 4(c). The histogram plot of the input image is shown in
Figure 4(d). The histogram plot is continuous and skewed to the bright intensities. The SMQT is used to
enhance the contrast and quantize the pixels, as it is shown in the histogram plot Figure 4(e) and the
histogram after the application of brightness-controlled gamma correction is shown in Figure 4(f). The spatial
enhancement made the nodules inside the lung parenchyma have specified intensities (slightly different in
signature for abnormal and normal nodules), making them suitable for feature extraction. Thus, this image is
used for feature extraction.

(d) (®) )

Figure 4. Spatial image enhancement results; (a) input CT image, (b) SMQT-enhanced image, (c) brightness-
controlled gamma-corrected image, (d) intensity histogram of the input image, (e) intensity histogram after
SMQT enhancement, and (f) intensity histogram after brightness-controlled gamma correction

Results from image feature extraction and segmentation: the enhanced image will be used for
extracting important features. Figure 5 shows the results of feature extraction and segmentation. Figure 5(a)
shows the input image (image-f(x,y)) to the feature extraction and segmentation scheme. This image will be
transformed to the space-frequency domain using spatially localized rotational invariant integral transform,
resulting in a 4-dimensional signal. Then, the sum of the frequency components of the local power of the 4-
dimensional signal is calculated, yielding 2-dimensional features (image-G(x,y)). This is shown in
Figure 5(b). From the figure, it can be noticed that the tumor indicated by red contour has different signatures
for the input image, see Figure 5(a) and the 2-dimensional feature image, see Figure 5(b). Then, the
normalized 2-dimensional feature image is gamma corrected with gamma value of 0.1 and subtracted from
input image (image-f(x,y)). The HSV-pseudo coloring color map of this operation is shown in Figure 5(c)
(image-G(x,y)). This image showed the different color signature for malignant (dark-blue/blue) and non-
cancerous (sky-blue) nodule. Then Figure 5(d) is the 7x7 wiener filter smoothed sum of the cropped and
resized marker-controlled watershed and area filtered image (image-BW’(x,y)), and cropped and resized input
image (image-/’(x,y)). The result showed a little signature for the tumor suppressing other nodules, as shown
by the red contour. This image is then added to the image-G’(x,y), resulting in Figure 5(e) (image-G ”(x,)).
The HSV-pseudocolor image showed a green signature for the tumor, differentiating it from other nodules.
Finally, a simple thresholding is done to generate Figure 5(f). However, the edges of the lung have the same
kind of signature as the tumor, which may lead to a false positive. Thus, the feature extraction and
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segmentation need further classification. The image classification scheme is trained and tested using the
output of the feature extraction and segmentation.

(d)

Figure 5. Feature extraction and segmentation results; (a) input CT image, (b) rotationally invariant power
spectrum map, (c) difference image, (d) marker-controlled watershed and area-filtered segmentation,
(e) combined feature and segmentated image, and (f) final thresholded segmentation

3.2. Result of image classification

Figure 6 illustrates the output of the image classification stage using the U-NET architecture. As
described in the methodology, three encoder blocks were implemented using MATLAB’s built-in unetLayers
function. The U-NET was trained using images obtained from the feature extraction and segmentation stage
rather than the original CT images. These images were resized from 120x150 to 128x128 to match the
network input requirements. Different numbers of training epochs were evaluated, and 50 epochs produced
the best classification performance. From the total of 81 images, 49 were randomly selected for training and
32 for testing. As shown in Figure 6, the classification results consist of two classes: foreground (tumor) and
background. This classification stage is essential for reducing false positives, particularly those occurring
along the edges of the lung parenchyma and those introduced by the inherent characteristics of CT images
and the applied processing scheme. To further ensure that no noise artifacts were introduced, a morphological
opening operation using a disk-shaped structuring element was applied. The resulting JET color map reveals
well-defined and compact cancer signatures, demonstrating the effectiveness of the proposed detection
scheme. Figure 6 also presents the overall U-NET workflow, showing the input image and the corresponding
classification output. In cases where no tumor is present, the classification stage correctly suppresses false
detections, yielding a final output with no tumor regions.

The image is encoded and down-sampled on the left side of the U-NET architecture, and the right
side shows decoding and upsampling procedures. The final result is shown in a JET-color map, showing the
tumor classified from the background.

3.3. Quantitative results

In this section, the qualitative results are presented in a comparative manner. The discussion is
organized into two subsections: training and testing. The aim is to highlight the importance of feature
extraction for classification performance, as well as the role of classification in validating the extracted
features. A total of 81 images were used for both training and testing.

3.3.1. Training

The U-NET classifier was trained using 49 images. Various training configurations were evaluated,
including different numbers of epochs (10, 50, 100, and 200) and different input image types. These input
types comprised feature-extracted and segmented images, as well as the original CT images without
enhancement or feature extraction.

CT-based lung cancer detection using spatially localized integral transforms with ... (Abel Belay Wossene)




838 a ISSN: 2302-9285

—_—
o 128x128
l-8xl-§ Convolution
Convolution Relu
) Re!u . Dropout
Normalization Pixel classification

32x32
6‘!‘“ 5 Convolution
Convolution Relu
P?:ll:: Dropout
s Up sampling
] P— —
32x32
Sk & Convolution
Convolution Relu
Relu
9 Dropout
Pooling Up sampling
v

16x16
Convolution
Relu
Up sampling

Figure 6. Demonstration of the U-Net Classifier, the input image to the U-NET classifier is shown in HSV
color map while the final result is shown in a JET-color map showing a red tumor signature with surrounding
blue normal background

Other parameters were kept common for all the tests: minibatch size-4, optimization-sgdm, initial
learn rate-1e® and encoder depth-3 and 46-layers. The U-NET trained with the original image and the
U-NET trained with the feature extracted-segmented image were compared. The training performance was
evaluated by comparing accuracy, loss (using cross-entropy as the loss function), training time, loU, and
DSC. Among the different epoch settings, 50 epochs demonstrated superior overall performance. At this
setting, the model achieved a final training accuracy of 99.93% with a total training time of 137 minutes
using the specified computational resources. In contrast, training the U-NET using the original images
required more than 15 hours. Accordingly, a brief comparison was conducted between training with feature-
extracted segmented images and training with the original images.

Figure 7 presents a comparison of training accuracy for the feature-extracted segmented images and
the original images over 50 epochs. Although the training accuracies appear comparable, the U-NET trained on
original images fails to generalize effectively when applied to the testing set. Training accuracy was computed
with respect to binary ground-truth masks from the dataset. The final training accuracies for the original-image-
trained and feature-extracted segmented-image-trained models were 99.93% and 99.75%, respectively.

Epoch Vs Training accuracy
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> / \\/
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3 99.00%
Q
<
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o
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97.00%
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Epoch
—@— Original image Featured extracted-segmented image

Figure 7. Training accuracy comparison for 50 epochs of the feature extracted-segmented image, and the
original image
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Figure 8 compares the corresponding training losses for both approaches. It is evident that training
on original images results in significantly higher loss values compared to training on feature-extracted
segmented images. When Figures 7 and 8 are jointly considered, training with feature-extracted segmented
images yields better overall performance, characterized by higher effective accuracy and lower loss.
Although the numerical training accuracies are similar, the segmentation efficiency of the U-NET trained on
feature-extracted images is markedly superior.
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Figure 8. Training loss for both schemes of training

Table 3 summarizes the final-iteration training accuracy, loss, training duration, loU, and DSC for
both training schemes. The results clearly indicate that the feature-extracted segmented image approach
outperforms the original image-based training across all evaluated metrics. Consequently, this scheme is
adopted for subsequent testing and comparative analysis to demonstrate the effectiveness of the proposed
U-NET classification framework.

Table 3. Result signifying the use of feature extraction and segmentation

Epoch size 50 Training accuracy (%) Loss  Timeittakes  loU DSC
Original image trained 99.75 0.016 ~930 min 0.011 0.021
Featured extracted-segmented image 99.93 0.003 ~137 min 0.873  0.929

3.3.2. Testing

To compute the system’s accuracy, specificity, and sensitivity, lung nodules in the original CT
images were manually counted. After segmentation or classification, only nodules exhibiting specific
signature maps indicative of tumors were considered in the counting process. In the qualitative results,
abnormalities in the feature extraction and segmentation outputs are represented in green using the HSV
pseudo-colormap, while all other colors indicate normal tissue.

In contrast, for the classification results, abnormalities are represented in white in the grayscale
colormap. Based on these criteria, nodules were manually counted to determine correct and incorrect
classifications. This manual evaluation was adopted because the primary objective of the study is to
differentiate abnormal nodules and detect lung cancer. A total of 32 images, randomly selected from the 81-
image dataset, were used for testing. The test set comprised both normal images and abnormal images
containing tumors. Nodules were categorized as normal (N) or abnormal (AbN) according to the dataset’s
ground truth, which served as the gold standard. Using this reference, true positives (TP), false positives
(FP), true negatives (TN), and false negatives (FN) were computed for two cases: feature extraction and
segmentation without classification, and feature extraction and segmentation followed by classification.

These results are summarized in Table 4. As shown in Table 4, the numbers of TP, TN, and FN are
relatively similar for both approaches. However, a significant reduction in FP is observed when classification
is applied. The higher FP count in the absence of classification leads to a lower specificity. Moreover, false
positives occurring at the lung boundaries adversely affected the segmentation performance, resulting in
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lower loU and DSC values. The incorporation of the classification stage effectively mitigates these issues,
substantially improving specificity as well as loU and DSC performance.

Table 4. TP, FP, TN, and FN values computed using the proposed algorithm using the available gold
standard information

Images Gold standard With classification Without classification

Total AbN N FP FN TP TN FP FN TP TN
Im-1 27 1 26 0 0 1 26 0 0 1 26
Im-2 26 1 25 0 0 1 25 0 0 1 25
Im-3 27 1 26 0 0 1 26 0 0 1 26
Im-4 12 0 12 0 0 0 12 0 0 0 12
Im-5 14 0 14 0 0 0 14 1 0 0 13
Im-6 9 0 9 0 0 0 9 1 0 0 9
Im-7 9 1 8 0 1 0 8 0 0 0 8
Im-8 10 1 9 0 0 1 9 0 0 1 9
Im-9 22 0 22 0 0 1 22 0 0 1 22
Im-10 11 0 11 0 0 1 11 0 0 1 11
Im-11 19 1 18 1 0 1 17 2 0 1 16
Im-12 13 0 13 0 0 0 13 0 0 0 13
Im-13 14 1 13 0 0 1 13 0 0 1 13
Im-14 10 0 10 1 0 0 8 2 0 0 7
Im-15 11 1 10 0 0 1 10 1 0 1 9
Im-16 11 1 10 0 1 0 10 0 1 0 10
Im-17 13 1 12 0 0 1 12 2 0 1 10
Im-18 25 0 25 0 0 0 25 0 0 0 25
Im-19 21 0 21 0 0 0 21 0 0 0 21
Im-20 24 1 23 0 0 1 23 0 0 1 23
Im-21 22 1 21 0 0 1 21 0 0 1 21
Im-22 12 0 12 0 0 0 12 0 0 0 12
Im-23 12 0 12 0 0 0 12 0 0 0 12
Im-24 19 0 19 0 0 0 19 0 0 0 19
Im-25 12 1 11 0 1 0 11 0 1 0 11
Im-26 22 1 21 0 0 1 21 0 0 1 21
Im-27 25 0 25 0 0 0 25 5 0 0 20
Im-28 21 0 21 0 0 0 21 5 0 0 16
Im-29 33 1 32 0 0 1 32 0 0 1 32
Im-30 25 0 25 0 0 0 25 4 0 0 21
Im-31 33 1 32 0 0 1 32 1 0 1 31
Im-32 23 1 22 0 0 1 22 1 0 1 21
Total 587 17 570 2 3 16 567 25 2 16 545
nodules

Accordingly, sensitivity, specificity, and overall accuracy values are computed based on the formula
given earlier in this document. These parameters are calculated for both cases (feature extraction and
segmentation without classification, and feature extraction and segmentation with classification) [26]-[28]. It
can be seen from the Table 4 that the classification significantly reduces the false positives inside the lung
parenchyma as well as the false positives at the edges of the lung. The test was done ignoring the edges of the
lung false positive for feature extracted images [29]. Table 5 illustrates the comparison between feature
extraction with and without classification.

Table 5. Comparison between with and without U-net
Accuracy (%)  Sensitivity (%)  Specificity (%) loU DSC
Without classification 95.50 88.88 39.02 0.072 0.126
With classification 99.32 84.21 88.88 0.87 0.93

The computational efficiency of the proposed algorithm has also been checked. Accordingly, it
takes an average of 200.41 seconds for the entire algorithm to run (on a MATLAB platform), starting from
loading a given CT lung image until a final classification result is found. The time of computation is
reasonably low compared to other, more complicated methods reported in the literature. Table 6 shows the
comparison of the proposed system with other literature. It can be observed that the proposed system has
accomplished excellent results with limited data and computational resources [30].
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Table 6. Comparison of proposed system with other studies

Precision/

Author Datasets Method o loU Fl-score  Accuracy Dice
sensitivity

Shuvo and LUNA16 Yolov5 model for lung 76% - - - -

Mamun [27] 6801 images classification

Sunetal. [28] LUNA16 Swim-transform for lung - - - 82.3% -
36,317 images classification

Wuetal. [29] AHMU-LC RAD-UNET for lung 94.23% 86.55 93.12% - -
9265 images classification %

Lakshmanapr 70 images ODNN and modified - - - 94.56% -

abu et al. [20] gravitational search for

lung classification

Cifci [21] TCIA SegChaNet without CAM 92.15% - 96.89% 96.81% 93.7%
44,848 images for lung classification

Proposed TCIA Integral transformed-based 84.21% 87.3% 86.49% 99.32% 92.9%
81 images feature extraction and U-

NET classification of lung

4. CONCLUSION

The primary objective of this study was to develop a robust, simple, and accurate method for lung
cancer detection. The proposed approach was implemented on CT lung images obtained from the TCIA
dataset, specifically focusing on peripherally located lung cancers. A comprehensive review of existing lung
image analysis techniques was conducted to understand current methodologies and identify gaps.
Comparative analyses were performed between results from the literature and the proposed method.

The findings demonstrate that improved accuracy, robustness, and efficiency can be achieved even
with limited training data and minimal computational resources, provided that effective feature extraction is
combined with a CNN-based classification framework. The proposed method achieved an overall
classification accuracy of 99.32%, with a precision of 84.21%, F1-score of 86.49%, loU of 87.3%, DSC of
92.9%, and specificity of 88.88%. These results highlight the efficacy of integrating spatially localized
integral transforms with U-NET CNN architectures for enhanced feature extraction and classification of CT
lung images. This research underscores the significant role of integral transforms in medical image analysis,
particularly for the segmentation and classification of lung cancer. The combination of the 2D spatially
localized integral transform and U-Net proved to be a practical and effective approach for accurate lung
cancer detection.

For future work, it is recommended to expand the model to classify all types of lung cancer.
Additionally, efforts should be made to further improve the precision, F1-score, and segmentation metrics
(loU and DSC). Incorporating raw clinical data from hospitals and clinical trials is also essential to enhance
the model's applicability in real-world scenarios, such as predicting related gene proteins in cancer
development.
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