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 Lung cancer remains the leading cause of cancer-related mortality 

worldwide, emphasizing the need for early, accurate, and scalable detection 

methods. Low-dose computed tomography (LDCT) has improved early 

diagnosis, yet challenges like image noise, low contrast, and subtle nodule 

features often limit reliable interpretation in large-scale screening. This 

paper proposes a computationally efficient computer-aided detection 

(CADe) framework that integrates a rotation-invariant, spatially localized 

integral transform feature extraction with a U-Net-based classifier to 

enhance lung nodule detection and segmentation. The approach strengthens 

spatial feature representation while maintaining low computational and 

memory demands, enabling real-time use in resource-limited clinical 

settings. Implemented in MATLAB and evaluated on the Cancer Imaging 

Archive (TCIA) dataset, the system achieved 99.32% classification 

accuracy, 88.88% specificity, 84.21% precision, 87.3% intersection over 

union (IoU), and 92.9% dice similarity coefficient (DSC). These results 

show clear improvements over conventional methods, particularly in 

rotational robustness and efficiency—key requirements for scalable 

screening. Although precision and IoU could be further optimized, the 

framework demonstrates strong potential for clinical adoption. By providing 

accurate, fast, and robust nodule analysis, this work advances practical high-

performance tools for early lung cancer detection, especially in resource-

constrained environments, ultimately contributing to better patient survival 

rates. 
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1. INTRODUCTION 

Lung cancer remains one of the deadliest cancers worldwide, accounting for approximately 18% of 

all cancer-related deaths [1]. The World Health Organization (WHO) estimates that by 2030, lung cancer will 

be responsible for about 17 million deaths globally. Early detection significantly improves outcomes, with 

survival rates reaching nearly 50% when the disease is diagnosed at an early stage [1]. Chest X-ray imaging 

https://creativecommons.org/licenses/by-sa/4.0/
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is often used as an initial screening tool; however, its limited ability to detect small nodules and lack of cross-

sectional imaging reduce its diagnostic effectiveness, making it more suitable for preliminary screening than 

definitive diagnosis [1], [2]. Consequently, advanced imaging modalities such as MRI, PET, PET/CT, and 

PET/MRI are frequently employed, each providing distinct benefits and trade-offs in terms of diagnostic 

accuracy, cost, and clinical utility [3]. 

Computed tomography (CT) is another imaging modality widely used for lung cancer diagnosis. It 

employs X-rays and is among the most effective techniques for detecting lung lesions [3]. In recent years, 

low-dose computed tomography (LDCT) has demonstrated significant improvements in early lung cancer 

detection [3]. Compared with chest X-ray imaging, conventional CT involves higher radiation exposure, 

measured in milli-seivert (mSv). However, LDCT performed at 25 mA and 80 kV, with a radiation dose of 

22.3 mGy·cm (approximately 0.3 mSv), does not compromise sensitivity for lung cancer detection [4]. The 

radiation dose associated with LDCT (0.3–0.6 mSv) is substantially lower than that of standard CT, which 

ranges from 3.5 to 7 mSv [3], [4]. Owing to its high spatial resolution, CT imaging enables reliable detection 

of small pulmonary nodules. Figure 1 illustrates CT images of a normal lung and a patient with confirmed 

lung cancer. 
 

 

 
 

Figure 1. CT image with lung cancer (right) and another without lung cancer (left) 
 
 

Although CT imaging is highly sensitive, it presents challenges in visually distinguishing between 

benign and malignant lesions [5]. Consequently, manual interpretation is prone to misdiagnosis, highlighting 

the need for automated diagnostic systems. Computer-aided detection (CADe) and computer-aided diagnosis 

(CADx) have therefore emerged as effective approaches for the early detection of lung cancer [1]. 

Most CADe systems follow a similar pipeline comprising signal acquisition, preprocessing, 

segmentation, and classification [5]. Extensive research has been conducted on CADe systems to minimize 

diagnostic errors and reduce the risk of misclassification. In this context, techniques based on integral 

transforms have demonstrated considerable potential.  

The present work proposes a novel approach for lung tumor detection in chest CT images by 

combining spatially localized integral transforms with convolutional neural network (CNN)-based 

classification. Various methodologies can be adopted in the development of a CADe system. In this study, 

three key stages are emphasized: spatial image enhancement, integral transforms, and image classification. 

Spatial domain enhancement: Image enhancement is a fundamental component of most CADe systems, 

addressing multiple aspects of image quality, including saturation, sharpness, noise reduction, tonal 

adjustment, tonal balance, and contrast enhancement [6]–[8]. Among spatial enhancement techniques, power-

law (gamma) transformation is widely used and is mathematically expressed in (1): 

 

𝑠 = 𝑐𝑟𝛾 (1) 

 

where 𝑐 and 𝛾 are positive constants that control image brightness and contrast, respectively; r denotes the 

input pixel intensity and s represents the transformed intensity for a given grayscale image [8], [9]. Gamma 

correction can be classified as either global or local [8]. In global gamma correction, a single gamma value 

(𝛾) is applied to the entire image [8]. However, applying a global power-law transformation may lead to 

over-enhancement or under-enhancement in certain regions of the image [8]. Consequently, it is more 
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effective to apply different gamma values to different regions to achieve improved image enhancement. In 

this context, several adaptive approaches for determining gamma values have been proposed in the literature.  

In a previous study by Rahman et al. [8], the gamma value was computed based on local image 

contrast information. Using Chebyshev’s criterion, if at least 75% of a distribution lies within 4𝜎 (where 𝜎 is 

the standard deviation) of its mean, the image is classified as having low contrast; otherwise, it is considered 

to have normal (moderate-to-high) contrast. Accordingly, Rahman et al. [8] defined separate formulations for 

computing the gamma values for low-contrast and moderate-to-high-contrast images, as given in (2) and (3), 

respectively. 

 

𝛾 = −𝑙𝑜𝑔2𝜎 (2) 

 

𝛾 = 𝑒𝑥𝑝[
1−(𝜇+𝜎)

2
]
 (3) 

 

where, 𝜇  and 𝜎 are the mean and standard deviations.  

As for the brightness, an image is considered bright if the mean value of the pixels (𝜇) > 0.5 

(assuming the image is normalized between 0 and 1). If not, it is considered dark. For an image considered 

bright, the value of 𝑐 is assumed unity, and the gamma transform is computed by (1) using 𝑐=1. If not, the 

gamma transform is computed using (4): 

 

𝑠 =
𝑟𝛾

𝑟𝛾+(1−𝑟𝛾)×𝜇𝛾 (4) 

 

where 𝜇 is the mean of the image.  

Another spatial-domain enhancement technique reported in the literature is the successive mean 

quantization transform (SMQT). SMQT is an image processing method primarily used to enhance images 

and compress their dynamic range. It operates by recursively partitioning the data into two groups based on 

their mean values and performing quantization at each iteration [7]. At each stage of the transformation, the 

data is separated into upper and lower subsets according to the mean, and these subsets are further subdivided 

in subsequent iterations. The level of detail preserved during the transformation depends on the number of 

iterations performed. As a result, SMQT quantizes the data while retaining essential structural information, 

making it particularly suitable for applications such as contrast enhancement, dynamic feature extraction, and 

dynamic range compression in images [7].  

Another spatial-based segmentation approach is the watershed technique. This method interprets an 

image as a three-dimensional surface, where the third dimension represents pixel intensity, thereby modeling 

the image as a topographic landscape [9]. However, direct application of the watershed algorithm often leads 

to over-segmentation due to noise and local irregularities in the image gradient. To address this issue, a 

marker-based watershed approach is commonly employed to regulate the segmentation process. In this 

method, markers are defined as connected components within the image, where internal markers correspond 

to objects of interest and external markers represent the background regions [9].  

Integral transform techniques are also widely used in image processing, including the two-

dimensional Fourier transform and the two-dimensional Hartley transform. These transforms convert images 

from the spatial domain into the spatial-frequency (wavenumber) domain, enabling alternative 

representations that facilitate improved image analysis and processing [9]. Such transformations offer several 

advantages, including computational efficiency, enhanced signal representation, and improved image sensing 

and processing. The discrete forms of the 2D Fourier transform and the 2D Hartley transform are presented in 

(5) and (6), respectively. 

 

𝐹(𝑢, 𝑣) = ∑ ∑ 𝑓(𝑥, 𝑦)𝑁−1
𝑦=0 𝑒𝑥𝑝−𝑗2𝜋(

𝑢𝑥

𝑀
+

𝑣𝑦

𝑁
)𝑀−1

𝑥=0  (5) 

 

𝐻(𝑢, 𝑣) = ∑ ∑ 𝑓(𝑥, 𝑦)
1

2
𝑐𝑎𝑠 (

𝑢𝑥

𝑀
+

𝑣𝑦

𝑁
)𝑁−1

𝑦=0  𝑀−1
𝑥=0  (6) 

 

where f is the input image and 𝑐𝑎𝑠(𝜃) = cos(𝜃) + sin (𝜃). 

Hartley transform is the same as Fourier transform, but it computes the coefficients of the Fourier 

transform in the real space without involving complex arithmetic. The Fourier and Hartley transforms are 

known to be adequate for analyzing 2D images, which are stationary in that the images’ frequency 

characteristics do not change spatially. For images that show spatial frequency variation (a good example is 

medical images), joint space-wave number transforms are already available for a better localized analysis. 

These include the 2D Gabor transform and the 2D wavelet transform [10], [11]. 
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Image processing, such as filtering of an image, could be done in the space-frequency domain. For 

example, a log Gabor filtering was used in Ajil and Sreeram [12] for image preprocessing on CT images due 

to its reduced DC value and extendedness at high frequency. The discrete 2D Gabor transform is given in (7). 

 

𝐺(𝑘, 𝑙, 𝑢, 𝑣) = ∑ ∑ 𝑓(𝑥, 𝑦)𝑔(𝑥 − 𝑘, 𝑦 − 𝑙)𝑒𝑥𝑝−𝑗2𝜋(
𝑢𝑥

𝑀
+

𝑣𝑦

𝑁
)

𝑦𝑥  (7) 

 

where 𝑔 is a localizing window function allowed to translate in x and y directions.  

The Gabor transform has been used in different applications, including image filtering and feature 

extraction [12]. The main drawback of the Gabor transform is that it uses a fixed-width sliding window. This 

makes it challenging to effectively track spatial frequency variations in an image in the Gabor domain [13], 

and the wavelet transform was introduced to circumvent this main drawback of the Gabor transform.  

The 2D wavelet transform is a spatially localized transform like the Gabor transform but applies 

multi-resolution analysis as opposed to the fixed localizing window used in Gabor filters [10]–[14]. The 2D 

wavelet transform is given by (8): 

 

𝑊𝜑(𝑚, 𝑛, 𝑠, 𝜏) =
1

√𝑠[𝑚,𝑛]
∑ ∑ 𝑓(𝑥, 𝑦)𝑦𝑥 𝜑𝑠

𝜏(𝑚, 𝑛)(𝑥 − 𝑚, 𝑦 − 𝑛)                               (8) 

 

𝜑𝑠
𝜏[𝑚, 𝑛] is the scaled and translated version of the wavelet function at the discrete indices m and n, 

s represents the scale parameter, and τ represents the translation parameter. We have seen many applications 

of the Wavelet transform reported in various literature. For example, Gabralla et al. [15] showed an 

application of the wavelet transform in the effective filtering of images corrupted specifically by Gaussian 

and speckle kinds of noise. Wavelet domain image enhancement has also been used for image segmentation 

and enhancement. According to Khalifa et al. [16], the discrete 2D wavelet transform was used to segment 

MRI brain images using 4 different filter banks: the low pass, high pass horizontal, high pass vertical, and 

high pass diagonal. Then, using those output images, clustering and segmentation of the original image was 

carried out using fuzzy C-means (FCM) clustering. The wavelet transform, unlike the Gabor transform, does 

not have a direct relation with the Fourier transform, and the transform may not be invertible depending on 

the type of mother wavelet used. 

The Stockwell (S) transform is another integral transform used to process an image in the space-

frequency domain [17], [18]. The S-transform is essentially a phase correction of the wavelet transform [17]. 

The S-transform keeps the referenced phase information, while the wavelet transform does not. Compared to 

wavelets, the S-transform does have a direct relation with the natural complex Fourier transform, which 

makes it easier to implement and calculate its inverse [17]. The S-transform is designed in such a way that it 

has better frequency resolution at lower frequencies and better time resolution at higher frequencies [17]. The 

2D version of the discrete S transform has been used in different filtering and other image processing 

applications. The 2D discrete S-transform is given by [18]. 

 

𝑆(𝜏𝑥, 𝜏𝑦 , 𝑢, 𝑣) = ∑ ∑ 𝑓(𝑥, 𝑦)
|𝑢𝑣|

√2𝜋𝑘1𝑘2
𝑒𝑥𝑝

−(𝜏𝑥−𝑥)2𝑢2 

2𝑘1
2    

−(𝜏𝑦−𝑦)2𝑣2

2𝑘2
2

𝑒𝑥𝑝−𝑗2𝜋(
𝑢𝑥

𝑀
+

𝑣𝑦

𝑁
)

𝑦𝑥  (9) 

 

where 
|𝑢𝑣|

√2𝜋𝑘1𝑘2
𝑒𝑥𝑝

−(𝜏𝑥−𝑥)2𝑢2 

2𝑘1
2    

−(𝜏𝑦−𝑦)2𝑣2

2𝑘2
2

represents the window function. 

According to Assefa et al. [19], the rotation invariant 2D S-transform was proposed for use in the 

texture analysis of color images, extending the definition of the S-transform from complex (2D) to the 

quaternion (4D) space. This transform is used later in the current research through the Hartley 

transformation. The rotation invariant version of the 2D S-transform proposed in Assefa et al. [19] is given 

by (10):  

 

𝑆(𝜏𝑥, 𝜏𝑦 , 𝑢, 𝑣) = ∑ ∑ 𝑓(𝑥, 𝑦)
𝑢2+𝑣2

2𝜋𝑟2 𝑒𝑥𝑝
−{(𝜏𝑥−𝑥)2+(𝜏𝑦−𝑦)

2
}

(𝑢2+𝑣2)

2𝑟2 𝑒𝑥𝑝−𝑗2𝜋(
𝑢𝑥

𝑀
+

𝑣𝑦

𝑁
)

𝑦𝑥  (10) 

 

for some constant 𝑟. 

Image classification: many works have been proposed in the area of image classification. Specific to 

lung cancer detection based on CT images, the main aim is to differentiate between benign and malignant. 

Machine learning is the best way of classification. There are different machine learning categories: 

supervised, unsupervised, semi-supervised, and reinforcement learning. In most cases the conventional 

machine learning does not apply to medical images due to the dynamic nature of the images [1], [20], [21]. 
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Deep learning is a supervised learning paradigm that employs multi-layer neural networks for model 

training. This hierarchical structure enables deep learning models to capture complex image features and 

relationships, often achieving superior performance compared to conventional machine learning approaches. 

Commonly used supervised deep learning architectures include CNNs, long short-term memory (LSTM), 

recurrent neural networks (RNNs), and gated recurrent units (GRUs) [1], [22]. 

Lee et al. [23] demonstrated the application of CNNs for lung nodule segmentation and discussed 

several deep learning–based segmentation techniques. These include fully convolutional networks (FCNs), 

which replace fully connected layers with convolutional layers to achieve large receptive fields, enabling 

segmentation through coarse class score maps generated via feed-forward processing of input images. 

Another prominent approach is Mask Region-based CNN (Mask R-CNN), which performs object detection 

while simultaneously producing segmentation masks. SegNet is another semantic, pixel-wise segmentation 

model that has been widely applied in medical imaging [24].  

Among these methods, U-Net has gained significant attention due to its effectiveness and extensive 

use in medical image segmentation. A summary of related studies employing different classification methods 

is provided in Table 1. An analysis of the studies summarized in Table 1 reveals that many existing methods 

depend on large-scale datasets for training and evaluation, requiring substantial computational resources such 

as high memory capacity and powerful GPUs.  

 

 

Table 1. Comparison of datasets used, methods, and accuracies for different papers 

Author Purpose 
Dataset/no. of image 

data 
Method Result 

Year of 

publication 

Lakshmanaprabu 

et al. [20] 

Lung CT-image 

classification to benign, 
malignant, and normal 

70 images ODNN classifier with 

MGSA 

Accuracy 

94.56% 

2018 

Cifci [21] Lung CT-image 

classification to benign, 
malignant, and normal 

TCIA dataset/ 

46,698 images 

SegChaNet Accuracy 

98.9% 

2022 

Hu et al. [22] Lung segmentation   Raw images of 

hospitals/ 
13,000 images  

Supervised and 

unsupervised learning with 
image erosion and dilation 

Accuracy 

97.11% 

2020 

Lee et al. [23] Lung segmentation LIDC U-Net  Accuracy 

95.02% 

2018 

 

 

In contrast, the current research focuses on developing a computationally efficient and accurate 

approach that operates with limited resources and smaller training datasets. Accordingly, a CT-based lung 

cancer detection framework is proposed, which integrates a spatially localized integral transform for feature 

extraction with a U-Net–based classification model. The approach utilizes images from The Cancer Imaging 

Archive (TCIA), selected based on their responses to marker-controlled watershed and area filtering 

techniques. It is important to note that the proposed method is primarily designed to detect lung cancers 

located in peripheral regions, rather than those situated in central lung areas. 

 

 

2. METHOD 

2.1.  Materials used  

The proposed system was implemented using an image dataset obtained from TCIA database [25]. 

CT lung images with the specified characteristics were employed for testing and validation, as summarized in 

Table 2. The complete lung cancer detection and classification framework was developed using the 

MATLAB platform, chosen for its extensive built-in functions, ease of rapid prototyping, availability of pre-

trained networks, comprehensive documentation, and suitability for academic research. The proposed 

algorithm was executed on a system equipped with an Intel Core i5 processor operating at 2.5 GHz, 8 GB of 

RAM, and a Microsoft Windows operating system. 
 

 

Table 2. Image information 
Resolution Depth CT-model Type of compression 

512×512 16 bits Helical mode scan DICOM 

 

 

2.2.  Procedures 

Image pre-processing: after evaluating the dataset images, the histograms of the input images 

showed no significant noise distribution; therefore, no prior image smoothing was applied. Image selection 
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was performed as the first step. The dataset images were initially chosen based on their suitability for 

segmentation using marker-controlled watershed and area filtering techniques.  

Pre-processing focuses on isolating the lung region exclusively, as most lung malignancies—

particularly non-small cell lung cancer—originate in the lung parenchyma. This approach also effectively 

separates large blood vessels near the central region, thereby improving the accuracy of the final 

classification.  

Subsequently, 81 lung images were selected from the dataset. Marker-controlled watershed 

segmentation was used to separate relevant structures from the CT images. Through observation and 

quantitative analysis, the lung region was found to occupy approximately 10–35% of the image area. Based 

on these limits, an area filter was designed to retain only the lung region. 
 

𝐵𝑊(𝑥, 𝑦) = 𝐴𝑟𝑒𝑎{𝑀𝑎𝑟𝑘𝑒𝑟𝑊[𝐼(𝑥, 𝑦)]} (11) 
 

𝐼(𝑥, 𝑦) is the input image from the dataset. 𝑀𝑎𝑟𝑘𝑒𝑟{𝑊} shows the implementation of the marker-controlled 

watershed algorithm on an image. 𝐴𝑟𝑒𝑎[ ] shows the implementation of area filtering with the mentioned 

parameters on a marker-controlled watershed segmented image.  

Following lung segmentation, the image is cropped and resized. Image cropping comes first, 

followed by image resizing. The input image has 16-bit depth and 512×512 resolution. This image is 

transformed into a 4D signal (512×512×512×512) by feature extraction. 137 gigabytes of internal RAM are 

needed for this (which is unattainable for low resource settings). Therefore, image cropping and scaling are 

done to make the image size appropriate for processing. Parts of the image that are unsuitable for diagnosis, 

such as the dark portion of the CT scan, are cropped out. The results of marker-controlled watershed and area 

filtering are used to determine the cropping. By translating vertically and horizontally from the white pixels, 

this image (BW(x, y), binary image) gives us both vertical and horizontal cropping dimensions. By applying 

the acquired dimensions to the original image, it is accomplished automatically. To lessen the impact of 

aliasing that can happen when scaling the image later, cropping is done first. By cropping an image, its 

original size would be reduced to about 25% of its original size (to 256×256) without compromising the 

quality. As a consequence, using image scaling greatly decreased aliasing. Bicubic interpolation of an 

integrated MATLAB function is used for the resizing. The final image was 120×150 pixels and was 

normalized between [0,1]. After that, an image picture is subjected to Wiener filter smoothing with a 3×3 

window size to eliminate any noise that may have resulted from earlier processes. 
 

𝐼′(𝑥, 𝑦) = 𝑤𝑖𝑒𝑛𝑒𝑟[𝑐𝑟𝑜𝑝𝑟𝑒𝑠𝑖𝑧𝑒(𝐼(𝑥, 𝑦))] (12) 
 

𝐵𝑊′(𝑥, 𝑦) = 𝑐𝑟𝑜𝑝𝑟𝑒𝑠𝑖𝑧𝑒(𝐵𝑊(𝑥, 𝑦)) (13) 
 

For image 𝐼′(𝑥, 𝑦) the dimensions for cropping are obtained from image 𝐵𝑊(𝑥, 𝑦). 𝐵𝑊′(𝑥, 𝑦) is the cropped 

image of 𝐵𝑊(𝑥, 𝑦) that will be used later.  

Image enhancement: at this stage, two techniques of spatial domain image enhancement were 

implemented on the pre-processed images: SMQT and the adaptive gamma correction, both introduced 

earlier. The first enhancement was used to create a better contrast image. An 8-level SMQT was used in this 

regard. Here, the cropped and resized image from the previous stage will be enhanced. Before using the 

SMQT, the depth of the image will be reduced from 16-bit to an 8-bit image. This will ensure fast 

computation and efficient memory consumption for the later stage. The SMQT delivers quantization to the 

pixel intensities of the image. The quantization characterizes the image intensities with finite intensity values. 

This does ensure the reduction of image information to only specific groups of pixel intensities. This would 

help for characterizing the image by specific intensity feature, which will later be used in image feature 

extraction and segmentation. However, the enhancement might introduce some unnecessary intensity values. 

For example, boundary valued (only slightly greater than the mean) intensities might acquire false intensities. 

Thus, the brightness-controlled adaptive gamma correction (discussed in the literature) was implemented to 

reduce this error. This enhancement would correct contrast and brightness as well. The formula for the 

process is shown in (14):  
 

𝑓(𝑥, 𝑦) = 𝑏𝑟𝑖𝑔𝑡ℎ𝑛𝑒𝑠𝑠 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑑𝑔𝑎𝑚𝑚𝑎[𝑆𝑀𝑄𝑇(𝐼′(𝑥, 𝑦))] (14) 
 

Image feature extraction and segmentation: an integral transform-based approach was implemented 

to extract useful features. The transform domain gives another perspective on image analysis. There are 

different integral transform methods, one of which is the Fourier transform. The Fourier transform is a very 

basic and useful approach that gives only the frequency information of the signal. It has no information 

concerning the spatial location of frequencies, which makes it difficult to decide between useful edge and 
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noise. As a result, a better technique is a space-frequency approach. Space-frequency integral transform gives 

both spatial and frequency information with relative resolution for both parameters. There are different 

space-frequency approaches; short-time Fourier transform (STFT) is one with a constant window size and 

limited space-frequency resolution. As compared to STFT, wavelet transform can achieve better space-

frequency resolution by providing variable window size. However, wavelet transform invertibility depends 

on the choice of the wavelet. Moreover, no direct relation with Fourier transform makes it difficult to 

interpret and implement basic operations on the transformed domain. Thus, rotation-invariant spatially 

localized transform is chosen to better suit the feature extraction. The rotational-invariant integral transform 

has better invertibility while maintaining a direct relation with the Fourier transform as compared to the 

wavelet transform. In addition, the rotation invariance nature makes a robust feature extraction that does not 

vary with rotation motion. Thus, the rotation invariant spatially localized integral transform method was 

chosen for feature extraction.  

Thus, after the image preprocessing and spatial enhancement, the image will be transformed to the 

space-frequency domain, resulting in a 4-dimensional signal. It is implemented using the Hartley transformation, 

using even and odd calculations without complex computation as shown in (15). It contains the spatial 

coordinates and their respective frequency components (𝜏𝑥, 𝜏𝑦 , 𝑢, 𝑣). For a single pixel, there are the row (𝑢) 

and column (𝑣) frequency components. Then, the power of the transform is calculated as shown in (16): 

 

𝐹(𝜏𝑥 , 𝜏𝑦 , 𝑢, 𝑣) = ∑ ∑ 𝑓(𝑥, 𝑦)
𝑢2+𝑣2

2𝜋𝑟2 𝑒𝑥𝑝
−{(𝜏𝑥−𝑥)2+(𝜏𝑦−𝑦)

2
}

(𝑢2+𝑣2)

2𝑟2 1

2
𝑐𝑎𝑠(

𝑥𝑢

𝑀
+

𝑦𝑣

𝑁
)𝑦𝑥  (15) 

 

𝐹′(𝜏𝑥 , 𝜏𝑦, 𝑢, 𝑣)=𝐹2(𝜏𝑥 , 𝜏𝑦, 𝑢, 𝑣) (16) 

 

In (1 5 )  calculates the rotation invariant integral transform of the input image 𝑓(𝑥, 𝑦) resulting 

in 4-dimension 𝐹(𝜏𝑥 , 𝜏𝑦 , 𝑢, 𝑣). While (16) calculates the Fourier power of the transformed 4D signal 

resulting in 𝐹′(𝜏𝑥 , 𝜏𝑦, 𝑢, 𝑣).  After determining the power of the spectrum image, different statistics were 

tried to fork out the better features. Different statistics (mean, median, standard deviation, and sum) were 

tested. And the sum responded well. The sum of the power spectrum is implemented by summing up the 

frequency components and reducing the signal dimension to become 2-dimension. The process is shown in 

(17): 

 

𝐺(x, y)=Σu Σv 𝐹′(𝜏𝑥 , 𝜏𝑦, 𝑢, 𝑣) (17) 
 

After calculating the sum of the power spectrum, the result matrix is normalized between [0,1], 

which is suitable for further calculation. Then, different gamma values were tested on the resulting image, 

and the 10th root was found adequate with the best response. Then, the resulting image is subtracted from the 

normalized spatial-enhanced image.  
 

G′(x, y) = f(x, y) − G
1

10(x, y) (18) 
 

Since the tumor has different signatures from the other nodules, this procedure will eliminate pixels 

that are non-cancerous. Then, the cropped and resized marker-controlled watershed segmented image from 

the preprocessing is imposed on the original image and smoothed with a 7×7 wiener filter. Finally, the 

resulting image will be added to G′(x, y).The process is shown in (19): 
 

G"(x, y) = G′(x, y) + wiener[BW′(x, y) + I′(x, y)] (19) 
 

Then, finally, a simple thresholding of the image G"(x, y) is done as a result of which the cancer 

nodule would always yield a constant signature map (green in HSV plot or 0.125-0.29 in double image. This 

procedure is used to amplify the tumor signature more and make it suitable for the U-net architecture. Then, 

after, the thresholded image G"(x, y) is used for CNN-based classification scheme training together with an 

annotated binary image (ground truth). 

Image classification: for image classification, CNN-based U-NET semantic image segmentation was 

implemented. The U-NET was chosen since the main aim of U-NET itself is for medical image 

segmentation, and it can learn from a few images when the images are well-suited for segmentation. The 

feature extraction and earlier stages of the proposed system can successfully deliver suitable images for the 

U-NET classification training. In addition, U-NET is simple, easy to train, implements fewer control 

parameters, absence of intermediate layers makes it an ideal choice for classification. Even though U-NET 

++ has better accuracy, the U-NET weakness is filled with the feature extraction scheme of this approach. It 

is implemented here without any modification. The images from feature extraction and annotation (ground 
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truth) were used for the training. From 81 images, 49 (29 are abnormal) images are used for training and 32 

(17 are abnormal) for testing. 

Conventionally, the training and testing split ratio is 80:20. In this research, since the target is to 

minimize the resources used for training, 60% of the data randomly chosen from feature-extracted and 

annotated images, was used, and the rest for testing. All images are resized to 128×128, which helps to 

integrate with the U-NET classification. The classification categories are background (0-normal lung) and 

foreground (1-tumor). An inbuilt MATLAB function, unetLayers, was used to implement U-NET CNN 

architecture for its simplicity and low resource requirement. The U-NET here implements 46 layers, encoders 

(for down sampling), and decoders (for up-sampling), drop-out (to avoid overfitting), and pixel classification 

(to measure the discrepancy between ground truth and predicted).  

The cross-entropy loss function is implemented. The encoder contains the convolutional layers 

followed by rectified linear units (ReLU). The convolutional layer convolves the input lung image and the 

weight matrix for the extraction of features. The ReLU is an activation function that calculates the maximum 

value of the result. This will produce a non-linear relation among features. Then, the features go through max 

pooling for down sampling of the signal. The decoder localizes the features spatially and reconstructs the image. 

A skip connection is used to link the decoder with the encoder. It contains upsampling, concatenation, and 

convolution layers with ReLU. The U-NET implemented here does not use pre-trained CNNs. It is implemented 

by encoders and decoders. However, different hyperparameter combinations have been tried. These 

hyperparameter combinations are (epochs [200,100,50,10], optimizers [Adam, sgdm], mini batches [2, 4, 10] 

and encoder depth [3, 5]). The U-NET implementation using the SGD optimizer, 50 epochs, 4 mini-batch sizes, 

and an initial learning rate of 1e-3 yielded the best result. After classification, simple morphological image 

cleaning was done through image opening by implementing a disk structuring element of size 1.  

Testing and validation: there are two ways of testing the algorithm, based on qualitative output and 

measurable (quantitative) parameters. The quantitative parameters are measured in terms of true positive 

(TP), true negative (TN), false positive (FP), and false negative (FN). Since the main aim of the research is to 

differentiate between the normal nodules of the lung (blood vessels and normal spots) from tumors. In this 

regard, TP means the white spot (nodule) in the CT images of the lung classified to be a tumor as compared 

with the ground truth. And TN means a nodule in the CT image of the lung classified to be non-tumor/normal 

as compared to the ground truth. FP is a nodule wrongly classified as a tumor, and FN tumor wrongly 

classified as normal. Thus, while testing, the total number of nodules is counted. Then, the respective values 

for the TN, TP, FP, and FN are counted accordingly. Based on their count result, the accuracy, specificity, 

and sensitivity are calculated using (20)–(23). Based on these assumptions, the following parameters are 

calculated. 
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (20) 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝐹𝑃

𝑇𝑃+𝐹𝑁
 (21) 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
 (22) 

 

In addition, the F1-score has also been used. 
 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2∗𝑇𝑃

2∗𝑇𝑃+𝐹𝑃+𝐹𝑁
 (23) 

 

On the other hand, the segmentation and classification accuracy parameters are the intersection over 

union (IoU) and dice similarity coefficient (DSC) calculated using (24) and (25). 𝐼𝐴 and 𝐼𝐵 represent the 

classified image and the ground truth image, respectively.  

 

𝐼𝑂𝑈 =
|𝐼𝐴∩𝐼𝐵|

|𝐼𝐴∪𝐼𝐵|
 (24) 

 

𝐷𝑆𝐶 =
2∗|𝐼𝐴∩𝐼𝐵|

|𝐼𝐴|+|𝐼𝐵|
 (25) 

 

Figure 2 illustrates the overall workflow of the proposed method. The process begins with an input 

CT image of size 512×512 pixels. Following preprocessing, the image is enhanced to improve visual quality 

and feature visibility. The enhanced image is then subjected to the feature extraction stage, and the resulting 

features are subsequently used for classification. Representative outputs from each processing stage are 

shown sequentially up to the final classification result. 
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Figure 2. Summary of the methodology 

 

 

3. RESULTS AND DISCUSSION 

Selected qualitative and quantitative results have been presented here to demonstrate the 

effectiveness of the proposed cancer detection scheme, accompanied by discussions. 

 

3.1.  Qualitative results 

Results from image pre-processing: the input image is a DICOM image with 512×512 resolution and 

16-bit depth, as was covered earlier in the process. Making this image suitable for the process to follow and for 

feature extraction is, thus, the primary goal of the preprocessing. It entails scaling and cropping the image. 

Figure 3 shows the results from the pre-processing of the DICOM images. The input image (to the left) is 

displayed in Figure 3(a). Figure 3(b) is produced by applying marker-controlled watershed and area filtering to 

the input image. Only the lung portion is segmented in the binary image. Since most cancer nodules develop in 

the periphery of the lung parenchyma, segmenting the lung is crucial. In the technique, we referred to this 

image as image-BW. Using this image, automated cropping dimensions are calculated by translating vertically 

and horizontally from the lung edges. Using these dimensions, the original image is cropped and then resized 

to a suitable resolution (120×150). After that, it is filtered with a 3×3 Wiener filter to smooth out any noise that 

could have occurred in the process. The image is shown in Figure 3(c). This is the image labeled image-I’ in 

the methodology section. Evaluating image-I’, it can be seen that the cropped-out part of the image is 

unnecessary for the diagnosis. Moreover, the cropping and resizing did not affect the details inside the lung 

parenchyma. As a result, it reasonably suits the process to follow and feature extraction. 
 

 

   

(a) (b) (c) 
 

Figure 3. Results from the pre-processing of the DICOM images; (a) original DICOM image, (b) correctly 

segmented lung part by marker-controlled watershed and area filtering, and (c) cropped, resized, and filtered image 
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Results from spatial image enhancement: the image enhancement makes the image attain better 

contrast. Figure 4 shows the results from the spatial image enhancement. Two techniques were implemented 

for spatial image enhancement: the SMQT and brightness-controlled gamma correction. The input to this 

procedure is the preprocessed image (image-I’), shown in the Figure 4(a). However, the image in Figure 4(b) 

looks darker. Hence, brightness-controlled gamma correction is used to enhance this. This helps to have 

better contrast with preserved intensity quantization and reduced darkness. In addition, the brightness-

controlled gamma correction will smooth out artificially created intensities at the boundary of each mean 

calculation. The image result is shown in Figure 4(c). The histogram plot of the input image is shown in 

Figure 4(d). The histogram plot is continuous and skewed to the bright intensities. The SMQT is used to 

enhance the contrast and quantize the pixels, as it is shown in the histogram plot Figure 4(e) and the 

histogram after the application of brightness-controlled gamma correction is shown in Figure 4(f). The spatial 

enhancement made the nodules inside the lung parenchyma have specified intensities (slightly different in 

signature for abnormal and normal nodules), making them suitable for feature extraction. Thus, this image is 

used for feature extraction. 

 

 

   
(a) (b) (c) 

   

   
(d) (e) (f) 

 

Figure 4. Spatial image enhancement results; (a) input CT image, (b) SMQT-enhanced image, (c) brightness-

controlled gamma-corrected image, (d) intensity histogram of the input image, (e) intensity histogram after 

SMQT enhancement, and (f) intensity histogram after brightness-controlled gamma correction 
 

 

Results from image feature extraction and segmentation: the enhanced image will be used for 

extracting important features. Figure 5 shows the results of feature extraction and segmentation. Figure 5(a) 

shows the input image (image-f(x,y)) to the feature extraction and segmentation scheme. This image will be 

transformed to the space-frequency domain using spatially localized rotational invariant integral transform, 

resulting in a 4-dimensional signal. Then, the sum of the frequency components of the local power of the 4-

dimensional signal is calculated, yielding 2-dimensional features (image-G(x,y)). This is shown in  

Figure 5(b). From the figure, it can be noticed that the tumor indicated by red contour has different signatures 

for the input image, see Figure 5(a) and the 2-dimensional feature image, see Figure 5(b). Then, the 

normalized 2-dimensional feature image is gamma corrected with gamma value of 0.1 and subtracted from 

input image (image-f(x,y)). The HSV-pseudo coloring color map of this operation is shown in Figure 5(c) 

(image-G’(x,y)). This image showed the different color signature for malignant (dark-blue/blue) and non-

cancerous (sky-blue) nodule. Then Figure 5(d) is the 7×7 wiener filter smoothed sum of the cropped and 

resized marker-controlled watershed and area filtered image (image-BW’(x,y)), and cropped and resized input 

image (image-I’(x,y)). The result showed a little signature for the tumor suppressing other nodules, as shown 

by the red contour. This image is then added to the image-G’(x,y), resulting in Figure 5(e) (image-G”(x,y)). 

The HSV-pseudocolor image showed a green signature for the tumor, differentiating it from other nodules. 

Finally, a simple thresholding is done to generate Figure 5(f). However, the edges of the lung have the same 

kind of signature as the tumor, which may lead to a false positive. Thus, the feature extraction and 
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segmentation need further classification. The image classification scheme is trained and tested using the 

output of the feature extraction and segmentation. 
 

 

   
(a) (b) (c) 

   

   
(d) (e) (f) 

 

Figure 5. Feature extraction and segmentation results; (a) input CT image, (b) rotationally invariant power 

spectrum map, (c) difference image, (d) marker-controlled watershed and area-filtered segmentation,  

(e) combined feature and segmentated image, and (f) final thresholded segmentation 

 

 

3.2.  Result of image classification 

Figure 6 illustrates the output of the image classification stage using the U-NET architecture. As 

described in the methodology, three encoder blocks were implemented using MATLAB’s built-in unetLayers 

function. The U-NET was trained using images obtained from the feature extraction and segmentation stage 

rather than the original CT images. These images were resized from 120×150 to 128×128 to match the 

network input requirements. Different numbers of training epochs were evaluated, and 50 epochs produced 

the best classification performance. From the total of 81 images, 49 were randomly selected for training and 

32 for testing. As shown in Figure 6, the classification results consist of two classes: foreground (tumor) and 

background. This classification stage is essential for reducing false positives, particularly those occurring 

along the edges of the lung parenchyma and those introduced by the inherent characteristics of CT images 

and the applied processing scheme. To further ensure that no noise artifacts were introduced, a morphological 

opening operation using a disk-shaped structuring element was applied. The resulting JET color map reveals 

well-defined and compact cancer signatures, demonstrating the effectiveness of the proposed detection 

scheme. Figure 6 also presents the overall U-NET workflow, showing the input image and the corresponding 

classification output. In cases where no tumor is present, the classification stage correctly suppresses false 

detections, yielding a final output with no tumor regions. 

The image is encoded and down-sampled on the left side of the U-NET architecture, and the right 

side shows decoding and upsampling procedures. The final result is shown in a JET-color map, showing the 

tumor classified from the background. 

 

3.3.  Quantitative results 

In this section, the qualitative results are presented in a comparative manner. The discussion is 

organized into two subsections: training and testing. The aim is to highlight the importance of feature 

extraction for classification performance, as well as the role of classification in validating the extracted 

features. A total of 81 images were used for both training and testing. 

 

3.3.1. Training 

The U-NET classifier was trained using 49 images. Various training configurations were evaluated, 

including different numbers of epochs (10, 50, 100, and 200) and different input image types. These input 

types comprised feature-extracted and segmented images, as well as the original CT images without 

enhancement or feature extraction. 
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Figure 6. Demonstration of the U-Net Classifier, the input image to the U-NET classifier is shown in HSV 

color map while the final result is shown in a JET-color map showing a red tumor signature with surrounding 

blue normal background 
 
 

Other parameters were kept common for all the tests: minibatch size-4, optimization-sgdm, initial 

learn rate-1e-3, and encoder depth-3 and 46-layers. The U-NET trained with the original image and the  

U-NET trained with the feature extracted-segmented image were compared. The training performance was 

evaluated by comparing accuracy, loss (using cross-entropy as the loss function), training time, IoU, and 

DSC. Among the different epoch settings, 50 epochs demonstrated superior overall performance. At this 

setting, the model achieved a final training accuracy of 99.93% with a total training time of 137 minutes 

using the specified computational resources. In contrast, training the U-NET using the original images 

required more than 15 hours. Accordingly, a brief comparison was conducted between training with feature-

extracted segmented images and training with the original images.  

Figure 7 presents a comparison of training accuracy for the feature-extracted segmented images and 

the original images over 50 epochs. Although the training accuracies appear comparable, the U-NET trained on 

original images fails to generalize effectively when applied to the testing set. Training accuracy was computed 

with respect to binary ground-truth masks from the dataset. The final training accuracies for the original-image-

trained and feature-extracted segmented-image-trained models were 99.93% and 99.75%, respectively.  
 

 

 
 

Figure 7. Training accuracy comparison for 50 epochs of the feature extracted-segmented image, and the 

original image 
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Figure 8 compares the corresponding training losses for both approaches. It is evident that training 

on original images results in significantly higher loss values compared to training on feature-extracted 

segmented images. When Figures 7 and 8 are jointly considered, training with feature-extracted segmented 

images yields better overall performance, characterized by higher effective accuracy and lower loss. 

Although the numerical training accuracies are similar, the segmentation efficiency of the U-NET trained on 

feature-extracted images is markedly superior.  

 

 

 
 

Figure 8. Training loss for both schemes of training 

 

 

Table 3 summarizes the final-iteration training accuracy, loss, training duration, IoU, and DSC for 

both training schemes. The results clearly indicate that the feature-extracted segmented image approach 

outperforms the original image-based training across all evaluated metrics. Consequently, this scheme is 

adopted for subsequent testing and comparative analysis to demonstrate the effectiveness of the proposed  

U-NET classification framework.  

 

 

Table 3. Result signifying the use of feature extraction and segmentation 
Epoch size 50 Training accuracy (%) Loss Time it takes IoU DSC 

Original image trained 99.75 0.016 ~930 min 0.011 0.021 

Featured extracted-segmented image  99.93 0.003 ~137 min 0.873 0.929 

 

 

3.3.2. Testing 

To compute the system’s accuracy, specificity, and sensitivity, lung nodules in the original CT 

images were manually counted. After segmentation or classification, only nodules exhibiting specific 

signature maps indicative of tumors were considered in the counting process. In the qualitative results, 

abnormalities in the feature extraction and segmentation outputs are represented in green using the HSV 

pseudo-colormap, while all other colors indicate normal tissue. 

In contrast, for the classification results, abnormalities are represented in white in the grayscale 

colormap. Based on these criteria, nodules were manually counted to determine correct and incorrect 

classifications. This manual evaluation was adopted because the primary objective of the study is to 

differentiate abnormal nodules and detect lung cancer. A total of 32 images, randomly selected from the 81-

image dataset, were used for testing. The test set comprised both normal images and abnormal images 

containing tumors. Nodules were categorized as normal (N) or abnormal (AbN) according to the dataset’s 

ground truth, which served as the gold standard. Using this reference, true positives (TP), false positives 

(FP), true negatives (TN), and false negatives (FN) were computed for two cases: feature extraction and 

segmentation without classification, and feature extraction and segmentation followed by classification.  

These results are summarized in Table 4. As shown in Table 4, the numbers of TP, TN, and FN are 

relatively similar for both approaches. However, a significant reduction in FP is observed when classification 

is applied. The higher FP count in the absence of classification leads to a lower specificity. Moreover, false 

positives occurring at the lung boundaries adversely affected the segmentation performance, resulting in 
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lower IoU and DSC values. The incorporation of the classification stage effectively mitigates these issues, 

substantially improving specificity as well as IoU and DSC performance. 

 

 

Table 4. TP, FP, TN, and FN values computed using the proposed algorithm using the available gold 

standard information 

Images 
Gold standard With classification Without classification 

Total AbN N FP FN TP TN FP FN TP TN 

Im-1 27 1 26 0 0 1 26 0 0 1 26 
Im-2 26 1 25 0 0 1 25 0 0 1 25 

Im-3 27 1 26 0 0 1 26 0 0 1 26 

Im-4 12 0 12 0 0 0 12 0 0 0 12 
Im-5 14 0 14 0 0 0 14 1 0 0 13 

Im-6 9 0 9 0 0 0 9 1 0 0 9 

Im-7 9 1 8 0 1 0 8 0 0 0 8 
Im-8 10 1 9 0 0 1 9 0 0 1 9 

Im-9 22 0 22 0 0 1 22 0 0 1 22 

Im-10 11 0 11 0 0 1 11 0 0 1 11 
Im-11 19 1 18 1 0 1 17 2 0 1 16 

Im-12 13 0 13 0 0 0 13 0 0 0 13 

Im-13 14 1 13 0 0 1 13 0 0 1 13 
Im-14 10 0 10 1 0 0 8 2 0 0 7 

Im-15 11 1 10 0 0 1 10 1 0 1 9 
Im-16 11 1 10 0 1 0 10 0 1 0 10 

Im-17 13 1 12 0 0 1 12 2 0 1 10 

Im-18 25 0 25 0 0 0 25 0 0 0 25 
Im-19 21 0 21 0 0 0 21 0 0 0 21 

Im-20 24 1 23 0 0 1 23 0 0 1 23 

Im-21 22 1 21 0 0 1 21 0 0 1 21 
Im-22 12 0 12 0 0 0 12 0 0 0 12 

Im-23 12 0 12 0 0 0 12 0 0 0 12 

Im-24 19 0 19 0 0 0 19 0 0 0 19 
Im-25 12 1 11 0 1 0 11 0 1 0 11 

Im-26 22 1 21 0 0 1 21 0 0 1 21 

Im-27 25 0 25 0 0 0 25 5 0 0 20 

Im-28 21 0 21 0 0 0 21 5 0 0 16 

Im-29 33 1 32 0 0 1 32 0 0 1 32 

Im-30 25 0 25 0 0 0 25 4 0 0 21 
Im-31 33 1 32 0 0 1 32 1 0 1 31 

Im-32 23 1 22 0 0 1 22 1 0 1 21 

Total 
nodules 

587 17 570 2 3 16 567 25 2 16 545 

 

 

Accordingly, sensitivity, specificity, and overall accuracy values are computed based on the formula 

given earlier in this document. These parameters are calculated for both cases (feature extraction and 

segmentation without classification, and feature extraction and segmentation with classification) [26]-[28]. It 

can be seen from the Table 4 that the classification significantly reduces the false positives inside the lung 

parenchyma as well as the false positives at the edges of the lung. The test was done ignoring the edges of the 

lung false positive for feature extracted images [29]. Table 5 illustrates the comparison between feature 

extraction with and without classification. 

 

 

Table 5. Comparison between with and without U-net 
 Accuracy (%) Sensitivity (%) Specificity (%) IoU DSC 

Without classification 95.50 88.88 39.02 0.072 0.126 

With classification 99.32 84.21 88.88 0.87 0.93 

 

 

The computational efficiency of the proposed algorithm has also been checked. Accordingly, it 

takes an average of 200.41 seconds for the entire algorithm to run (on a MATLAB platform), starting from 

loading a given CT lung image until a final classification result is found. The time of computation is 

reasonably low compared to other, more complicated methods reported in the literature. Table 6 shows the 

comparison of the proposed system with other literature. It can be observed that the proposed system has 

accomplished excellent results with limited data and computational resources [30]. 
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Table 6. Comparison of proposed system with other studies 

Author Datasets Method 
Precision/ 
sensitivity 

IoU F1-score Accuracy Dice 

Shuvo and 

Mamun [27] 

LUNA16 

6801 images  

Yolov5 model for lung 

classification  

76% - - - - 

Sun et al. [28] LUNA16 
36,317 images  

Swim-transform for lung 
classification 

- - - 82.3% - 

Wu et al. [29] AHMU-LC 

9265 images  

RAD-UNET for lung 

classification 

94.23% 86.55

% 

93.12% - - 

Lakshmanapr

abu et al. [20] 

70 images  ODNN and modified 

gravitational search for 

lung classification 

- - - 94.56% - 

Cifci [21] TCIA 

44,848 images 

SegChaNet without CAM 

for lung classification 

92.15% - 96.89% 96.81% 93.7% 

Proposed  TCIA 
81 images  

Integral transformed-based 
feature extraction and U-

NET classification of lung  

84.21% 87.3% 86.49% 99.32% 92.9% 

 

 

4. CONCLUSION 

The primary objective of this study was to develop a robust, simple, and accurate method for lung 

cancer detection. The proposed approach was implemented on CT lung images obtained from the TCIA 

dataset, specifically focusing on peripherally located lung cancers. A comprehensive review of existing lung 

image analysis techniques was conducted to understand current methodologies and identify gaps. 

Comparative analyses were performed between results from the literature and the proposed method. 

The findings demonstrate that improved accuracy, robustness, and efficiency can be achieved even 

with limited training data and minimal computational resources, provided that effective feature extraction is 

combined with a CNN-based classification framework. The proposed method achieved an overall 

classification accuracy of 99.32%, with a precision of 84.21%, F1-score of 86.49%, IoU of 87.3%, DSC of 

92.9%, and specificity of 88.88%. These results highlight the efficacy of integrating spatially localized 

integral transforms with U-NET CNN architectures for enhanced feature extraction and classification of CT 

lung images. This research underscores the significant role of integral transforms in medical image analysis, 

particularly for the segmentation and classification of lung cancer. The combination of the 2D spatially 

localized integral transform and U-Net proved to be a practical and effective approach for accurate lung 

cancer detection. 

For future work, it is recommended to expand the model to classify all types of lung cancer. 

Additionally, efforts should be made to further improve the precision, F1-score, and segmentation metrics 

(IoU and DSC). Incorporating raw clinical data from hospitals and clinical trials is also essential to enhance 

the model's applicability in real-world scenarios, such as predicting related gene proteins in cancer 

development. 
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