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More than two-thirds of the world's population rely on rice or wheat as
staple foods, which are grown in various Asian countries. Diseases affecting
rice leaves can disrupt growth, reduce yields, and cause famine in some
areas. Therefore, a quick and accurate recognition method is necessary to
minimize losses. This article focuses on eight types of rice leaf diseases
using data consisting of approximately 110 images for each disease type,
with enhanced image quality to achieve better results. The study applies a
convolutional neural network (CNN) model integrated into an Android
mobile application, achieving a training accuracy of 86.56% and a validation
accuracy of 93.75%. Comparative experiments demonstrate that the model
can be effectively implemented in mobile applications for accurately
detecting rice leaf diseases, providing a reliable solution for field detection.
This method not only helps farmers identify diseases more quickly but also
has the potential to reduce crop losses caused by leaf diseases.
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1. INTRODUCTION

Agriculture is a cornerstone of the global economy, serving as the primary source of food, income,
and employment [1], [2]. In many low and middle-income countries, this sector contributes significantly,
accounting for 18% of national income and boosting employment rates to 53%. Over the past three years, the
gross value added by agriculture has grown from 17.6% to 20.2% [3], [4]. The advent of digital technology
has revolutionized various sectors, including agriculture. Innovations like real-time, smartphone-based
systems have enabled intelligent cultivation practices, growth monitoring, and efficient crop harvesting
[5], [6]. However, agricultural production faces serious challenges related to plant diseases and pest
infestations that can reduce yields and threaten global food security. In rice crops, leaf diseases such as
brown spots, blight, and hispa can cause significant losses. Therefore, rapid and accurate disease detection
methods are needed to minimize these losses. Despite these advancements, plant diseases and pest
infestations remain severe threats to agricultural yields and global food security, compromising the quality of
food production. Traditional prophylactic treatments often fall short of preventing disease outbreaks,
highlighting the need for early monitoring and accurate diagnosis [4], [7]. Researchers are increasingly
turning to automated methods for plant disease detection, leveraging image processing techniques and
machine learning to improve classification accuracy and speed up diagnostics. Methods such as image
manipulation, dimension reduction, and fuzzy systems have been utilized to improve diagnostic accuracy.
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Today, deep learning stands out as the leading method in plant disease diagnosis systems, offering promising
results for the future of agriculture [8], [9].

Recent advancements in deep learning have significantly enhanced image classification, particularly
feature extraction and learning efficiency. Convolutional neural networks (CNNs) based on deep learning
have become the standard for computer vision tasks [10], [11]. Networks such as SegNet, fully convolutional
network (FCN), and U-Net have been specifically built and thoroughly investigated to address certain use
cases [12], [13]. These deep learning approaches have outperformed traditional methods by enabling end-to-
end learning, reducing loss, and conserving human and material resources. However, increasing the depth of
CNNs can lead to vanishing gradient problems. Residual networks with shortcut links have been added to
mitigate this, simplifying things and getting rid of these problems. A well-organized and extensive database
is crucial for the effectiveness of deep learning architectures. Experiments using large open-source datasets
have achieved up to 85% accuracy in diagnosing plant diseases in crops like grapes, apples, and rice [5].
Studies have shown that deep learning-based models have great potential in detecting plant diseases.
However, most of these models have limitations in their implementation on mobile devices due to high
computational power requirements and often reliance on powerful graphics processing units (GPUs). Roopali
Dogra’s research utilized the VGG19 model and transfer learning methods to classify rice leaf diseases,
achieving an impressive 93.0% accuracy. This model also demonstrated high performance with a sensitivity
of 89.9%, specificity of 94.7%, precision of 92.4%, and an Fl-score of 90.5%. The development process
involved image preprocessing in MATLAB and training/testing using Anaconda3, Python, Keras, and
TensorFlow on a dedicated GPU [14]. Similarly, Soukayna’s study employed the VGG16 architecture,
consisting of 16 layers (13 convolutional and 3 fully connected), to extract features using transfer learning
methods. These advancements underscore the potential of deep learning in enhancing plant disease diagnosis
and overall agricultural productivity.

In recent studies, the early layers of pre-trained models were frozen for feature extraction, while the
final layers were adapted to new datasets, such as corn [15]. Research by Khan et al. [16] utilized the
Xception architecture, which employs depth wise separable convolutions for multi-dimensional feature
extraction. This model achieved an accuracy of 81.09%, outperforming other models like Inception-V2,
Mobilenet-V2, and NASnet Mobile. Research by Chakraborty et al. [17] used the VGG16 model, which
initially provided the highest accuracy of 92.69%. With further tuning, this model achieved an impressive
97.89% accuracy in classifying leaf rot syndrome and early leaf rot diseases in healthy potato leaves.
Research by Kumar et al. [18] utilized one-stage object detectors YOLOVS5 and YOLOV?7, recognized for its
exceptional precision, accuracy, and real-time processing capabilities. Jiang at al. [19] enhanced the VGG16
model by incorporating multi-task learning and transfer learning concepts, achieving an accuracy of 97.22%
for rice leaf diseases and 98.75% for wheat leaf diseases. These advancements highlight the potential of deep
learning models in improving the accuracy and efficiency of plant disease diagnosis.

Although previous research has shown promising results, there are still several limitations in
applying of this technology in the field, especially for small-scale farmers. Many deep learning models
require advanced hardware, making implementing them on lighter mobile applications difficult. Additionally,
data imbalance poses a challenge in detecting leaf diseases [18], [20], [21], where some disease classes have
fewer image data compared to others. In this context, our research attempts to overcome these issues by
constructing a lightweight yet accurate CNN model that can be implemented into an Android application for
identifying leaf diseases in rice plants. The goal is to create a CNN architecture capable of operating on
mobile devices. To enhance the model's performance, data augmentation methods will be employed to
mitigate class imbalance in the rice leaf disease dataset, improving its capacity to identify various disease
types. Additionally, the incorporation of the model into an Android mobile application will provide farmers
with immediate access to real-time rice plant’s diseases diagnosis.

The remainder of this paper is organized as follows: section 2 provides detailed information about
the methods used in this research. Section 3 discusses the experimental results, focusing primarily on the
database, evaluation metrics, hyperparameters, and outcomes. Section 4 discusses the conclusions and
findings.

2. METHOD

The design of the rice plant disease detection feature begins with the stage of loading the acquired
dataset, followed by data preprocessing, constructing the model using CNN architecture [1], [22], developing
a treatment recommendation system, testing the model, and the final stage involves integration with an
Android mobile app, can be seen in the Figure 1.
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Figure 1. Research methods

2.1. Experiment environment

The operational environment specifications used in the development of the rice plant disease
detection feature for this smart agriculture application are as follows. For hardware, the system utilizes an
Intel Core i5-1035G1 processor, 4 GB RAM, and a 64-bit system type running Windows 10 as the operating
system. The software components include Python, Jupyter Notebooks, Visual Studio Code, the TensorFlow
framework, TensorFlow Lite framework, Keras library, Numpy library, and Matplotlib library.

2.2. Dataset structure

The dataset used is sourced from the Kaggle website, titled "Rice Leaf Diseases Dataset," compiled
by the research team at the Department of CSE, Khwaja Yunus Ali University [13], [14], [23]. This dataset
presents a collection of images depicting eight types of rice leaf diseases from various regions of Bangladesh.
Bacterial leaf blight (Xanthomonas oryzae pv. oryzae), brown spot (Cochliobolus miyabeanus), leaf scald
(Microdochium oryzae), narrow brown leaf spot (Cercospora janseana), rice hispa (Dicladispa armigera),
sheath blight (Rhizoctonia solani), leaf blast (Pyricularia oryzae), and healthy rice leaf are included in the
groups. This collection consists of 1,886 image files. The dataset's folder structure is divided into three
categories: training, testing, and validation folders as shown in Table 1. Figure 2 depicts the structure of the
rice leaf diseases dataset.

Table 1. The dataset's folder structure is divided into three categories

Dataset

Training Validation Testing
Healthy rice leaf Healthy rice leaf Healthy rice leaf
Bacterial leaf blight Bacterial leaf blight Bacterial leaf blight
Brown spot Brown spot Brown spot
Leaf blast Leaf blast Leaf blast
Leaf scaid Leaf scaid Leaf scaid
Narrow brown leaf spot  Narrow brown leaf spot ~ Narrow brown leaf spot
Rice hispa Rice hispa Rice hispa
Sheath blight Sheath blight Sheath blight

Sheath Blight

Leaf Blast Healthy Rice Leaf Narrow Brown Leaf Spot Leaf Blast

Leaf Blast Narrow Brown Leaf Spot Leaf Scald
"~ Rice Hispa Narrow Brown Leaf Spot Bacterial Leaf Blight

Rice Hispa Narmow Brown Leaf Spot _Sheath Blight Bacterial Leaf Blight

N

Rice Hispa Bacterial Leaf Bligh

Leaf Blast

=T
Rice Hispa Brown Spot
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Figure 2. The structure of the rice leaf diseases dataset
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The distribution of data across the training, validation, and testing classes tends to be imbalanced.
The training folder contains 1,322 image files, the testing folder contains 378 image files, and the validation
folder contains 186 image files. Thus, the total number of images amounts to 1,886 files. The distribution of
image data before the preprocessing stage is displayed in the Table 2.

Table 2. The distribution of data across the training, validation, and testing

Categories Training  Validation  Testing
Healthy rice leaf 131 19 37
Bacterial leaf blight 146 20 42
Brown spot 192 27 55
Leaf blast 217 31 62
Leaf scald 162 23 46
Narrow brown leaf spot 114 16 33
Rice hispa 158 22 45
Sheath blight 202 28 58
Total 1.322 186 378

2.3. Data preprocessing

The leaf images in the dataset exhibit significant variations, especially in terms of size and number
of images. Due to these substantial differences, preprocessing is conducted to standardize the image elements
before proceeding to advanced stages. The leaf images in the dataset exhibit significant variation in terms of
size and quantity, necessitating preprocessing to standardize elements before proceeding to advanced stages.
Preprocessing includes:

— Resizing: images are resized to a standard dimension of 254x254 pixels.
— Normalization: each pixel value is scaled to the [0, 1] range by dividing the original pixel value by 255:

I=—4

255
where 1 is the original pixel intensity, and I' is the normalized pixel value.
— Random oversampling: to address data imbalance, random oversampling was employed, adding copies of
minority class images to match the quantity in the majority class.

Table 3 displays the data distribution after preprocessing. The preprocessed data is then subjected to
data splitting to divide the data into training and testing sets. The data is split into three parts: training data to
train the model, validation data to assess the model's performance during training, and testing data to conduct
the final evaluation of the model's performance. The division used is 80% for training data, 10% for
validation data, and 10% for testing data. Thus, the distribution of the split data can be seen in Table 4.

Table 3. The data distribution after preprocessing

Class Number of images
Healthy rice leaf 350
Bacterial leaf blight 350
Brown spot 350
Leaf blast 350
Leaf scald 350
Narrow brown leaf spot 350
Rice hispa 350
Sheath blight 350
Total 2.800

Table 4. Distribution of the split data
Category  Number of images

Training 2.240
Validation 280
Testing 280
Total 2.800

2.4. Data augmentation

Following the preprocessing stage, data augmentation is employed to randomly enhance the
variation within the image dataset during model training. To enhance variability in the dataset during
training, several data augmentation techniques were applied [13], [24]:
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— Random flip: randomly flips images horizontally and vertically.
— Random rotation (0.2): rotates images randomly up to a 20% angle (approximately 72°) within the range
of -20% to +20%:

Lot = R(®) X I

where R(®) is the rotation matrix, and | is the original image.
— Random zoom (0.2): randomly zooms in or out by up to -/+20%.
— Random contrast (0.2): alters contrast within a -/+20% range, calculated as:

Icont=(1+a)'1_a' W

where « is the contrast factor, and x is the average pixel intensity.

These techniques help increase the diversity of the dataset without collecting additional real-world
images, compensating for the relatively small number of samples. Additionally, transfer learning could be
considered as a complementary strategy to further improve generalization when working with limited
datasets. Transfer learning leverages pre-trained models trained on large-scale datasets such as ImageNet,
allowing the model to benefit from learned features that are transferable to new but related tasks like rice leaf
disease classification [25]. However, due to hardware limitations and deployment constraints on mobile
systems, a lightweight custom CNN architecture was chosen instead to maintain compatibility with resource-
limited environments. Figure 3 illustrates the image transformations resulting from the augmentation process.

Horizontal Flip

—

Original Image

Rotation Zoom

Figure 3. Image transformations due to augmentation process

2.5. Model architecture and training

The model for image classification is constructed using a CNN architecture. This model consists of
a linear stack of several neural network layers [3], [14], [25], [26]. The process of building the model is
illustrated in Figures 4 and 5.

Unlike complex state-of-the-art models such as ResNet or EfficientNet, which may achieve higher
accuracy but require significant computational resources, our lightweight CNN was designed specifically for
mobile deployment. ResNet utilizes skip connections to mitigate vanishing gradients in deeper networks [16],
while EfficientNet scales depth, width, and resolution in a compound manner to achieve optimal performance
[20]. However, both architectures are often too large and computationally heavy for direct implementation on
smartphones without extensive pruning or quantization techniques [19].
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Figure 4. The process of building the model
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Figure 5. The flowchart of building the model
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Table 5 shows the detailed CNN architecture. In addition to the architectural details, the following
training hyperparameters were used:
— Optimizer: Adam
— Learning rate: 0.001
— Batch size: 32
— Number of epochs: 50
— Loss function: categorical crossentropy
— Data augmentation techniques used:
— RandomFlip (horizontal and vertical)
— RandomRotation (up to 20% angle)
— RandomZoom (x20%)
— RandomContrast (£20%)

Table 5. Detailed CNN architecture

Layer type Parameters Output shape
Input layer RGB images with dimensions (224, 224, 3)  (None, 224, 224, 3)
Resize and rescale Normalize pixel values to [0, 1] (None, 224, 224, 3)
Conv2D+ReLU 32 filters, kernel size 3x3 (None, 224, 224, 32)
MaxPooling2D Pool size 2x2 (None, 112, 112, 32)
Conv2D+ReLU 64 filters, kernel size 3x3 (None, 112, 112, 64)
MaxPooling2D Pool size 2x2 (None, 56, 56, 64)
Conv2D+ReLU 64 filters, kernel size 3x3 (None, 56, 56, 64)
MaxPooling2D Pool size 2x2 (None, 28, 28, 64)
Conv2D+ReLU 64 filters, kernel size 3x3 (None, 28, 28, 64)
MaxPooling2D Pool size 2x2 (None, 14, 14, 64)
Conv2D+ReLU 64 filters, kernel size 3x3 (None, 14, 14, 64)
MaxPooling2D Pool size 2x2 (None, 7,7, 64)
Conv2D+ReLU 64 filters, kernel size 3x3 (None, 7,7, 64)
MaxPooling2D Pool size 2x2 (None, 3, 3, 64)
Flatten Converts to 1D vector (None, 576)
Dense+RelU 64 neurons (None, 64)

Output layer (dense) 8 neurons (for 8 disease classes), SoftMax  (None, 8)

These hyperparameters were selected through iterative experimentation to ensure stable convergence
and high generalization performance on both training and validation datasets [14]. The CNN model consists of
several neural layers, including a sequential layer that allows for the construction of a neural network layer by
layer, a convolutional layer for feature extraction, a max pooling layer to reduce spatial dimensions
(minimizing size to highlight important features), a flatten layer to transform the output from the previous
layers into a one-dimensional array, and a fully connected layer for classification. Layers with the rectified
linear unit (ReLU) activation function are useful for converting negative values to zero, simplifying
computations, while layers with the softmax activation function are used for multi-class classification [20],
[27], [28]. To achieve the best model accuracy, a series of model training sessions are conducted using a
consistent architecture but with variations in dataset settings and the model training process.

This architecture is intentionally lightweight compared to pre-trained CNNs such as VGG16 or
InceptionV3, which typically contain over 100 million parameters and require GPU acceleration for training
and inference. In contrast, our model has fewer than 1 million parameters, making it suitable for integration
into mobile devices using TensorFlow Lite. Traditional machine learning approaches like SVM or Random
Forest have also been explored in plant disease detection, particularly when datasets are small or features are
manually engineered [10], [21]. However, these methods generally offer lower accuracy compared to
CNN-based models due to their limited capacity for automated feature extraction from raw image data [14].

The image classification model was constructed using a CNN architecture with the following key
layers:

— Convolutional layer: extracts feature from the input images. The convolution operation applies a filter W
across the image:

f(x,J’) = i(=—k2§(:—kw(ll])I(x+l'y+])

where f(x,y) is the output of the convolution, 111 is the input image, and W is the filter weight.

— Max pooling layer: reduces spatial dimensions by retaining only the maximum values in a 2x2 window.
— Flatten layer: converts the output into a one-dimensional array to input into subsequent layers.

— Fully connected layer: utilizes the ReLU activation function to set negative values to zero:
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f(x) = max(0, x)
and the softmax activation function for multi-class classification:

eZi
softmax(z;) = 57
where z; is the output value for each class.
Training parameters: the model was trained with the following settings:
— Epochs: 50
— Batch size: 32
— Learning rate: 0.001, optimized using the Adam optimizer for stable convergence.

2.6. Model testing and evaluation

After training, the model was tested using the test dataset with the following evaluation metrics:
Accuracy: the ratio of correct predictions to total predictions.
Precision: measures the accuracy of positive predictions:

Precision =
TP+FP

Recall: measures the coverage of actual positives:

TP
TP+FN

Recall =

F1-score: the harmonic means of precision and recall:

PrecisionxRecall
F1=2-———

Precision+Recall

Confusion matrix: used to evaluate model performance across each class.

2.7. Integration with android mobile app

After achieving optimal accuracy, the model was converted to TensorFlow Lite format to enable
compatibility with mobile devices. An Android application was developed to integrate the model, allowing
users to capture images of rice leaves and receive real-time detection results in the field.

2.8. Literature review table

To provide context for the current study within existing research efforts, we present a summary of
related works focusing on deep learning-based approaches for rice leaf disease detection. Table 6 outlines the
key methodologies, datasets used, and performance metrics reported in recent studies, which highlights the
variety of models used in rice leaf disease classification, ranging from pre-trained networks such as VGG16
and Xception to custom architectures optimized for specific deployment contexts. While many studies report
high accuracy, several rely on large-scale datasets or powerful GPU resources, limiting their applicability in
mobile or resource-constrained environments.

Table 6. Summary of related research on rice leaf disease detection

Author(s) Model used Dataset Classes Accuracy
Dogra et al. [14] VGG19+transfer learning Custom dataset (MATLAB) Rice leaf diseases 93%
Benaissaetal. [15] VGG16 PlantVillage Rice Not specified
Khan et al. [16] Xception Custom dataset Multi-crop 81.09%
Chakraborty et al. VGG16 Potato leaf dataset Leaf rot syndrome 97.89%

[17]
Jiang et al. [19] VGG16+multi-task Rice and wheat Rice and wheat leaf  97.22% (rice)
learning diseases
Present study Lightweight CNN Kaggle rice leaf diseases 8 classes (including 93.75%
dataset [23] Healthy) (valid)

The proposed lightweight CNN model achieves competitive accuracy while maintaining a reduced
computational footprint, making it suitable for real-time implementation in Android applications without
requiring continuous internet connectivity. This aligns with trends toward deploying efficient models in edge
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computing environments, particularly in agricultural settings where offline functionality is essential

(6], [7], [23].

3. RESULTS AND DISCUSSION
3.1. Comparison of number of epochs

The dataset used for model training has an imbalanced class distribution, and training was
conducted for up to 300 epochs without any preprocessing or augmentation. The model achieved its highest
accuracy and validation accuracy at epoch 291, with an accuracy of 100% and a validation accuracy of
93.75%. At this epoch, the loss accuracy was 8.52E-08, and the validation loss was 0.6897. A graphical
comparison of the training process across the epochs is shown in Figure 6.

Comparison of the training process across the epochs
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Figure 6. Comparison of the training process across the epochs

3.2. Comparison of imbalanced and balanced data

The model training was conducted using two datasets: one with imbalanced data distribution and the
other with balanced data distribution across classes, both trained without preprocessing or augmentation for
50 epochs. The results, indicate that the highest validation accuracy for the imbalanced dataset was 51.25% at
epoch 48, while the balanced dataset achieved 76.88% at epoch 50. Despite these imperfections, both
datasets exhibited accuracy and validation losses of 1.1816 and 1.2879, respectively, suggesting that the
model is underfitting. This underfitting likely stems from the lack of preprocessing, augmentation, and the
limited number of training epochs, as illustrated in Figure 7.
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Figure 7. Underfitting likely stems from the lack of preprocessing, augmentation, and the limited number of
training epochs
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3.3. Comparison of non-preprocessing and preprocessing data

The model was trained using the same dataset, characterized by imbalanced data distribution across
classes, without any augmentation. In the first training session, no preprocessing steps, such as rescaling and
resizing, were applied, while the second session included these preprocessing steps. Both sessions involved
50 epochs of iterations. The non-preprocessed data had the highest validation accuracy (51.25% at epoch 48),
whereas the preprocessed data had a higher validation accuracy (72.68% at epoch 28). Figure 8 depicts the
graphical comparison of the training outcomes. From Figure 8, the accuracy value reaches 1 or 100%,
indicating that the model can almost completely correctly classify the images in the training data. However,
the validation accuracy only reaches about 70%. There is a possibility that the model is experiencing
overfitting, meaning it performs very well on the training data but fails to generalize effectively on the
validation data.

3.4. Comparison of non-augmented and augmented data

The model was trained on the same dataset with imbalanced class distribution and without
preprocessing. In the first session, no augmentation was applied, while in the second session, augmentation
techniques such as RandomFlip, RandomRotation, RandomZoom, and RandomContrast were used. Both
sessions involved 50 epochs. The non-augmented data had the highest validation accuracy (51.25% at epoch
48), whereas the augmented data had a higher validation accuracy (75% at epoch 46). Figure 8 displays a
graphical comparison of the training outcomes Figure 9.
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Figure 8. Comparison of the training outcomes: preprocessing vs hon-preprocessing
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Figure 9. Comparison of the training outcomes: augmented vs non-augmented
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After conducting a series of model training sessions with various variations, conclusions drawn from

these experiments to build an effective model are as follows:

a.

The greater the number of epochs used, the higher the accuracy and the lower the loss value. However, at
certain epochs, the model reaches a point of convergence where changes in the weights of the neural
network are minimal, thus not significantly altering the accuracy.
With balanced data, accuracy has increased to 22.69% and validation accuracy has increased to 25.63%.
The implementation of preprocessing stages improves accuracy. Preprocessing leads to an increase in
accuracy up to 47.59% and validation accuracy up to 20.46% in training. However, these results are less
reliable due to overfitting.
Implementing augmentation stages increases accuracy. Training with augmentation results in an increase in
accuracy up to 17.04% and validation accuracy up to 23.75%.

The training results show that the best model was obtained in the last training session. The model

with the highest accuracy was achieved at epoch 75 out of a total of 85 epochs. The output shown in Figure 8

indicates that at epoch 75, the model performs quite well with a training accuracy of 86.56% and a validation
accuracy of 93.75%. The loss values on the validation dataset are also lower than those on the training
dataset, which may indicate that the model generalizes well to unseen data. If depicted graphically, the loss
and accuracy values on the training and validation data during training appear as in Figure 10. The model that

has been created is implemented and integrated on a mobile device as shown in the Figure 11.
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Figure 10. The loss and accuracy values on the training and validation
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3.5. Optimization for mobile deployment

Integrating deep learning models into mobile applications presents several practical challenges that
must be carefully managed to ensure usability and performance in real-world agricultural settings. Among
the most critical issues are inference speed, power consumption, and the trade-off between offline and cloud-
based processing [4], [5]. Ensuring optimal model performance on mobile devices requires careful
optimization to achieve both real-time inference and energy efficiency.

Inference speed is crucial for achieving real-time or near-real-time disease diagnosis in the field. While
the proposed lightweight CNN model demonstrates acceptable accuracy, its execution speed on mobile
hardware must also be optimized. Mobile devices generally have less computational power compared to
desktop or server environments, which can result in slower prediction times. To mitigate this, TensorFlow Lite
optimizations such as quantization and operator fusion were applied to reduce model size and accelerate
inference. These techniques help bridge the performance gap between high-end computing systems and mobile
processors, enabling deployment of complex Al functionalities even on resource-constrained devices [1], [5].
The proposed CNN architecture was designed with fewer layers and reduced filter counts compared to standard
deep learning models, minimizing computational load while maintaining classification accuracy. The model
consists of only six convolutional layers followed by max-pooling and dense layers, making it significantly
lighter than deeper networks such as VGG16 or ResNet, which are typically unsuitable for mobile use due to
high memory and processing requirements [2], [14]. TensorFlow Lite optimizations were applied during model
conversion. Techniques such as quantization—reducing the precision of weights from 32-bit floating points to
8-bit integers—were utilized to decrease model size and accelerate inference speed. This is particularly
important for mobile environments where memory bandwidth and processing speed are restricted [14].

Power consumption is another important constraint when running machine learning models on
smartphones. Continuous use of the camera and processor-intensive tasks like image classification can drain
the battery quickly. The lightweight design of the CNN model helps reduce energy usage by minimizing the
number of operations required per inference, making it more suitable for extended use in the field.
Additionally, eliminating constant reliance on network connectivity further contributes to lower power
consumption, aligning with the practical demands of remote agricultural usage [4], [5], [7].

Mobile applications for plant disease detection can operate either offline or via cloud-based services.
Offline processing ensures accessibility without internet connectivity, which is often unreliable in
agricultural regions. However, maintaining high accuracy while keeping the model small enough for local
deployment remains a challenge. On the other hand, cloud-based solutions allow for more complex models
but introduce latency and dependency on network availability. Moreover, offloading computation to the
cloud can improve processing speed significantly but may raise concerns regarding data privacy and security,
especially when dealing with sensitive agricultural data [2], [7]. To ensure real-time performance, the input
image size was standardized to 224x224 pixels, reducing the number of operations required for preprocessing
and feature extraction. Testing showed that the model achieves an average inference time of less than 100
milliseconds per image on mid-range Android devices, aligning with expectations for near real-time detection
in field conditions.

Energy efficiency was addressed through model simplification and hardware-aware design choices.
By avoiding complex operations such as large matrix multiplications and depthwise convolutions found in
heavy architectures, the model consumes less power during inference. Additionally, running the model in
offline mode eliminates the need for continuous internet access, reducing overall energy usage associated with
network communication. These optimizations ensure that the rice leaf disease detection system performs
efficiently on mobile devices, supporting real-time diagnosis with minimal impact on battery life, thus
enhancing its usability in rural and resource-constrained agricultural settings. These considerations highlight
the importance of balancing model complexity, efficiency, and usability when deploying Al-based diagnostic
tools on mobile platforms for agricultural applications. As mobile devices continue to evolve, so too will the
strategies for optimizing deep learning models to meet the growing needs of precision agriculture [1], [5], [8].

To evaluate the practical deployment of the proposed lightweight CNN model, we conducted real-
time performance tests on three different Android smartphones ranging from budget to mid-range devices.
The evaluation focused on three key metrics: inference latency, memory usage, and offline functionality. The
model was converted into TensorFlow Lite format and integrated into the Android application. On a
Samsung Galaxy A10 (Exynos 7885, 2GB RAM), the average inference time was ~95 ms, while on a Redmi
Note 9 (Snapdragon 665, 4GB RAM), it dropped to ~65 ms. Table 7 shows that the model supports near real -
time classification, even on low-end devices.

The Android application was tested in fully offline conditions. Once installed, the app does not
require any external API calls or cloud-based services. All image processing and prediction tasks are
performed locally using the embedded TensorFlow Lite model. This ensures consistent performance in areas
with poor or no internet connectivity, making the tool highly reliable for smallholder farmers in remote
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regions. Additionally, the model was evaluated for cold-start behavior —i.e., how quickly it can make
predictions after launching the app. Cold start inference times remained within acceptable limits (<150 ms),
confirming robustness in field scenarios where users may frequently open and close the application.

Table 7. Performance test on android smartphones

Device Inference time (ms)  Memory usage (MB)
Samsung Galaxy A10 ~95 ~25
Redmi Note 9 ~65 ~30
Emulator (Pixel 3a) ~50 ~32

3.6. Model performance comparison with existing architectures

To provide context for the proposed lightweight CNN, we compare its performance against well-
known deep learning architectures that are commonly used in mobile and embedded Al applications:
MobileNetV2, ResNet50, and EfficientNet-B0. Table 8 summarizes this comparison.

Table 8. Performance comparison of proposed CNN with other deep learning models

Model Parameters (M)  Accuracy (%) Avrg inference time (ms)  Mobile friendly
Proposed CNN 0.79 93.75 <100 Yes
MobileNetV2 ~35 ~94.5 ~120-150 Yes
ResNet50 ~25.6 ~95.2 ~300-400 No

The proposed CNN achieves competitive validation accuracy (93.75%) while maintaining
significantly fewer parameters. This results in faster inference times (<100 ms) on mobile hardware, which is
crucial for real-time agricultural diagnostics [14], [16]. While deeper models like ResNet and EfficientNet
offer slightly higher accuracy, they require more powerful hardware and often rely on cloud-based processing
due to their computational demands [16]. MobileNetV2 offers a good balance between performance and
efficiency but still incurs higher latency compared to our model. The proposed CNN is therefore better suited
for deployment in low-power, low-memory environments, such as budget smartphones used by small-scale
farmers in remote areas, where offline functionality is essential.

3.7. Error analysis and potential improvements

Although the proposed CNN achieved a high validation accuracy of 93.75%, several misclassification
cases were observed during testing. These errors occurred primarily in visually similar disease types and under
suboptimal lighting conditions. Table 9 shows examples of misclassified images and their predicted labels.

Table 9. Examples of misclassified images and their predicted labels

Label Predicted label Description
Brown spot Sheath blight Both diseases exhibit brownish discoloration, making them difficult to distinguish without
fine-grained feature extraction.
Leaf blast Sheath blight Overlapping lesion patterns led to confusion between these two categories.
Healthy rice  Brown spot Early-stage healthy leaves with minor blemishes were mistakenly classified as diseased.
leaf
Rice hispa Leaf scald Damage caused by pests was confused with fungal symptoms.

These misclassifications highlight limitations in the current model’s ability to distinguish subtle
visual differences between certain disease types. To address this issue, several improvement strategies are
proposed:

a. Dataset expansion: including more image samples—especially from underrepresented classes such as
Leaf Scald and Rice Hispa—can help the model learn more robust features and reduce class imbalance
effects.

b. Transfer learning from pretrained lightweight models: leveraging networks like MobileNetV2 or
EfficientNet-Lite as base models may improve feature extraction capabilities while maintaining
compatibility with mobile devices.

c. Advanced data augmentation: introducing techniques such as MixUp, CutOut, or RandAugment can
further enhance generalization by simulating diverse environmental conditions during training.

d. Attention mechanisms: incorporating attention modules, such as squeeze-and-excitation blocks, can help
the model focus on key discriminative regions of the leaf, improving classification accuracy.
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e. Ensemble learning: combining predictions from multiple models trained with different augmentations or
initializations can increase overall accuracy and reduce variance in predictions.
f. Improved user interface feedback: in the Android application, adding confidence scores and allowing
manual correction by users can help refine the model over time through user feedback loops.
By implementing these improvements, the classification accuracy and reliability of the rice leaf
disease detection system can be further enhanced, making it even more effective for practical use in the field.

4. CONCLUSION

The experiments conducted to train various models have highlighted several key factors critical for
optimizing model performance. Increasing the number of training epochs generally enhances accuracy and
reduces loss until the model reaches a convergence point where additional training yields minimal benefits.
Importantly, a balanced data distribution significantly improves model accuracy, emphasizing the need for
well-distributed datasets. From a series of model training sessions with various configurations, the
conclusions for building an effective model are as follows: Increasing the number of epochs generally
enhances accuracy and reduces loss, though the model eventually converges at certain epochs where further
changes are minimal. A balanced data distribution significantly boosts accuracy, with improvements of up to
22.69% in accuracy and 25.63% in validation accuracy. Incorporating preprocessing steps improves accuracy
by up to 47.59% and validation accuracy by up to 20.46%, though these gains may be less reliable due to
overfitting. Augmentation techniques also contribute to higher accuracy, with increases of up to 17.04% in
accuracy and 23.75% in validation accuracy. Incorporating preprocessing steps improves accuracy by up to
47.59% and validation accuracy by up to 20.46%, though these gains may be less reliable due to overfitting.
The proposed CNN strikes a balance between performance and efficiency, achieving competitive validation
accuracy (93.75%) while remaining deployable on resource-constrained platforms. Notably, the validation
loss was lower than the training loss, suggesting good generalization to unseen data.
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