
Bulletin of Electrical Engineering and Informatics

Vol. 14, No. 4, August 2025, pp. 2705~2720

ISSN: 2302-9285, DOI: 10.11591/eei.v14i4.9260  2705

Journal homepage: http://beei.org

A lightweight convolutional neural network for rice leaf disease

detection integrated in an Android application

Rudi Hartono1, Nanang Maulana Yoeseph1, Fendi Aji Purnomo1, Sahirul Alim Tri Bawono1, Agus

Purnomo2
1Diploma Program in Informatics Engineering, Faculty of Vocational Studies, Universitas Sebelas Maret, Surakarta, Indonesia

2Department of Informatics Engineering, Faculty of Science and Technology, Universitas Islam Negeri (UIN), Salatiga, Indonesia

Article Info ABSTRACT

Article history:

Received Sep 5, 2024

Revised May 27, 2025

Accepted Jul 5, 2025

 More than two-thirds of the world's population rely on rice or wheat as

staple foods, which are grown in various Asian countries. Diseases affecting

rice leaves can disrupt growth, reduce yields, and cause famine in some

areas. Therefore, a quick and accurate recognition method is necessary to

minimize losses. This article focuses on eight types of rice leaf diseases

using data consisting of approximately 110 images for each disease type,

with enhanced image quality to achieve better results. The study applies a

convolutional neural network (CNN) model integrated into an Android

mobile application, achieving a training accuracy of 86.56% and a validation

accuracy of 93.75%. Comparative experiments demonstrate that the model

can be effectively implemented in mobile applications for accurately

detecting rice leaf diseases, providing a reliable solution for field detection.

This method not only helps farmers identify diseases more quickly but also

has the potential to reduce crop losses caused by leaf diseases.

Keywords:

Agriculture

Convolutional neural network

Deep learning

Mobile android app

Rice leaf disease

This is an open access article under the CC BY-SA license.

Corresponding Author:

Rudi Hartono

Diploma of Informatics Engineering, Faculty of Vocational Studies, Universitas Sebelas Maret

Surakarta, Indonesia

Email: rudi.hartono@staff.uns.ac.id

1. INTRODUCTION

Agriculture is a cornerstone of the global economy, serving as the primary source of food, income,

and employment [1], [2]. In many low and middle-income countries, this sector contributes significantly,

accounting for 18% of national income and boosting employment rates to 53%. Over the past three years, the

gross value added by agriculture has grown from 17.6% to 20.2% [3], [4]. The advent of digital technology

has revolutionized various sectors, including agriculture. Innovations like real-time, smartphone-based

systems have enabled intelligent cultivation practices, growth monitoring, and efficient crop harvesting

[5], [6]. However, agricultural production faces serious challenges related to plant diseases and pest

infestations that can reduce yields and threaten global food security. In rice crops, leaf diseases such as

brown spots, blight, and hispa can cause significant losses. Therefore, rapid and accurate disease detection

methods are needed to minimize these losses. Despite these advancements, plant diseases and pest

infestations remain severe threats to agricultural yields and global food security, compromising the quality of

food production. Traditional prophylactic treatments often fall short of preventing disease outbreaks,

highlighting the need for early monitoring and accurate diagnosis [4], [7]. Researchers are increasingly

turning to automated methods for plant disease detection, leveraging image processing techniques and

machine learning to improve classification accuracy and speed up diagnostics. Methods such as image

manipulation, dimension reduction, and fuzzy systems have been utilized to improve diagnostic accuracy.

https://creativecommons.org/licenses/by-sa/4.0/

  ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 14, No. 4, August 2025: 2705-2720

2706

Today, deep learning stands out as the leading method in plant disease diagnosis systems, offering promising

results for the future of agriculture [8], [9].

Recent advancements in deep learning have significantly enhanced image classification, particularly

feature extraction and learning efficiency. Convolutional neural networks (CNNs) based on deep learning

have become the standard for computer vision tasks [10], [11]. Networks such as SegNet, fully convolutional

network (FCN), and U-Net have been specifically built and thoroughly investigated to address certain use

cases [12], [13]. These deep learning approaches have outperformed traditional methods by enabling end-to-

end learning, reducing loss, and conserving human and material resources. However, increasing the depth of

CNNs can lead to vanishing gradient problems. Residual networks with shortcut links have been added to

mitigate this, simplifying things and getting rid of these problems. A well-organized and extensive database

is crucial for the effectiveness of deep learning architectures. Experiments using large open-source datasets

have achieved up to 85% accuracy in diagnosing plant diseases in crops like grapes, apples, and rice [5].

Studies have shown that deep learning-based models have great potential in detecting plant diseases.

However, most of these models have limitations in their implementation on mobile devices due to high

computational power requirements and often reliance on powerful graphics processing units (GPUs). Roopali

Dogra’s research utilized the VGG19 model and transfer learning methods to classify rice leaf diseases,

achieving an impressive 93.0% accuracy. This model also demonstrated high performance with a sensitivity

of 89.9%, specificity of 94.7%, precision of 92.4%, and an F1-score of 90.5%. The development process

involved image preprocessing in MATLAB and training/testing using Anaconda3, Python, Keras, and

TensorFlow on a dedicated GPU [14]. Similarly, Soukayna’s study employed the VGG16 architecture,

consisting of 16 layers (13 convolutional and 3 fully connected), to extract features using transfer learning

methods. These advancements underscore the potential of deep learning in enhancing plant disease diagnosis

and overall agricultural productivity.

In recent studies, the early layers of pre-trained models were frozen for feature extraction, while the

final layers were adapted to new datasets, such as corn [15]. Research by Khan et al. [16] utilized the

Xception architecture, which employs depth wise separable convolutions for multi-dimensional feature

extraction. This model achieved an accuracy of 81.09%, outperforming other models like Inception-V2,

Mobilenet-V2, and NASnet Mobile. Research by Chakraborty et al. [17] used the VGG16 model, which

initially provided the highest accuracy of 92.69%. With further tuning, this model achieved an impressive

97.89% accuracy in classifying leaf rot syndrome and early leaf rot diseases in healthy potato leaves.

Research by Kumar et al. [18] utilized one-stage object detectors YOLOV5 and YOLOV7, recognized for its

exceptional precision, accuracy, and real-time processing capabilities. Jiang at al. [19] enhanced the VGG16

model by incorporating multi-task learning and transfer learning concepts, achieving an accuracy of 97.22%

for rice leaf diseases and 98.75% for wheat leaf diseases. These advancements highlight the potential of deep

learning models in improving the accuracy and efficiency of plant disease diagnosis.

Although previous research has shown promising results, there are still several limitations in

applying of this technology in the field, especially for small-scale farmers. Many deep learning models

require advanced hardware, making implementing them on lighter mobile applications difficult. Additionally,

data imbalance poses a challenge in detecting leaf diseases [18], [20], [21], where some disease classes have

fewer image data compared to others. In this context, our research attempts to overcome these issues by

constructing a lightweight yet accurate CNN model that can be implemented into an Android application for

identifying leaf diseases in rice plants. The goal is to create a CNN architecture capable of operating on

mobile devices. To enhance the model's performance, data augmentation methods will be employed to

mitigate class imbalance in the rice leaf disease dataset, improving its capacity to identify various disease

types. Additionally, the incorporation of the model into an Android mobile application will provide farmers

with immediate access to real-time rice plant’s diseases diagnosis.

The remainder of this paper is organized as follows: section 2 provides detailed information about

the methods used in this research. Section 3 discusses the experimental results, focusing primarily on the

database, evaluation metrics, hyperparameters, and outcomes. Section 4 discusses the conclusions and

findings.

2. METHOD

The design of the rice plant disease detection feature begins with the stage of loading the acquired

dataset, followed by data preprocessing, constructing the model using CNN architecture [1], [22], developing

a treatment recommendation system, testing the model, and the final stage involves integration with an

Android mobile app, can be seen in the Figure 1.

Bulletin of Electr Eng & Inf ISSN: 2302-9285 

A lightweight convolutional neural network for rice leaf disease detection integrated in … (Rudi Hartono)

2707

Figure 1. Research methods

2.1. Experiment environment

The operational environment specifications used in the development of the rice plant disease

detection feature for this smart agriculture application are as follows. For hardware, the system utilizes an

Intel Core i5-1035G1 processor, 4 GB RAM, and a 64-bit system type running Windows 10 as the operating

system. The software components include Python, Jupyter Notebooks, Visual Studio Code, the TensorFlow

framework, TensorFlow Lite framework, Keras library, Numpy library, and Matplotlib library.

2.2. Dataset structure

The dataset used is sourced from the Kaggle website, titled "Rice Leaf Diseases Dataset," compiled

by the research team at the Department of CSE, Khwaja Yunus Ali University [13], [14], [23]. This dataset

presents a collection of images depicting eight types of rice leaf diseases from various regions of Bangladesh.

Bacterial leaf blight (Xanthomonas oryzae pv. oryzae), brown spot (Cochliobolus miyabeanus), leaf scald

(Microdochium oryzae), narrow brown leaf spot (Cercospora janseana), rice hispa (Dicladispa armigera),

sheath blight (Rhizoctonia solani), leaf blast (Pyricularia oryzae), and healthy rice leaf are included in the

groups. This collection consists of 1,886 image files. The dataset's folder structure is divided into three

categories: training, testing, and validation folders as shown in Table 1. Figure 2 depicts the structure of the

rice leaf diseases dataset.

Table 1. The dataset's folder structure is divided into three categories
Dataset

Training Validation Testing

Healthy rice leaf Healthy rice leaf Healthy rice leaf

Bacterial leaf blight Bacterial leaf blight Bacterial leaf blight

Brown spot Brown spot Brown spot
Leaf blast Leaf blast Leaf blast

Leaf scaid Leaf scaid Leaf scaid

Narrow brown leaf spot Narrow brown leaf spot Narrow brown leaf spot
Rice hispa Rice hispa Rice hispa

Sheath blight Sheath blight Sheath blight

Figure 2. The structure of the rice leaf diseases dataset

  ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 14, No. 4, August 2025: 2705-2720

2708

The distribution of data across the training, validation, and testing classes tends to be imbalanced.

The training folder contains 1,322 image files, the testing folder contains 378 image files, and the validation

folder contains 186 image files. Thus, the total number of images amounts to 1,886 files. The distribution of

image data before the preprocessing stage is displayed in the Table 2.

Table 2. The distribution of data across the training, validation, and testing
Categories Training Validation Testing

Healthy rice leaf 131 19 37

Bacterial leaf blight 146 20 42

Brown spot 192 27 55
Leaf blast 217 31 62

Leaf scald 162 23 46

Narrow brown leaf spot 114 16 33
Rice hispa 158 22 45

Sheath blight 202 28 58

Total 1.322 186 378

2.3. Data preprocessing

The leaf images in the dataset exhibit significant variations, especially in terms of size and number

of images. Due to these substantial differences, preprocessing is conducted to standardize the image elements

before proceeding to advanced stages. The leaf images in the dataset exhibit significant variation in terms of

size and quantity, necessitating preprocessing to standardize elements before proceeding to advanced stages.

Preprocessing includes:

− Resizing: images are resized to a standard dimension of 254×254 pixels.

− Normalization: each pixel value is scaled to the [0, 1] range by dividing the original pixel value by 255:

𝐼′ =
𝐼

255

where I is the original pixel intensity, and I' is the normalized pixel value.

− Random oversampling: to address data imbalance, random oversampling was employed, adding copies of

minority class images to match the quantity in the majority class.

Table 3 displays the data distribution after preprocessing. The preprocessed data is then subjected to

data splitting to divide the data into training and testing sets. The data is split into three parts: training data to

train the model, validation data to assess the model's performance during training, and testing data to conduct

the final evaluation of the model's performance. The division used is 80% for training data, 10% for

validation data, and 10% for testing data. Thus, the distribution of the split data can be seen in Table 4.

Table 3. The data distribution after preprocessing
Class Number of images

Healthy rice leaf 350

Bacterial leaf blight 350

Brown spot 350
Leaf blast 350

Leaf scald 350

Narrow brown leaf spot 350
Rice hispa 350

Sheath blight 350

Total 2.800

Table 4. Distribution of the split data
Category Number of images

Training 2.240

Validation 280

Testing 280
Total 2.800

2.4. Data augmentation

Following the preprocessing stage, data augmentation is employed to randomly enhance the

variation within the image dataset during model training. To enhance variability in the dataset during

training, several data augmentation techniques were applied [13], [24]:

Bulletin of Electr Eng & Inf ISSN: 2302-9285 

A lightweight convolutional neural network for rice leaf disease detection integrated in … (Rudi Hartono)

2709

− Random flip: randomly flips images horizontally and vertically.

− Random rotation (0.2): rotates images randomly up to a 20% angle (approximately 72°) within the range

of -20% to +20%:

𝐼𝑟𝑜𝑡 = 𝑅(θ) × 𝐼

where R(θ) is the rotation matrix, and I is the original image.

− Random zoom (0.2): randomly zooms in or out by up to -/+20%.

− Random contrast (0.2): alters contrast within a -/+20% range, calculated as:

𝐼𝑐𝑜𝑛𝑡 = (1 + α) ⋅ 𝐼 − α ⋅ µ

where α is the contrast factor, and μ is the average pixel intensity.

These techniques help increase the diversity of the dataset without collecting additional real-world

images, compensating for the relatively small number of samples. Additionally, transfer learning could be

considered as a complementary strategy to further improve generalization when working with limited

datasets. Transfer learning leverages pre-trained models trained on large-scale datasets such as ImageNet,

allowing the model to benefit from learned features that are transferable to new but related tasks like rice leaf

disease classification [25]. However, due to hardware limitations and deployment constraints on mobile

systems, a lightweight custom CNN architecture was chosen instead to maintain compatibility with resource-

limited environments. Figure 3 illustrates the image transformations resulting from the augmentation process.

Figure 3. Image transformations due to augmentation process

2.5. Model architecture and training

The model for image classification is constructed using a CNN architecture. This model consists of

a linear stack of several neural network layers [3], [14], [25], [26]. The process of building the model is

illustrated in Figures 4 and 5.

Unlike complex state-of-the-art models such as ResNet or EfficientNet, which may achieve higher

accuracy but require significant computational resources, our lightweight CNN was designed specifically for

mobile deployment. ResNet utilizes skip connections to mitigate vanishing gradients in deeper networks [16],

while EfficientNet scales depth, width, and resolution in a compound manner to achieve optimal performance

[20]. However, both architectures are often too large and computationally heavy for direct implementation on

smartphones without extensive pruning or quantization techniques [19].

  ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 14, No. 4, August 2025: 2705-2720

2710

Figure 4. The process of building the model

Figure 5. The flowchart of building the model

Bulletin of Electr Eng & Inf ISSN: 2302-9285 

A lightweight convolutional neural network for rice leaf disease detection integrated in … (Rudi Hartono)

2711

Table 5 shows the detailed CNN architecture. In addition to the architectural details, the following

training hyperparameters were used:

− Optimizer: Adam

− Learning rate: 0.001

− Batch size: 32

− Number of epochs: 50

− Loss function: categorical crossentropy

− Data augmentation techniques used:

− RandomFlip (horizontal and vertical)

− RandomRotation (up to 20% angle)

− RandomZoom (±20%)

− RandomContrast (±20%)

Table 5. Detailed CNN architecture
Layer type Parameters Output shape

Input layer RGB images with dimensions (224, 224, 3) (None, 224, 224, 3)
Resize and rescale Normalize pixel values to [0, 1] (None, 224, 224, 3)

Conv2D+ReLU 32 filters, kernel size 3×3 (None, 224, 224, 32)

MaxPooling2D Pool size 2×2 (None, 112, 112, 32)
Conv2D+ReLU 64 filters, kernel size 3×3 (None, 112, 112, 64)

MaxPooling2D Pool size 2×2 (None, 56, 56, 64)

Conv2D+ReLU 64 filters, kernel size 3×3 (None, 56, 56, 64)
MaxPooling2D Pool size 2×2 (None, 28, 28, 64)

Conv2D+ReLU 64 filters, kernel size 3×3 (None, 28, 28, 64)

MaxPooling2D Pool size 2×2 (None, 14, 14, 64)
Conv2D+ReLU 64 filters, kernel size 3×3 (None, 14, 14, 64)

MaxPooling2D Pool size 2×2 (None, 7, 7, 64)

Conv2D+ReLU 64 filters, kernel size 3×3 (None, 7, 7, 64)
MaxPooling2D Pool size 2×2 (None, 3, 3, 64)

Flatten Converts to 1D vector (None, 576)

Dense+ReLU 64 neurons (None, 64)

Output layer (dense) 8 neurons (for 8 disease classes), SoftMax (None, 8)

These hyperparameters were selected through iterative experimentation to ensure stable convergence

and high generalization performance on both training and validation datasets [14]. The CNN model consists of

several neural layers, including a sequential layer that allows for the construction of a neural network layer by

layer, a convolutional layer for feature extraction, a max pooling layer to reduce spatial dimensions

(minimizing size to highlight important features), a flatten layer to transform the output from the previous

layers into a one-dimensional array, and a fully connected layer for classification. Layers with the rectified

linear unit (ReLU) activation function are useful for converting negative values to zero, simplifying

computations, while layers with the softmax activation function are used for multi-class classification [20],

[27], [28]. To achieve the best model accuracy, a series of model training sessions are conducted using a

consistent architecture but with variations in dataset settings and the model training process.

This architecture is intentionally lightweight compared to pre-trained CNNs such as VGG16 or

InceptionV3, which typically contain over 100 million parameters and require GPU acceleration for training

and inference. In contrast, our model has fewer than 1 million parameters, making it suitable for integration

into mobile devices using TensorFlow Lite. Traditional machine learning approaches like SVM or Random

Forest have also been explored in plant disease detection, particularly when datasets are small or features are

manually engineered [10], [21]. However, these methods generally offer lower accuracy compared to

CNN-based models due to their limited capacity for automated feature extraction from raw image data [14].

The image classification model was constructed using a CNN architecture with the following key

layers:

− Convolutional layer: extracts feature from the input images. The convolution operation applies a filter W

across the image:

𝑓(𝑥, 𝑦) = ∑ ∑ 𝑊(𝑖, 𝑗)𝑘
𝑗=−𝑘

𝑘
𝑖=−𝑘 ⋅ 𝐼(𝑥 + 𝑖, 𝑦 + 𝑗)

where f(x,y) is the output of the convolution, III is the input image, and W is the filter weight.

− Max pooling layer: reduces spatial dimensions by retaining only the maximum values in a 2×2 window.

− Flatten layer: converts the output into a one-dimensional array to input into subsequent layers.

− Fully connected layer: utilizes the ReLU activation function to set negative values to zero:

  ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 14, No. 4, August 2025: 2705-2720

2712

𝑓(𝑥) = max(0, 𝑥)

and the softmax activation function for multi-class classification:

softmax(𝑧𝑖) =
𝑒𝑧𝑖

∑ 𝑒
𝑧𝑗

𝑗

where zi is the output value for each class.

Training parameters: the model was trained with the following settings:

− Epochs: 50

− Batch size: 32

− Learning rate: 0.001, optimized using the Adam optimizer for stable convergence.

2.6. Model testing and evaluation

After training, the model was tested using the test dataset with the following evaluation metrics:

− Accuracy: the ratio of correct predictions to total predictions.

− Precision: measures the accuracy of positive predictions:

Precision =
TP

TP+FP

− Recall: measures the coverage of actual positives:

Recall =
TP

TP+FN

− F1-score: the harmonic means of precision and recall:

𝐹1 = 2 ⋅
Precision×Recall

Precision+Recall

− Confusion matrix: used to evaluate model performance across each class.

2.7. Integration with android mobile app

After achieving optimal accuracy, the model was converted to TensorFlow Lite format to enable

compatibility with mobile devices. An Android application was developed to integrate the model, allowing

users to capture images of rice leaves and receive real-time detection results in the field.

2.8. Literature review table

To provide context for the current study within existing research efforts, we present a summary of

related works focusing on deep learning-based approaches for rice leaf disease detection. Table 6 outlines the

key methodologies, datasets used, and performance metrics reported in recent studies, which highlights the

variety of models used in rice leaf disease classification, ranging from pre-trained networks such as VGG16

and Xception to custom architectures optimized for specific deployment contexts. While many studies report

high accuracy, several rely on large-scale datasets or powerful GPU resources, limiting their applicability in

mobile or resource-constrained environments.

Table 6. Summary of related research on rice leaf disease detection
Author(s) Model used Dataset Classes Accuracy

Dogra et al. [14] VGG19+transfer learning Custom dataset (MATLAB) Rice leaf diseases 93%

Benaissa et al. [15] VGG16 PlantVillage Rice Not specified

Khan et al. [16] Xception Custom dataset Multi-crop 81.09%
Chakraborty et al.

[17]

VGG16 Potato leaf dataset Leaf rot syndrome 97.89%

Jiang et al. [19] VGG16+multi-task
learning

Rice and wheat Rice and wheat leaf
diseases

97.22% (rice)

Present study Lightweight CNN Kaggle rice leaf diseases

dataset [23]

8 classes (including

Healthy)

93.75%

(valid)

The proposed lightweight CNN model achieves competitive accuracy while maintaining a reduced

computational footprint, making it suitable for real-time implementation in Android applications without

requiring continuous internet connectivity. This aligns with trends toward deploying efficient models in edge

Bulletin of Electr Eng & Inf ISSN: 2302-9285 

A lightweight convolutional neural network for rice leaf disease detection integrated in … (Rudi Hartono)

2713

computing environments, particularly in agricultural settings where offline functionality is essential

[6], [7], [23].

3. RESULTS AND DISCUSSION

3.1. Comparison of number of epochs

The dataset used for model training has an imbalanced class distribution, and training was

conducted for up to 300 epochs without any preprocessing or augmentation. The model achieved its highest

accuracy and validation accuracy at epoch 291, with an accuracy of 100% and a validation accuracy of

93.75%. At this epoch, the loss accuracy was 8.52E-08, and the validation loss was 0.6897. A graphical

comparison of the training process across the epochs is shown in Figure 6.

Figure 6. Comparison of the training process across the epochs

3.2. Comparison of imbalanced and balanced data

The model training was conducted using two datasets: one with imbalanced data distribution and the

other with balanced data distribution across classes, both trained without preprocessing or augmentation for

50 epochs. The results, indicate that the highest validation accuracy for the imbalanced dataset was 51.25% at

epoch 48, while the balanced dataset achieved 76.88% at epoch 50. Despite these imperfections, both

datasets exhibited accuracy and validation losses of 1.1816 and 1.2879, respectively, suggesting that the

model is underfitting. This underfitting likely stems from the lack of preprocessing, augmentation, and the

limited number of training epochs, as illustrated in Figure 7.

Figure 7. Underfitting likely stems from the lack of preprocessing, augmentation, and the limited number of

training epochs

  ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 14, No. 4, August 2025: 2705-2720

2714

3.3. Comparison of non-preprocessing and preprocessing data

The model was trained using the same dataset, characterized by imbalanced data distribution across

classes, without any augmentation. In the first training session, no preprocessing steps, such as rescaling and

resizing, were applied, while the second session included these preprocessing steps. Both sessions involved

50 epochs of iterations. The non-preprocessed data had the highest validation accuracy (51.25% at epoch 48),

whereas the preprocessed data had a higher validation accuracy (72.68% at epoch 28). Figure 8 depicts the

graphical comparison of the training outcomes. From Figure 8, the accuracy value reaches 1 or 100%,

indicating that the model can almost completely correctly classify the images in the training data. However,

the validation accuracy only reaches about 70%. There is a possibility that the model is experiencing

overfitting, meaning it performs very well on the training data but fails to generalize effectively on the

validation data.

3.4. Comparison of non-augmented and augmented data

The model was trained on the same dataset with imbalanced class distribution and without

preprocessing. In the first session, no augmentation was applied, while in the second session, augmentation

techniques such as RandomFlip, RandomRotation, RandomZoom, and RandomContrast were used. Both

sessions involved 50 epochs. The non-augmented data had the highest validation accuracy (51.25% at epoch

48), whereas the augmented data had a higher validation accuracy (75% at epoch 46). Figure 8 displays a

graphical comparison of the training outcomes Figure 9.

Figure 8. Comparison of the training outcomes: preprocessing vs non-preprocessing

Figure 9. Comparison of the training outcomes: augmented vs non-augmented

Bulletin of Electr Eng & Inf ISSN: 2302-9285 

A lightweight convolutional neural network for rice leaf disease detection integrated in … (Rudi Hartono)

2715

After conducting a series of model training sessions with various variations, conclusions drawn from

these experiments to build an effective model are as follows:

a. The greater the number of epochs used, the higher the accuracy and the lower the loss value. However, at

certain epochs, the model reaches a point of convergence where changes in the weights of the neural

network are minimal, thus not significantly altering the accuracy.

b. With balanced data, accuracy has increased to 22.69% and validation accuracy has increased to 25.63%.

c. The implementation of preprocessing stages improves accuracy. Preprocessing leads to an increase in

accuracy up to 47.59% and validation accuracy up to 20.46% in training. However, these results are less

reliable due to overfitting.

d. Implementing augmentation stages increases accuracy. Training with augmentation results in an increase in

accuracy up to 17.04% and validation accuracy up to 23.75%.

The training results show that the best model was obtained in the last training session. The model

with the highest accuracy was achieved at epoch 75 out of a total of 85 epochs. The output shown in Figure 8

indicates that at epoch 75, the model performs quite well with a training accuracy of 86.56% and a validation

accuracy of 93.75%. The loss values on the validation dataset are also lower than those on the training

dataset, which may indicate that the model generalizes well to unseen data. If depicted graphically, the loss

and accuracy values on the training and validation data during training appear as in Figure 10. The model that

has been created is implemented and integrated on a mobile device as shown in the Figure 11.

Figure 10. The loss and accuracy values on the training and validation

Figure 11. Mobile application

  ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 14, No. 4, August 2025: 2705-2720

2716

3.5. Optimization for mobile deployment

Integrating deep learning models into mobile applications presents several practical challenges that

must be carefully managed to ensure usability and performance in real-world agricultural settings. Among

the most critical issues are inference speed, power consumption, and the trade-off between offline and cloud-

based processing [4], [5]. Ensuring optimal model performance on mobile devices requires careful

optimization to achieve both real-time inference and energy efficiency.

Inference speed is crucial for achieving real-time or near-real-time disease diagnosis in the field. While

the proposed lightweight CNN model demonstrates acceptable accuracy, its execution speed on mobile

hardware must also be optimized. Mobile devices generally have less computational power compared to

desktop or server environments, which can result in slower prediction times. To mitigate this, TensorFlow Lite

optimizations such as quantization and operator fusion were applied to reduce model size and accelerate

inference. These techniques help bridge the performance gap between high-end computing systems and mobile

processors, enabling deployment of complex AI functionalities even on resource-constrained devices [1], [5].

The proposed CNN architecture was designed with fewer layers and reduced filter counts compared to standard

deep learning models, minimizing computational load while maintaining classification accuracy. The model

consists of only six convolutional layers followed by max-pooling and dense layers, making it significantly

lighter than deeper networks such as VGG16 or ResNet, which are typically unsuitable for mobile use due to

high memory and processing requirements [2], [14]. TensorFlow Lite optimizations were applied during model

conversion. Techniques such as quantization—reducing the precision of weights from 32-bit floating points to

8-bit integers—were utilized to decrease model size and accelerate inference speed. This is particularly

important for mobile environments where memory bandwidth and processing speed are restricted [14].

Power consumption is another important constraint when running machine learning models on

smartphones. Continuous use of the camera and processor-intensive tasks like image classification can drain

the battery quickly. The lightweight design of the CNN model helps reduce energy usage by minimizing the

number of operations required per inference, making it more suitable for extended use in the field.

Additionally, eliminating constant reliance on network connectivity further contributes to lower power

consumption, aligning with the practical demands of remote agricultural usage [4], [5], [7].

Mobile applications for plant disease detection can operate either offline or via cloud-based services.

Offline processing ensures accessibility without internet connectivity, which is often unreliable in

agricultural regions. However, maintaining high accuracy while keeping the model small enough for local

deployment remains a challenge. On the other hand, cloud-based solutions allow for more complex models

but introduce latency and dependency on network availability. Moreover, offloading computation to the

cloud can improve processing speed significantly but may raise concerns regarding data privacy and security,

especially when dealing with sensitive agricultural data [2], [7]. To ensure real-time performance, the input

image size was standardized to 224×224 pixels, reducing the number of operations required for preprocessing

and feature extraction. Testing showed that the model achieves an average inference time of less than 100

milliseconds per image on mid-range Android devices, aligning with expectations for near real-time detection

in field conditions.

Energy efficiency was addressed through model simplification and hardware-aware design choices.

By avoiding complex operations such as large matrix multiplications and depthwise convolutions found in

heavy architectures, the model consumes less power during inference. Additionally, running the model in

offline mode eliminates the need for continuous internet access, reducing overall energy usage associated with

network communication. These optimizations ensure that the rice leaf disease detection system performs

efficiently on mobile devices, supporting real-time diagnosis with minimal impact on battery life, thus

enhancing its usability in rural and resource-constrained agricultural settings. These considerations highlight

the importance of balancing model complexity, efficiency, and usability when deploying AI-based diagnostic

tools on mobile platforms for agricultural applications. As mobile devices continue to evolve, so too will the

strategies for optimizing deep learning models to meet the growing needs of precision agriculture [1], [5], [8].

To evaluate the practical deployment of the proposed lightweight CNN model, we conducted real-

time performance tests on three different Android smartphones ranging from budget to mid-range devices.

The evaluation focused on three key metrics: inference latency, memory usage, and offline functionality. The

model was converted into TensorFlow Lite format and integrated into the Android application. On a

Samsung Galaxy A10 (Exynos 7885, 2GB RAM), the average inference time was ~95 ms, while on a Redmi

Note 9 (Snapdragon 665, 4GB RAM), it dropped to ~65 ms. Table 7 shows that the model supports near real-

time classification, even on low-end devices.

The Android application was tested in fully offline conditions. Once installed, the app does not

require any external API calls or cloud-based services. All image processing and prediction tasks are

performed locally using the embedded TensorFlow Lite model. This ensures consistent performance in areas

with poor or no internet connectivity, making the tool highly reliable for smallholder farmers in remote

Bulletin of Electr Eng & Inf ISSN: 2302-9285 

A lightweight convolutional neural network for rice leaf disease detection integrated in … (Rudi Hartono)

2717

regions. Additionally, the model was evaluated for cold-start behavior —i.e., how quickly it can make

predictions after launching the app. Cold start inference times remained within acceptable limits (<150 ms),

confirming robustness in field scenarios where users may frequently open and close the application.

Table 7. Performance test on android smartphones
Device Inference time (ms) Memory usage (MB)

Samsung Galaxy A10 ~95 ~25

Redmi Note 9 ~65 ~30

Emulator (Pixel 3a) ~50 ~32

3.6. Model performance comparison with existing architectures

To provide context for the proposed lightweight CNN, we compare its performance against well-

known deep learning architectures that are commonly used in mobile and embedded AI applications:

MobileNetV2, ResNet50, and EfficientNet-B0. Table 8 summarizes this comparison.

Table 8. Performance comparison of proposed CNN with other deep learning models
Model Parameters (M) Accuracy (%) Avrg inference time (ms) Mobile friendly

Proposed CNN 0.79 93.75 <100 Yes

MobileNetV2 ~3.5 ~94.5 ~120-150 Yes
ResNet50 ~25.6 ~95.2 ~300-400 No

The proposed CNN achieves competitive validation accuracy (93.75%) while maintaining

significantly fewer parameters. This results in faster inference times (<100 ms) on mobile hardware, which is

crucial for real-time agricultural diagnostics [14], [16]. While deeper models like ResNet and EfficientNet

offer slightly higher accuracy, they require more powerful hardware and often rely on cloud-based processing

due to their computational demands [16]. MobileNetV2 offers a good balance between performance and

efficiency but still incurs higher latency compared to our model. The proposed CNN is therefore better suited

for deployment in low-power, low-memory environments, such as budget smartphones used by small-scale

farmers in remote areas, where offline functionality is essential.

3.7. Error analysis and potential improvements

Although the proposed CNN achieved a high validation accuracy of 93.75%, several misclassification

cases were observed during testing. These errors occurred primarily in visually similar disease types and under

suboptimal lighting conditions. Table 9 shows examples of misclassified images and their predicted labels.

Table 9. Examples of misclassified images and their predicted labels
Label Predicted label Description

Brown spot Sheath blight Both diseases exhibit brownish discoloration, making them difficult to distinguish without
fine-grained feature extraction.

Leaf blast Sheath blight Overlapping lesion patterns led to confusion between these two categories.

Healthy rice
leaf

Brown spot Early-stage healthy leaves with minor blemishes were mistakenly classified as diseased.

Rice hispa Leaf scald Damage caused by pests was confused with fungal symptoms.

These misclassifications highlight limitations in the current model’s ability to distinguish subtle

visual differences between certain disease types. To address this issue, several improvement strategies are

proposed:

a. Dataset expansion: including more image samples—especially from underrepresented classes such as

Leaf Scald and Rice Hispa—can help the model learn more robust features and reduce class imbalance

effects.

b. Transfer learning from pretrained lightweight models: leveraging networks like MobileNetV2 or

EfficientNet-Lite as base models may improve feature extraction capabilities while maintaining

compatibility with mobile devices.

c. Advanced data augmentation: introducing techniques such as MixUp, CutOut, or RandAugment can

further enhance generalization by simulating diverse environmental conditions during training.

d. Attention mechanisms: incorporating attention modules, such as squeeze-and-excitation blocks, can help

the model focus on key discriminative regions of the leaf, improving classification accuracy.

  ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 14, No. 4, August 2025: 2705-2720

2718

e. Ensemble learning: combining predictions from multiple models trained with different augmentations or

initializations can increase overall accuracy and reduce variance in predictions.

f. Improved user interface feedback: in the Android application, adding confidence scores and allowing

manual correction by users can help refine the model over time through user feedback loops.

By implementing these improvements, the classification accuracy and reliability of the rice leaf

disease detection system can be further enhanced, making it even more effective for practical use in the field.

4. CONCLUSION

The experiments conducted to train various models have highlighted several key factors critical for

optimizing model performance. Increasing the number of training epochs generally enhances accuracy and

reduces loss until the model reaches a convergence point where additional training yields minimal benefits.

Importantly, a balanced data distribution significantly improves model accuracy, emphasizing the need for

well-distributed datasets. From a series of model training sessions with various configurations, the

conclusions for building an effective model are as follows: Increasing the number of epochs generally

enhances accuracy and reduces loss, though the model eventually converges at certain epochs where further

changes are minimal. A balanced data distribution significantly boosts accuracy, with improvements of up to

22.69% in accuracy and 25.63% in validation accuracy. Incorporating preprocessing steps improves accuracy

by up to 47.59% and validation accuracy by up to 20.46%, though these gains may be less reliable due to

overfitting. Augmentation techniques also contribute to higher accuracy, with increases of up to 17.04% in

accuracy and 23.75% in validation accuracy. Incorporating preprocessing steps improves accuracy by up to

47.59% and validation accuracy by up to 20.46%, though these gains may be less reliable due to overfitting.

The proposed CNN strikes a balance between performance and efficiency, achieving competitive validation

accuracy (93.75%) while remaining deployable on resource-constrained platforms. Notably, the validation

loss was lower than the training loss, suggesting good generalization to unseen data.

FUNDING INFORMATION

Thank you to all parties who have supported this research, Lembaga Penelitian dan Pengabdian

Masyarakat Universitas Sebelas Maret has funded this research with number contract

194.2/UN27.22/PT.01.03/2024.

AUTHOR CONTRIBUTIONS STATEMENT

This journal uses the Contributor Roles Taxonomy (CRediT) to recognize individual author

contributions, reduce authorship disputes, and facilitate collaboration.

Name of Author C M So Va Fo I R D O E Vi Su P Fu

Rudi Hartono ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Nanang Maulana

Yoeseph

 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Fendi Aji Purnomo ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Sahirul Alim Tri

Bawono

 ✓ ✓ ✓ ✓ ✓

Agus Purnomo ✓ ✓ ✓ ✓ ✓ ✓

C : Conceptualization

M : Methodology

So : Software

Va : Validation

Fo : Formal analysis

I : Investigation

R : Resources

D : Data Curation

O : Writing - Original Draft

E : Writing - Review & Editing

Vi : Visualization

Su : Supervision

P : Project administration

Fu : Funding acquisition

CONFLICT OF INTEREST STATEMENT

Authors state no conflict of interest.

INFORMED CONSENT

We have obtained informed consent from all individuals included in this study.

Bulletin of Electr Eng & Inf ISSN: 2302-9285 

A lightweight convolutional neural network for rice leaf disease detection integrated in … (Rudi Hartono)

2719

DATA AVAILABILITY

The dataset used in this study is publicly available from Kaggle. The dataset titled "Rice Leaf

Diseases Dataset" was compiled by the research team at the Department of CSE, Khwaja Yunus Ali

University. It can be accessed at: https://www.kaggle.com/datasets/riceleafdiseases/rice-leaf-diseases-dataset.

REFERENCES
[1] M. V. Shewale and R. D. Daruwala, “High performance deep learning architecture for early detection and classification of plant

leaf disease,” Journal of Agriculture and Food Research, vol. 14, pp. 1–9, Dec. 2023, doi: 10.1016/j.jafr.2023.100675.

[2] F. Jiang, Y. Lu, Y. Chen, D. Cai, and G. Li, “Image recognition of four rice leaf diseases based on deep learning and support

vector machine,” Computers and Electronics in Agriculture, vol. 179, Dec. 2020, doi: 10.1016/j.compag.2020.105824.
[3] J. Andrew, J. Eunice, D. E. Popescu, M. K. Chowdary, and J. Hemanth, “Deep Learning-Based Leaf Disease Detection in Crops

Using Images for Agricultural Applications,” Agronomy, vol. 12, no. 10, pp. 1–19, Oct. 2022, doi: 10.3390/agronomy12102395.

[4] Y. M. A. Algani, O. J. M. Caro, L. M. R. Bravo, C. Kaur, M. S. A. Ansari, and B. K. Bala, “Leaf disease identification and
classification using optimized deep learning,” Measurement: Sensors, vol. 25, pp. 1–6, Feb. 2023, doi:

10.1016/j.measen.2022.100643.

[5] S. D. Daphal and S. M. Koli, “Enhanced deep learning technique for sugarcane leaf disease classification and mobile application
integration,” Heliyon, vol. 10, no. 8, pp. 1–13, Apr. 2024, doi: 10.1016/j.heliyon.2024.e29438.

[6] M. Yu, X. Ma, and H. Guan, “Recognition method of soybean leaf diseases using residual neural network based on transfer

learning,” Ecological Informatics, vol. 76, Sep. 2023, doi: 10.1016/j.ecoinf.2023.102096.
[7] G. Kaur, Rajni, and J. S. Sivia, “Development of deep and machine learning convolutional networks of variable spatial resolution

for automatic detection of leaf blast disease of rice,” Computers and Electronics in Agriculture, vol. 224, Sep. 2024, doi:
10.1016/j.compag.2024.109210.

[8] H. C. Reis and V. Turk, “Potato leaf disease detection with a novel deep learning model based on depthwise separable

convolution and transformer networks,” Engineering Applications of Artificial Intelligence, vol. 133, Jul. 2024, doi:
10.1016/j.engappai.2024.108307.

[9] E. Kannan, C. M. M. J. Belinda, A. S. David, R. N. Naveena, A. Begum, and D. Hemalatha, “Deep Learning Techniques

Advancements in Apple Leaf Disease Detection,” Procedia Computer Science, vol. 235, pp. 713–722, 2024, doi:
10.1016/j.procs.2024.04.068.

[10] S. Dananjayan, Y. Tang, J. Zhuang, C. Hou, and S. Luo, “Assessment of state-of-the-art deep learning based citrus disease

detection techniques using annotated optical leaf images,” Computers and Electronics in Agriculture, vol. 193, Feb. 2022, doi:
10.1016/j.compag.2021.106658.

[11] Y. Lin, L. Wang, T. Chen, Y. Liu, and L. Zhang, “Monitoring system for peanut leaf disease based on a lightweight deep learning

model,” Computers and Electronics in Agriculture, vol. 222, p. 109055, Jul. 2024, doi: 10.1016/j.compag.2024.109055.

[12] R. G. Patil and A. More, “Grape Leaf Disease Diagnosis System Using Fused Deep Learning Features Based System,” Procedia

Computer Science, vol. 235, pp. 372–382, 2024, doi: 10.1016/j.procs.2024.04.037.

[13] P. I. Ritharson, K. Raimond, X. A. Mary, J. E. Robert, and A. J, “DeepRice: A deep learning and deep feature based classification
of Rice leaf disease subtypes,” Artificial Intelligence in Agriculture, vol. 11, pp. 34–49, Mar. 2024, doi:

10.1016/j.aiia.2023.11.001.

[14] R. Dogra, S. Rani, A. Singh, M. A. Albahar, A. E. Barrera, and A. Alkhayyat, “Deep learning model for detection of brown spot
rice leaf disease with smart agriculture,” Computers and Electrical Engineering, vol. 109, Jul. 2023, doi:

10.1016/j.compeleceng.2023.108659.

[15] S. Benaissa, M. Najoui, and A. Jbari, “Deep learning and Vegetation indices based approach for leaf diseases classification in
RGB images,” Procedia Computer Science, vol. 236, pp. 202–208, 2024, doi: 10.1016/j.procs.2024.05.022.

[16] A. I. Khan, S. M. K. Quadri, S. Banday, and J. L. Shah, “Deep diagnosis: A real-time apple leaf disease detection system based on

deep learning,” Computers and Electronics in Agriculture, vol. 198, Jul. 2022, doi: 10.1016/j.compag.2022.107093.
[17] K. K. Chakraborty, R. Mukherjee, C. Chakroborty, and K. Bora, “Automated recognition of optical image based potato leaf blight

diseases using deep learning,” Physiological and Molecular Plant Pathology, vol. 117, Jan. 2022, doi:

10.1016/j.pmpp.2021.101781.
[18] N. S. Kumar, J. Sony, A. Premkumar, R. Meenakshi, and J. J. Nair, “Transfer Learning-based Object Detection Models for

Improved Diagnosis of Tomato Leaf Disease,” Procedia Computer Science, vol. 235, pp. 3025–3034, 2024, doi:

10.1016/j.procs.2024.04.286.
[19] Z. Jiang, Z. Dong, W. Jiang, and Y. Yang, “Recognition of rice leaf diseases and wheat leaf diseases based on multi-task deep

transfer learning,” Computers and Electronics in Agriculture, vol. 186, pp. 1–9, Jul. 2021, doi: 10.1016/j.compag.2021.106184.

[20] L. Xu et al., “Wheat leaf disease identification based on deep learning algorithms,” Physiological and Molecular Plant Pathology,
vol. 123, Jan. 2023, doi: 10.1016/j.pmpp.2022.101940.

[21] F. Arshad et al., “PLDPNet: End-to-end hybrid deep learning framework for potato leaf disease prediction,” Alexandria

Engineering Journal, vol. 78, pp. 406–418, Sep. 2023, doi: 10.1016/j.aej.2023.07.076.
[22] M. A. Hossain, S. Sakib, H. M. Abdullah, and S. E. Arman, “Deep learning for mango leaf disease identification: A vision

transformer perspective,” Heliyon, vol. 10, no. 17, pp. 1–14, Sep. 2024, doi: 10.1016/j.heliyon.2024.e36361.

[23] C. G. Simhadri, H. K. Kondaveeti, V. K. Vatsavayi, A. Mitra, and P. Ananthachari, “Deep learning for rice leaf disease detection:
A systematic literature review on emerging trends, methodologies and techniques,” Information Processing in Agriculture, vol.

12, no. 2, pp. 151–168, Jun. 2025, doi: 10.1016/j.inpa.2024.04.006.

[24] M. Badiger and J. A. Mathew, “Tomato plant leaf disease segmentation and multiclass disease detection using hybrid
optimization enabled deep learning,” Journal of Biotechnology, vol. 374, pp. 101–113, Sep. 2023, doi:

10.1016/j.jbiotec.2023.07.011.

[25] P. Kaur, S. Harnal, V. Gautam, M. P. Singh, and S. P. Singh, “An approach for characterization of infected area in tomato leaf
disease based on deep learning and object detection technique,” Engineering Applications of Artificial Intelligence, vol. 115, Oct.

2022, doi: 10.1016/j.engappai.2022.105210.

[26] C. Sarkar, D. Gupta, U. Gupta, and B. B. Hazarika, “Leaf disease detection using machine learning and deep learning: Review
and challenges,” Applied Soft Computing, vol. 145, Sep. 2023, doi: 10.1016/j.asoc.2023.110534.

[27] K. Perveen et al., “Deep learning-based multiscale CNN-based U network model for leaf disease diagnosis and segmentation of
lesions in tomato,” Physiological and Molecular Plant Pathology, vol. 128, Nov. 2023, doi: 10.1016/j.pmpp.2023.102148.

  ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 14, No. 4, August 2025: 2705-2720

2720

[28] L. X. B. Sorte, C. T. Ferraz, F. Fambrini, R. D. R. Goulart, and J. H. Saito, “Coffee leaf disease recognition based on deep

learning and texture attributes,” Procedia Computer Science, vol. 159, pp. 135–144, 2019, doi: 10.1016/j.procs.2019.09.168.

BIOGRAPHIES OF AUTHORS

Rudi Hartono master's degree from the Department of Electrical Engineering and

Information Technology in 2016. Currently he is a Lecturer in Information Engineering at the

Sebelas Maret University Vocational School. His research interests include networking,

security, and IoT. He can be contacted at email: rudi.hartono@staff.uns.ac.id.

Nanang Maulana Yoeseph master's degree from the Department of Computer

Science and Electronics, Faculty of Mathematics and Natural Sciences in 2015. Currently he is

a Lecturer in Informatics Engineering at the Sebelas Maret University Vocational School. His

research interests include IoT. He can be contacted at email: nanang.my@staff.uns.ac.id.

Fendi Aji Purnomo master's degree from the Department of Electrical

Engineering and Information Technology in 2016. Currently he is a Lecturer in Information

Engineering at the Sebelas Maret University Vocational School. His research interests include

AR/VR and IoT. He can be contacted at email: fendi_aji@staff.uns.ac.id.

Sahirul Alim Tri Bawono master's degree from the Department of Electrical

Engineering and Information Technology in 2015. Currently he is a Lecturer in Information

Engineering at the Sebelas Maret University Vocational School. His research interests include

information systems. He can be contacted at email: sahirul@staff.uns.ac.id.

Agus Purnomo master's degree from the Department of Electrical Engineering

and Information Technology in 2016. Currently he is a Lecturer in Information Engineering at

the Universitas Islam Negeri (UIN) of Salatiga, Indonesia. His research interests include

networking, information systems and optimization. He can be contacted at email:

agus.purnomo@uinsalatiga.ac.id.

https://orcid.org/0009-0007-4906-9235
https://scholar.google.com/citations?hl=id&user=X0H7KHsAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=58609774700
https://www.webofscience.com/wos/author/record/KOZ-9802-2024
https://orcid.org/0000-0002-1143-3886
https://scholar.google.com/citations?hl=id&user=Q0bw1_4AAAAJ
https://www.scopus.com/authid/detail.uri?authorId=57193325345
https://www.webofscience.com/wos/author/record/KOZ-7328-2024
https://orcid.org/0000-0001-7168-1446
https://scholar.google.com/citations?hl=id&user=WQ1tdboAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=57193325119
https://www.webofscience.com/wos/author/record/2502139
https://orcid.org/0009-0006-7005-4356
https://scholar.google.com/citations?hl=id&user=1AVgYvQAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=57201669297
https://orcid.org/0009-0001-7807-2296
https://scholar.google.co.id/citations?user=JOhst2MAAAAJ&hl
https://www.scopus.com/authid/detail.uri?authorId=57203721779

