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This study presents a conclusive performance evaluation based on integral
time between the conventional and optimization based proportional integral
derivatives (PID) tuning method. The tuning method of interest are including
trial and error, auto-tuning, Ziegler-Nichols (ZN), Cohen-Coon (CC), and
particle swarm optimization (PSO). The coupled tank system (CTS) is used
for the system under consideration as it’s one of the popular technologies in
industrial control application. Previous study had compared the tuning
performance in terms of its transient response. The transient consists of
several parameters such as rise time (Tr), settling time (Ts), peak time (Tp),
steady state error, overshoot, and steady state error. Due to that, a conclusive
performance comparison could not be achieved. Hence this study proposed
integral time squared error evolution which is based on only one parameter
which also reflects good overall transient response performance. The results
show that of all tuning methods, PSO provide the smallest integral time
square error (ITSE) value, while trial and error provide the highest with a
value of 12.84 and 203.10, respectively. The ITSE also reflects the transient
response performances.
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1. INTRODUCTION

The coupled tank system (CTS) is one of the most popular technologies in industrial control
operations because it is used to study concepts of fluid flow, pressure, and level control. Several controllers
have been used in CTS in past studies. These controllers include sliding mode control [1], [2], inverted
decoupling controllers [3], internal model control (IMC) [3], proportional integral derivative (PID) [4], and
LQR [4]. Additionally, the PID tuning technique is one of the most frequently applied tuning methods for
CTS [5]-[7]. Moreover, the performance of CTS has been successfully enhanced through the implementation
of optimization techniques, including modified-ant colony optimization (ACO) [8], particle swarm
optimization (PSO) [4], [9], bat algorithms (BA) [10], and different evolution [11].

Proportional integral derivatives (PID) controllers serve as fundamental tools due to their simplicity,
robustness against model errors, and ease of implementation. The controller regulates system behaviour by
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adjusting three key: parameters proportional gain, integral time, and derivative time. Achieving optimal PID
controller performance is essential for maintaining stability and meeting control system requirements. Each
term in PID controller plays a specific role in ensuring better system performance. The P-term reduces error
but does not eliminate it, the I-term eliminates error but tend to make the system oscillate, and the D-term
improves the speed of the responses [12].

Various techniques have been applied for PID tuning, which can be broadly classified as classical
and computational or optimization techniques [13]. Traditionally, engineers have relied on analytical or
empirical rules, such as Ziegler-Nichols (ZN), Cohen-Coon (CC), and trial-and-error methods. However,
these classical techniques may fall short when dealing with complex, nonlinear systems or systems affected
by uncertainties and disturbances. To address these limitations, metaheuristic optimization algorithms has
gained prominence. These techniques enhance PID controller performance and robustness, allowing for the
tuning PID controllers and simultaneous adjustments of multiple PID controllers.

By comparing optimization techniques with traditional tuning approaches, studies have
demonstrated improved accuracy and efficiency. For instance, [9] compares PSO with ZN, CC, auto-tuning,
and trial-and-error, [10] compares BA with ZN, and [14] compares genetic algorithm (GA) with ZN.

Previous literatures has evaluated the PID controller performance based on transient response and
time-integral-based performance metrics [9]. Most conventional methods assess controller performance
based on transient response characteristics such as percentage overshoot, rise time (Tr), and settling time
(Ts). In contrast, optimization techniques often rely on time-domain metrics, specifically time-integral
performance. Due to the varied characteristics of transient response evaluations, they may not provide a
conclusive comparison.

This study aims to provide a conclusive comparison of PID tuning methods between conventional
and optimization techniques. To achieve this objective, this study will implement a time-integral-based
performance evaluation for the study of [9] and analyze the results based on its transient response
characteristics.

2. METHOD

The summary of the methodology for this study is presented in Figure 1. The control of liquid levels
in tanks and flow between them is a fundamental in the process industries. A CTS is a device consisting of
two tanks connected by pipes, where each tank's liquid level is controlled by a pump or valve. The schematic
diagram of CTS is shown in Figure 2. This study utilizes a second-order single-input single-output (SISO)
model of the CTS, with its block diagram shown in Figure 3.

Coupled Tank System

PID Controller

PID Controller Tuning

Particle Swarm

Ziegler Nichols Optimization

Autotuning

Cohen Coon ‘ Trial and Error

Integral Time
Squared Error

Transient Response Characteristic

Settling Time
g overshoot error

Peak Time ‘ Rise Time Percentage ‘ Steady state

Comparison and
Evaluation

Figure 1. Summary of the methodology

The CTS system is presented in (1). The parameter values listed in Table 1 are substituted into the
equation, yielding the overall transfer shown in (2).
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Figure 2. Schematic diagram of CTS
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Figure 3. Second order single input single output CTS

Table 1. Parameter of PID controller according to the tuning methods

Variable Value
h, 15¢cm
o 10.78 cm®?/sec
0z 11.03 cm®?/sec
o3 11.03 cm®?/sec
A 32 cm?
A, 32cm?

A PID controller is a type of feedback controller that adjusts the input signal based on the difference
between the intended and actual output signal. PID stands for proportional, integral, and derivative—the
three components that form the basis of the controller's equation [9]. The equation for the PID parameters is
shown in (3):

Ge(s) =K, + % +K;s 3

Where Kp is proportional gain, Ki is integral gain, and Kd is derivative gain.

These three components influence the overall performance of the system as follows: i) the
proportional term —provides an overall control action proportional to the error signal, determined by the all-
pass gain factor, ii) the integral term — reducing steady state errors through low-frequency compensation
using an integrator, and iii) the derivative term — enhances transient response through high-frequency
compensation using a differentiator [15]. The PID control structure for CTS is shown in Figure 4.

PID control tuning is the process of determining ideal PID parameter values (Kp, Ki, and Kd) to
minimize errors and enhance system performance. This tuning can be performed using several ways and
remains significant research topic [16]. Some implemented tuning method for coupled tanks systems include
conventional techniques such as automatic tuning, ZN, CC, and optimization techniques like
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PSO [4], [9], [11], [17], BA [10], Firefly algorithm [18], differential evolution (DE) [11], and ACO [8].
Additionally, [19] analyzed the applications of ACO, grey wolf optimizer (GWO), and flower pollination
algorithm (FPA) for nonlinear interconnected tanks. Each technique offers unique benefits and drawbacks
depending on the system's requirements and characteristics [10].

f 0 0.0361 |
' > "l 36.96045% + 12.1565s + 0.4514 7

Step Gain PID Controller

Coupled Tank Syst
oupled Tank System Scope

Figure 4. PID control structure with CTS

The ZN method is the most widely used conventional tuning technique for PID controllers. It was
developed in the 1940s by John G. Ziegler and Nathaniel B. Nichols. The CC tuning method, published in
1953 by Cohen and Coon, is the second most popular. CC offers an advantage over ZN when dealing with
systems that have a larger operating range. Another method for determining PID parameter values is trial and
error. This is one of the simplest approaches as it does not require mathematical calculations, but it relies on
an experienced practitioner to find the optimal parameter values. In this method, the Ki and Kd initially set to
zero, and then Kp is gradually increased [20]. Autotuning, on the other hand, leverages MATLAB
applications for parameter tuning.

Optimization techniques, however, require a cost function to be minimized or maximized.
According to Joseph et al. [21], six cost functions are defined, but the four most commonly used are
integrated absolute error (IAE), integral of squared error (ISE), integral time square error (ITSE), and integral
time absolute error (ITAE). While the mostly used are four [13], [22], which are IAE, ISE, ITSE, and ITAE.
The equations for ISE, IAE, ITAE, and ITSE are provided in (4)-(7). Each performance index has its own
advantages and disadvantages. As noted by Chen and Chang [23], ISE achieves faster error tracking but is
prone to oscillations, while IAE provides good response characteristics but lacks effective selection
performance. ITSE delivers better dynamic performance with improved Ts. Iruthayarajan and Baskar [24]
summarize that ISE are suitable for analytical and computational purposes, IAE useful for computer
simulation studies and ITAE can reduce large initial error with emphasize error occurring later in response.

In the context of CTS tuning using optimization techniques, ACO uses ISE and IAE [8], BA
employs IAE, ISE, and ITSE [10], PSO applies ISE and IAE [8], and ITSE [4], DE uses IAE, ISE, and ITSE
[11] as cost function. Among these indices, ITSE is often preferred due to its ability to provide better
dynamic performance and improved Ts. Maghfiroh et al. [25] have demonstrated that ITSE delivers superior
performance compared to other integral methods. The ITSE equation is shown in (7). ITSE is defined as
weighting the squared error by time, emphasizing errors occurring later in the response. It can be described as
the area under the graph between the desired response and the actual response.

ISE = [ (e;(t))2dt 4)
IAE = [ |e;(t)|dt ®)
ITAE = [ ]e;(t)]tdt (6)
ITSE = [ (e;())tdt @)

Where e is an error, and t is the respective time of the error.

The value of PID controller Kp, Ki, and Kd for ZN, CC, trial and error, and autotuning is obtain
based on [20], while PSO based on [9]. Based on the PID value, the ITSE will then be evaluated for each
tuning method by using (7). Then the transient response for each method will be analyzed.
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3. RESULTS AND DISCUSSION

PID control tuning is the process of determining ideal PID parameter. The value of PID parameter
of Kp, Ki, and Kd, based on respective tuning method of trial and error, ZN, CC, autotuning and PSO is
shown in Table 2. Figure 5 illustrates the control structure corresponding to each tuning method. Based on
the PID value, the transient response of the closed loop CTS with PID controller are obtained and shown in
Figure 6. The ITSE was then calculated, and all transient response characteristics were evaluated.

Table 2. Parameter of PID controller according to the tuning methods

. Parameter
Tuning method Kp Ki Kd
Trial and error 15.00 1.00 8.00
ZN 168.00 3500 201.60
CC 235.88 33.92 203.21
Autotuning 53.40 1.54 -2.98
PSO 250.99 4.35 171.64

- 0.0361
() 36.94065% + 12.1565s + 0.4514
Trial and Error
Sils il 00361
() 36.94065% + 12.1565s + 0.4514
ZN

0.0361 2l N[N
PID(s) 36.94065 + 12.15655 + 0.4514 L

Cohen Coon

| R 0.0361
PID(s) 36.94065 + 12.15655 + 0.4514
PID Autotuning
. 0.0361
(s) 36.94065" + 12.15655 + 0.4514
PID PSO

Figure 5. Control structure with different types of tuning method

Based on the computed results, PSO yields the smallest ITSE followed by autotuning, ZN, CC, and
trial and error method, with the value of 12.84, 17.36, 22.03, 46.70, and 203.10, respectively. The transient
response characteristics, including peak time (Tp), Ts, Tr, and percentage of overshoot, are summarized in
Table 3. From the observations, as the PSO not only produces the smallest ITSE but also results in the lowest
transient response values for Tp and Ts among all the methods. Conversely, the trial-and-error method, which
has the highest ITSE value, reflects the longest transient response times (Tp, Ts, and Tr) and poorer
performance. The CC method, with a moderate ITSE value, contributes to intermediate transient response
values for Tp and Ts compared to the other methods. For a clearer comparison, the performance
characteristic values and their corresponding ITSE are also presented in the form of a bar graph, as shown in
Figure 7.

To validate the proposed method, two studies, [10] and [11] were considered. Katal et al. [10]
implemented tuning methods using ZN and the BA techniques, optimized with the ITSE and ISE. Based
Puralachetty and Pamula [11], four tuning methods were evaluated: PSO, DE, PSO with two-stage
initialization (TSI), and DE with TSI. The tuning methods in [11] were assessed based on the minimum
function value (MFV), which incorporates various time response criteria such as Tr, Ts, percentage peak
overshoot, and steady-state error.
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Performance Response of Coupled Tank System
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Figure 6. Transient response of the corresponding tuning methods

Table 3. Performance of CTS based its ITSE and its corresponding transient response characteristics

Tuning method Performance

ITSE  Tp(s) T.(s) Tp(s) OS(%) SSE
Trialand error  203.10 52.70 84.40 24.00 6.86 0.00
ZN 22.03 790 3210 3.29 3850 0.00
cC 17.36 6.70 2359 281 33.70  0.00
Autotuning 46.70 17.70 53.40 9.14 181 0.00
PSO 12.84 6.40 17.75 3.27 16.19 0.00
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Figure 7. Comparison of the performance of CTS based on its ITSE and its corresponding transient response
characteristics

The validation was performed by comparing the ITSE values obtained for each tuning method from
studies [10] and [11], as shown in Table 4. The DE-TSI method from [11] produced the smallest ITSE value,
validating the objective function of MFV, which was also minimized by DE-TSI. This method demonstrated
generally smaller transient response. Similarly, [10] showed that a lower ITSE is associated with improved

transient response performance.
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Table 4. Comparable ITSE based tuning method on other literatures

. Lo - Performance
Ref.  Tuning method Objective function ITSE T (s) T.(s) OS (%)
[11] PSO MFV: 16.8036 5.6423 10.2972 15196 21.7902
DE MFV: 6.9272 49479 81855 29039 2.7644
PSO-TSI MFV: 6.2929 5.0469  7.4481 29879 2.1479
DE-TSI MFV: 4.6456 3.8950 5.1489 3.3298 0.8122
[10] 2N 43.2308 62.8387 5.0003 46.4433
BA (ISE) 0.3526  0.5858 0.0864  16.24
BA (ITSE) 0.0369  0.0268  0.0149 0.00

4. CONCLUSION

This study investigates the performance of various PID controller tuning methods for the CTS using
the ITSE as a performance evaluation metric. Unlike previous studies that relied solely on transient response
characteristics (e.g., peak time, settling time, rise time, and percentage overshoot), this study demonstrates
that ITSE provides a more comprehensive and summative comparison of tuning methods that’s trial and
error, ZN, CC, autotuning, and PSO. The results reveal that PSO achieves the smallest ITSE value, indicating
superior transient response performance, while autotuning produces the highest ITSE, reflecting less
favorable results. The study also validates its findings by referencing prior works that used ITSE and other
performance metrics, highlighting the importance of ITSE in comparing both conventional and optimization-
based tuning techniques.

The study concludes that ITSE is an effective cost function for optimization techniques and a
reliable evaluation metric for comparing the performance of conventional tuning methods. It provides a
clearer and more comprehensive assessment of overall system performance.
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