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ABSTRACT

This paper addresses the challenge of predicting internal temperature in green-
house environments, a critical aspect of optimizing crop growth and ensuring
resource efficiency. While machine learning (ML) techniques have been widely
applied to predict greenhouse climates, deep learning (DL) methods offer the po-
tential to capture more complex relationships within the data. In this study, we
present a comprehensive evaluation of ML and DL models, along with our pro-
posed power-long short-term memory (PLSTM) model, to predict the internal
temperature of a greenhouse using a database from Mexico. We compared tradi-
tional ML models such as linear regression (LR) and extreme gradient boosting
(XGBoost) with DL architectures like gated recurrent unit (GRU), artificial neu-
ral networks (ANN), hybrid LSTM-ANN and LSTM-RNN architectures. Our
proposed PLSTM model outperformed both ML and DL models, achieving the
R2 score of 0.9710, and root mean square error (RMSE) equal to 0.1710, high-
lighting its superior ability to predict complex time-series data.
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1. INTRODUCTION
The increasing demand for sustainable agriculture has created a need for more advanced greenhouse

management strategies. These strategies aim to maximize crop yields while minimizing resource consumption
[1]. An important aspect of greenhouse control is accurately predicting internal temperature, as it directly
impacts plant growth and energy usage [2].

In our previous study [3], we explored the use of machine learning (ML) models such as linear re-
gression (LR) and extreme gradient boost (XGBoost) to forecast greenhouse temperature using data from two
different greenhouse environments. We also investigated the correlation between the parameters: external tem-
perature, solar irradiance, internal humidity, external humidity, and dew point. While these models showed
reasonable accuracy, they may struggle to handle the complexities of temporal climate data.

In recent years, deep learning (DL) models have shown significant potential in handling time-series
data, thanks to their ability to capture intricate relationships over time [4]. Architectures like recurrent neural
networks (RNNs), long short-term memory (LSTM), and gated recurrent units (GRU) are well-suited for such
tasks. These models are designed to address the vanishing gradient problem and can effectively model long-
term dependencies [5]. Additionally, hybrid architectures like LSTM-ANN and LSTM-RNN offer a flexible
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approach by combining the strengths of both recurrent and feedforward models to improve predictive capabili-
ties [6].

This study aims to answer the following research question: Can DL models, particularly the proposed
Power-LSTM (PLSTM), significantly improve the accuracy of greenhouse temperature prediction compared
to traditional ML models and standard DL architectures? To address this question, we extend our previous
work by comparing the performance of several DL models—ANN, GRU, LSTM-ANN, LSTM-RNN—and
our proposed PLSTM model, against LR and XGBoost. The models are evaluated using ten different input
feature combinations based on a comprehensive greenhouse database collected in Mexico. Performance is
assessed using metrics such as the coefficient of determination (R²) and root mean square error (RMSE).

This research makes a significant contribution to the advancement of intelligent greenhouse systems
by demonstrating how DL can enhance the precision and reliability of climate control strategies. Accurate
temperature forecasting not only optimizes plant growth conditions but also reduces unnecessary energy con-
sumption, supporting more sustainable and cost-effective operations. A key novelty of this study lies in the
introduction of the PLSTM model, specifically designed to capture complex temporal dependencies within
greenhouse data. Additionally, the evaluation of various DL models across ten diverse input combinations
offers a robust comparison of predictive capabilities.

Moreover, this study is embedded within a larger initiative that includes the realization of a physical
greenhouse system, sensor-based data collection, and the deployment of a comprehensive IoT framework for
analysis and control. Together, these efforts reflect the transition from theoretical modeling to applied smart
agriculture solutions, making the research both technically sound and practically relevant.

This paper is structured as follows: section 1, introduces the main objective of the work. Section 2,
outlines the proposed method and implemented architecture. Section 3, presents the results and discusses the
performance of the tested models. Finally, section 4 offers the conclusion and future perspectives.

2. METHOD
To achieve the goal of this study, we used a greenhouse database from South Mezquitera, Juchipila,

Zacatecas, Mexico, spanning from July 12, 2020 to June 24, 2021. This database was used in our previous
research [3], alongside a database from Spain, where we compared the performance of ML models with the
PLSTM for temperature greenhouse prediction. To ensure continuity and build upon previous findings, we
apply DL methods in this study using the Mexican database.

Despite efforts to find other sources, we encountered a notable lack of accessible, high-quality green-
house databases suitable for our experiments. Consequently, this database was selected due to its completeness
and relevance. Furthermore, the choice is supported by agronomic and climatic similarities between Morocco
and regions such as Mexico and Spain. For instance, Zacatecas in Mexico and semi-arid regions of Morocco
exhibit comparable climatic conditions characterized by high solar radiation, limited rainfall, and warm temper-
atures that affect greenhouse environments in similar ways. These parallels have been underscored in several
studies. For example, [7] highlight that both Morocco and Spain share Mediterranean climate characteristics,
common crop varieties, and similar agricultural practices, supporting the validity of cross-regional compar-
isons. Additionally, [8] describes Morocco as “North Africa’s California,” noting its Mediterranean climate,
fertile soils, and horticultural potential, which closely mirror those found in parts of Spain and Mexico. Finally,
the use of this database serves as a temporary alternative while awaiting the availability of data from our own
experimental greenhouse currently under development in Morocco. The selected database includes internal
temperature (Ti) in °C, external temperature (To) in °C, internal humidity (Hi) in %, external humidity (Ho) in
%, solar irradiance (Rs) in W/m², and internal dew point (Di) in %.

The main objective of this paper is to develop and evaluate DL models for the accurate prediction
of internal greenhouse temperature. While the impact of predictive accuracy on broader agricultural factors
such as energy consumption, crop yield, and operational efficiency is undoubtedly important, these aspects
are outside the scope of the present study. They are being investigated in parallel by another research team
within the same project, as part of a complementary effort focused on the optimization of greenhouse resource
management.

In this study, we conducted experiments using three input features and one output (Ti), testing ten dif-
ferent combinations to assess their influence on prediction performance. These combinations are summarized
in Table 1.
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Table 1. Sequence of input-output variables (as presented in [3])
Combination number 1 2 3 4 5 6 7 8 9 10

Output Ti
Inputs Hi-Di-To Hi-Ho-To Hi-To-Rs Di-Rs-To Ho-To-Rs Hi-Di-Rs Hi-Di-Ho Hi-Rs-Ho Di-Rs-Ho Di-Ho-To

To further understand the relationships between the input variables and the target variable (Ti), we
employed the Spearman Rank Coefficient. This measure is suitable for evaluating the strength and direction of
relationships between variables, even when the data is not normally distributed. By calculating the Spearman
Rank Coefficient for each pair of variables, we identified significant correlations and explored how changes in
one variable relate to changes in another. The formula to calculate Spearman’s rank correlation coefficient is
presented (1):

ρ = 1− 6
∑

d2i
n(n2 − 1)

(1)

where: di is the variance in ranks between the paired observations and the predicted value and n signifies the
total count of observations [9].

To visualize these relationships and gain a comprehensive understanding of the interdependencies
between the input variables, we created heat maps. Heatmaps are a graphical representation of data where
each value is represented by a color, making it easy to identify patterns and trends [10]. In our analysis,
the heatmap displayed the Spearman Rank Coefficient values between each pair of variables, with different
colors representing varying degrees of correlation. This visual representation provided valuable insights into
the relative importance of different input variables in predicting internal temperature and helped us identify
potential redundancies or dependencies among the features. The heatmap for the Mexico Greenhouse Database,
presented in Figure 1, reveals several key insights:

- Higher humidity (Hi, Ho) levels are associated with a decrease in internal temperature (Ti).
- An increase in solar radiation (Rs) corresponds to a rise in internal temperature (Ti).
- A rise in the dew point (Di) is linked to an increase in internal temperature (Ti).
- Elevated internal temperature (Ti) is connected to higher external temperature (To).

Figure 1. The Spearman correlation heatmap of Mexico greenhouse database

2.1. Model experiments
In our experiments, we selected a diverse DL models—GRU, ANN, LSTM-ANN, and LSTM-RNN—to

explore their effectiveness in predicting greenhouse internal temperature. These models were chosen based on
their unique strengths in handling time-series data and their ability to capture complex patterns inherent in
greenhouse conditions. To provide a comprehensive comparison, we also included two ML models: LR and
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XGBoost, which were successfully implemented in our previous work. In addition, we re-evaluated the perfor-
mance of our proposed PLSTM model, which was introduced in earlier research as an advanced solution for
this prediction task [3].

We split the Mexico greenhouse database into training, testing, and validation subsets to ensure robust
model evaluation. Each model was trained and optimized through a hyperparameter tuning process, where
we utilized Bayesian optimization to efficiently adjust the models’ parameters. This approach was particularly
advantageous in optimizing the objective functions, which require significant computational resources and time
to evaluate, ensuring that each model was fine-tuned for maximum performance [11].

2.1.1. Gated recurrent unit model
GRU is a variant of the RNN that simplifies the structure of LSTM [12]. It uses gating units to control

the flow of information and has two gates: the update gate (2) and the reset gate (3). In (4) represents candidate
activation and final memory at current time step with (5).

zt = σ(Wz · xt + Uz · ht−1 + bz) (2)

rt = σ(Wr · xt + Ur · ht−1 + br) (3)

h̃t = tanh(Wh · xt + rt ⊙ (Uh · ht−1) + bh) (4)

ht = (1− zt)⊙ ht−1 + zt ⊙ h̃t (5)

where: xt is the input at time step, t, ht is the hidden state at time step t, ht−1 is the hidden state at the previous
time step, h̃t is the candidate hidden state, Wz,Wr,Wh are the weight matrices corresponding to the update
gate, reset gate, and candidate hidden state, Uz, Ur, Uh are the recurrent weight matrices, bz, br, bh are the bias
vectors, σ denotes the sigmoid activation function, tanh denotes the hyperbolic tangent activation function,
and ⊙ denotes element-wise multiplication [13].

2.1.2. Artificial neural network model
ANN are highly effective tools commonly used for recognizing and modeling complex systems, like

those present in structural dynamics [14]. It functions like the human brain and neural systems, ANNs are
created to imitate the capacity to learn and process information [15]. They consist of an extensive network of
computer neurons, the fundamental units, connected by links that transmit signals in a single direction, similar
to synapses in the human brain [16]. In an ANNs, each processing unit sends its signal through a single output,
which can branch into several connections. These neurons work together to perform calculations much faster
than traditional computers.

The model is constructed with three distinct layers: the input layer, the hidden layer, and the output
layer [17]. The input layer comprises nodes, with one dedicated to each independent variable, while the output
layer consists of a single node. The number of hidden layers can vary, with the complexity and size of the data
determining whether a single hidden layer or multiple hidden layers are used. Neurons within each layer are
connected to neurons in adjacent layers through weighted connections, and each neuron applies an activation
function to its input [18]. During training, the model adjusts the weights and biases of these connections to
minimize the error between predicted and actual results. In (6) describes the model calculation:

a = σ

(
n∑

i=1

wixi + b

)
(6)

where: σ is the activation function, wi are the weights associated with the input features, xi are the input
features and b is the bias term. While Table 2 provides details of the hyperparameters used in the ANN model
[19].
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Table 2. Optimal hyperparameters used for: GRU, ANN, LSTM-ANN, and LSTM-RNN

Parameter Value DescriptionGRU ANN LSTM-ANN LSTM-RNN
Input size 3 3 3 3 Number of input features
Hidden size 250 250 250 250 Number of units in the hidden layer
Epochs 300 300 300 300 Number of complete passes through the training database
Batch size 620 620 620 620 Number of samples processed before updating the model
Learning rate 0.005 0.005 0.005 0.005 Rate at which the model’s weights are updated
Optimizer Adam Adam Adam Adam Optimization algorithm used for training
Dropout rate - 0.2 - 0.2 Fraction of input units to drop during training
Activation function - ReLU - ReLU Activation function used in the hidden layers
Gradient threshold - - 0.8 - Maximum gradient value allowed during training
Drop factor - - 125 - Factor by which learning rate is reduced after each epoch

2.1.3. Long short-term memory-recurrent neural network model
LSTM-RNN algorithm is a model which combines LSTM and RNN architecture. It memorizes well

the historical data in sequential data and preserves information about the previous one [20].
Figure 2 visualizes the design of LSTM architecture. It uses a three-set of gates to control the sequence

flow of data. The first is the forget gate (Ft), which decides which information to throw away from the cell
state. It takes the previous hidden layer Ht−1 and the current input Xt and produces a vector of values between
0 (completely get rid of this) and 1 (completely keep this) for each component of the cell state. The input gate
(It) determines which new data should be stored in long-term memory, considering both the current input Xt

and the previous hidden state Ht − 1. It uses the tanh activation function to combine these inputs and generate
potential data. The sigmoid activation function then decides which elements of these candidate data are worth
retaining, resulting in updated long-term memory. The output gate (Ot) defines the actual output of the cell. It
takes into account the cell state and the input, producing an output that is filtered based on both the cell state
and the internal state of the LSTM cell [21].

Figure 2. LSTM-RNN model architecture

2.1.4. Long short-term memory-artificial neural network model
The LSTM-ANN architecture is an innovative fusion that combines the characteristics of LSTM with

those of standard ANNs. This combination aims to leverage the ability of LSTMs to process data sequences
and combine it with the effectiveness of ANNs in areas such as classification, regression, and other forms of
data analysis [22]. To understand how past events influence present ones, we take previous results into account
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when training our model. However, we only focus on the most recent data to predict what will happen next.
After gathering a comprehensive data set that reflects every conceivable operational condition, the next step is
to train our neural network with this information [23]. By using multiple layers of LSTM, where each layer uses
the previous layer’s hidden units as input, we can model complex processes and discover hidden information
in a hierarchical structure. This fusion of LSTM and ANN is ideal for processing data that vary or do not
vary with time. LSTM networks process current data considering previous information and state internals to
produce new outputs and states [24]. On the other hand, ANNs use a network of interconnected units in their
hidden layer to process data, relying on nonlinear activation functions like the sigmoid and the hyperbolic
tangent, thus facilitating complex operations like element-by-element multiplication and addition. The model
was trained via DL with TensorFlow. Several optimizers were tried, including RMSProp, SGD, and Adam;
nevertheless, the Adam optimizer was selected for this study. The optimal configuration was established after
several attempts by adjusting the network hyperparameters such as the number of layers and neurons, the type
of activation function, the batch size and the dropout rate. A detailed overview of the optimal hyperparameters
used for each mentioned model is included in Table 2.

2.2. Experimental setup and model evaluation
For our experiments, we used Python 3.7 as programming language, with Keras 2.3.1, a TensorFlow-

built high-level neural network API, for model development and training. Google Colab was used as the
primary development environment due to its cloud-based computing capabilities and GPU acceleration, which
significantly enhanced the efficiency of the training process. The performance of the models was evaluated
using several metrics to ensure the reliability and accuracy of predictions. Specifically, we employed the (R2),
given its ability to measure how well the predicted values match the actual data and RMSE to further analyze
the predictive accuracy and model performance [25].

3. RESULTS AND DISCUSSION
In our previous work [3], we studied the predictive capabilities of ML models, specifically LR and

XGBoost, to forecast greenhouse temperature. We chose LR for its simplicity in modeling linear relationships
and XGBoost’s efficiency in handling non-linear relationships through gradient boosting [26]. However, as
the data became more complex and voluminous, these models showed significant limitations. To address these
challenges, we transitioned to DL techniques, including ANN, and proposed our novel LSTM-based model,
named PLSTM, which had promising results.

In this study, our goal is to compare the performance of several DL models with ML models. To
achieve this, we forecast four DL models: GRU, ANN, LSTM-ANN, and LSTM-RNN as seen in Table 3
and compared them with the ML models studied in our previous work (refer to Table 2) using the Mexico
greenhouse database [3]. To make this comparison, we evaluated the performance of these models using the
R2 and RMSE metrics, considering ten different combinations of input variables.

Table 3. Comparison of DL models using ten combinations for Mexico greenhouse database
Metrics R2 RMSE
Input-models GRU ANN LSTM-ANN LSTM-RNN GRU ANN LSTM-ANN LSTM-RNN
Hi-Di-To 0.9547 0.9580 0.9690 0.9620 3.1903 0.2060 0.1760 2.9234
Hi-Ho-To 0.9303 0.9300 0.9340 0.9307 3.9585 0.2650 0.2570 3.9465
Hi-To-Rs 0.9277 0.9340 0.9390 0.9361 4.0324 0.2570 0.2480 3.7903
Di-Rs-To 0.9063 0.9140 0.9190 0.9182 4.5900 0.2950 0.2860 4.2882
Ho-To-Rs 0.8993 0.9120 0.9160 0.9114 4.7581 0.2980 0.2920 4.6240
Hi-Di-Rs 0.9476 0.9510 0.9560 0.9526 3.4248 0.2230 0.9210 3.2626
Hi-Di-Ho 0.9415 0.9370 0.9460 0.9422 3.6279 0.2520 0.2340 3.6058
Hi-Rs-Ho 0.8781 0.8850 0.8860 0.8841 5.2367 0.3410 0.3400 5.1060
Di-Rs-Ho 0.9016 0.9160 0.9210 0.9142 4.7043 0.2920 0.2830 4.3933
Di-Ho-To 0.9115 0.9190 0.8240 0.9160 4.4609 0.2860 0.4210 4.3457

Firstly, the GRU model exhibited the best results with the Hi-Di-To combination, showing the high-
est R2 value of 0.9547 and the lowest RMSE of 3.1903. Meanwhile, the Hi-Rs-Ho combination showed the
lowest performance with R2=0.8781 and RMSE=5.2367. For the ANN model, the Hi-Di-To combination had
the highest R2 value of 0.9580 and the lowest RMSE of 0.2060. On the other hand, Hi-Rs-Ho had the lowest

Bulletin of Electr Eng & Inf, Vol. 15, No. 1, February 2026: 637–647



Bulletin of Electr Eng & Inf ISSN: 2302-9285 ❒ 643

performance with R2=0.8850 and RMSE=0.3410. In the case of the LSTM-ANN model, the Hi-Di-To com-
bination registered the highest R2 value of 0.9690 and the lowest RMSE of 0.1760. Di-Ho-To’s combination
had the lowest performance with R2=0.8240 and RMSE=0.4210. In the LSTM-RNN model, the Hi-Di-To
combination had the highest R2 value of 0.9620 with a reasonable RMSE of 2.9234. In contrast, the Hi-Rs-Ho
combination had the lowest performance with R2=0.8841 and RMSE=5.1060.

The plots presented in Figure 3 visualize the performance of different predictive models in green-
house temperature forecasting based on two key performance metrics: R2 and RMSE. The x-axis lists the
various models, providing a clear basis for comparison. The left y-axis displays R2 values, which indicate the
proportion of variance explained by each model. Higher values (closer to 1) signify better predictive accuracy.
The right y-axis presents RMSE values, which quantify the average error between predicted and actual values,
with lower values indicating better model performance. In this analysis PLSTM achieved the highest R2 value
of 0.9710, indicating excellent predictive capability, also boasts the lowest RMSE of 0.1710, demonstrating its
precision in temperature predictions.

Figure 3. RMSE and R2 estimations for different DL algorithms using with the best combination Hi-Di-To

Secondly, we compared the performance of these models using scatter plots to provide a clear rep-
resentation of the predicted values of each model against the actual values. Figure 4 presents the scatter plot.
The plot in Figure 4(a) compares real vs. predicted temperature values using ML models, while the plot in
Figure 4(b) shows real vs. predicted temperature with DL models.

Starting with Figure 4(a), the LR, XGBoost, and PLSTM models are compared. The LR model, being
a simpler ML model, shows that most of the points lie farther from the diagonal line, indicating significant
deviations. This suggests that LR struggles with capturing the nonlinearities present in the data. The XGBoost
model exhibits a better alignment with the diagonal compared to LR, indicating improved predictive accuracy.
However, there are still some outliers. On the other hand, the proposed PLSTM model stands out as the most
accurate, with a substantial concentration of points clustered closely around the diagonal line. This alignment
suggests that the model effectively captures the underlying patterns in the data, resulting in highly accurate
predictions across the temperature spectrum. For Figure 4(b), the scatter plot analyzes the DL models: ANN,
GRU, LSTM-ANN, LSTM-RNN, and PLSTM. The scatter points for the ANN model display considerable
dispersion from the diagonal line. GRU, LSTM-ANN, and LSTM-RNN models exhibit improvements over
ANN, with more points clustering near the diagonal. While these models demonstrate a better understanding
of the data, they still display occasional deviations. On the other hand, PLSTM is consistent with the first
plot and again shows exemplary performance, with most points closely aligned with the diagonal line. This
reinforces the model’s ability to achieve accurate predictions and effectively adapt to variations in greenhouse
temperature.
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(a)

(b)

Figure 4. Scatter plot comparison: real vs predicted temperature values with; (a) ML and (b) DL

4. CONCLUSION
In summary, we compared various ML and DL models for predicting greenhouse temperature, with a

particular focus on the performance of our proposed Power-PLSTM model. Using ten different input combina-
tions, the PLSTM model demonstrated superior predictive accuracy and lower error rates—especially with the
Hi-Di-To input combination. It consistently outperformed traditional ML models such as LR and XGBoost, as
well as other DL architectures including ANN, GRU, LSTM-ANN, and LSTM-RNN. These findings suggest
that the PLSTM model can serve as a valuable tool for precise climate prediction in smart greenhouse systems.
Importantly, the PLSTM model has already demonstrated its robustness on greenhouse databases from Mexico
and Spain, where it was compared with ML models, and later with the Spain database to assess its performance
against other DL models. It has also recently been applied to Moroccan greenhouse database, which is cur-
rently under submission. The deployment of PLSTM in real-world smart agriculture settings has the potential
to significantly improve crop yield and resource efficiency by enabling timely and accurate climate control.
Moreover, the model’s adaptability to diverse greenhouse contexts highlights its scalability and potential for
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global application. As the next step, we plan to integrate the model into our experimental greenhouse under
construction in Morocco, where it will be deployed on an IoT platform for real-time environmental monitoring
and control.
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