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 Rice plants are susceptible to various diseases such as brown spot, BLB, and 

blast, caused by viral, bacterial, or fungal infections, which significantly 

affect both the quantity and quality of rice production. This study introduces 

an automated method for detecting these diseases using dual thresholding 

(DT) in segmentation combined with twin support vector machine (TW-

SVM) classification. Early detection and accurate identification of rice leaf 

diseases are crucial for effective management and optimization of 

production. The proposed method leverages the strengths of TW-SVM, 

including its ability to handle high-dimensional data efficiently. The 

approach is compared with three SVM-based techniques: basic SVM, least-

square SVM, and proximal SVM. Simulations are performed using images 

from both a public dataset and a real-time drone image dataset. Thirteen 

features, including color, texture, and shape, are extracted for classification. 

Results show that the proposed dual stage thresholding (DST) TW-SVM 

achieves superior performance in terms of time complexity and accuracy, 

with 95% accuracy on the public dataset and 99.3% accuracy on the drone 

image dataset. 
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1. INTRODUCTION 

Rice stands as a pivotal grain in addressing global food demands, thus heavily influencing the 

economies of various nations. However, the production of high-quality rice worldwide is imperilled by a 

spectrum of diseases categorized broadly as viral, bacterial, or fungal infections [1]. These afflictions 

detrimentally impact both the quality and quantity of rice yields. Common ailments include rice tungro, 

ragged stunt, grassy stunt, rice yellow dwarf (mycoplasma) under viral infections; bacterial leaf blight, 

bacterial leaf streak, pecky rice, foot rot, grain rot, sheath brown rot among bacterial infections; and rice 

blast, brown spot, downy mildew, false smut, leaf smut, seedling blight, sheath blight, sheath spot, sheath rot, 

stack burn, leaf scald, root rot, stem rot, and water mold under fungal infections [2]. 

Traditionally, plant pathologists detect these diseases through invasive means. However, 

contemporary technologies such as advanced digital data acquisition and image processing offer non-invasive 

alternatives. Image processing coupled with machine learning injects automation into disease detection. The 

process typically comprises of four steps i.e., image pre-processing, segmentation, feature extraction, and 
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classification. While current non-invasive techniques are effective, their performance can be further enhanced 

by integrating efficient automated machine learning algorithms. Pre-processing is crucial, involving effective 

data transformation to a suitable colour space while eliminating unwanted noise. Segmentation partitions the 

image into subgroups, reducing complexity. Feature extraction converts raw data into numerical features, 

preserving essential information in the image. These features, selected for their significance, are arranged 

into a feature vector for dimension reduction, emphasizing uncorrelation. Key visual features like colour, 

texture, and shape are pivotal, with techniques such as SIFT, SURF, LBP, gray level co-occurrence matrix 

(GLCM), and bag of features employed for extraction. The subsequent classification phase categorizes pixels 

into predefined patterns using methods like artificial neural network (ANN), dual thresholding (DT), support 

vector machine (SVM), k-nearest neighbours (KNN), fuzzy rule-based classifiers, Naïve Bayes, and MLP. 

Table 1 highlights advancements in the automatic detection of leaf diseases across various plants, 

with a specific focus on machine learning and deep learning-based approaches for rice plant disease 

detection. Several studies [3]–[6] have utilized machine learning techniques where preprocessing and feature 

extraction are performed manually. Preprocessing often involves filtering techniques such as rectangular, 

median, Wiener, and histogram equalization. Feature extraction, based on color, shape, and texture, is 

tailored to the application. Segmentation plays a critical role in these methods, with algorithms like k-means 

and fuzzy c-means being commonly applied. Disease detection is then achieved using classifiers such as 

SVM, KNN, NN, and DT, with some achieving promising results. 
 
 

Table 1. Summary of techniques used for automatic detection of plant leaf diseases 
S. No. Ref. Diseases Segmentation Pre-processing Feature extraction and classifier 

1 [2] Rice blast, brown spot, 
and leaf smut 

Otsu's model and 
Centroid k-mean 

HSV plane conversion and 
histogram equalization 

GLCM and SVM 

2 [6] Rice blast K-mean Weiner filter and contrast 

enhancement using 
histogram equalization 

Mean and standard deviation 

3 [3] Bacterial leaf blight, 

rice blast, and sheath 
blast 

Otsu's model Resolution reduction and 

noise reduction by median 
filtering 

Area, perimeter, contrast 

uniformity, entropy, inverse, 
difference, linearity correlation, 

rectangularity, compactness, 

elongation, and roundness 
4 [7] Brown spot, leaf blast, 

leaf smut, tungro, and 

bacterial leaf blight 

Spatial fuzzy 

clustering 

histogram equalization 

and Kuwahara filtering 

LeNet-5 as feature extraction 

and LS-SVM as classifier 

5 [8] Bacterial leaf blight, 

leaf smut, brown spot, 

and leaf blast 

K-mean clustering Otsu’s thresholding and 

median filtering 

SVM and LS-SVM 

 
 

Deep learning approaches [9], [10] have also gained traction, offering the advantage of automatic 

feature learning. CNN-based models, such as VGG16, ResNet50, and DenseNet, have demonstrated high 

accuracy, outperforming traditional machine learning methods. It has been observed that median filtering is 

effective for preprocessing large patches but less suitable for small spots. Additionally, SVM-based 

classification consistently outperforms other machine learning techniques. Building on these insights, this 

study proposes a non-invasive, machine learning-based classifier for disease detection using various SVM 

variants. The contributions include a comprehensive study of SVM as a classifier, a detailed performance 

analysis of existing learning-based classifiers across diverse datasets, and a performance comparison of SVM 

variants for three-class disease classification. 

 

 

2. MATERIALS AND METHODS 

The block diagram illustrating the proposed methodology is shown in Figure 1. The algorithm 

comprises four major steps. The first step is image pre-processing, where transformations are applied to 

improve the visual quality of the image or enhance the analysis process. This may involve converting the 

image to a different color space, resizing, or applying filtering techniques tailored to the specific application. 

The second step is segmentation of the disease-affected image, which isolates the region of interest (ROI) by 

classifying the image based on relevant features. This is followed by feature extraction, where key attributes 

such as color, shape, and texture are extracted, aiding in dimensionality reduction. The final step is 

classification, which focuses on accurately identifying different diseases using traditional methods alongside 

advanced machine learning, deep learning, and transfer learning techniques. Two datasets, DS1 and DS2, 

were used for validating the proposed methodology. DS1, sourced from Kaggle [2], comprises 120 images 

divided into three disease classes, with 40 images per class. Sample images are displayed in Figure 2. DS2 

contains 4,432 drone-captured images of rice leaves affected by bacterial leaf blight, blast, and brown spot 
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diseases [11]. Sample images are shown in Figure 3. The images in DS1 were captured using standard 

cameras, while those in DS2 were obtained using drones, ensuring the proposed algorithm's robustness under 

varying image capture conditions. Figure 2 shows examples of images taken with a standard camera, 

including leaves affected by leaf smut (Figure 2(a)), bacterial leaf blight (Figure 2(b)), and brown spot 

disease (Figure 2(c)). Similarly, Figure 3 provides examples of drone-captured images, illustrating rice blast 

disease (Figure 3(a)), brown spot disease (Figure 3(b)), and bacterial leaf blight (Figure 3(c)). These datasets 

validate the algorithm's ability to handle diverse scenarios effectively. 
 
 

 
 

Figure 1. Workflow of the algorithm for diseased leaf image processing 
 

 

   
(a) (b) (c) 

   

Figure 2. Images of diseased rice leaves; (a) bacterial leaf blight, (b) brown spot, and (c) leaf smut 
 

 

   
(a) (b) (c) 

 

Figure 3. Images of diseased rice leaves; (a) bacterial leaf blight, (b) leaf blast, and (c) brown spot 

 

 

3. PROPOSED WORK 

This section describes the image classification process, focusing on segmenting diseased areas of 

leaves and classifying specific diseases. RGB images are first transformed into the HSV color space, which 

simplifies thresholding operations. The saturation plane (S-plane) is extracted as it contains valuable 

information for disease detection, even though it may appear predominantly white. To enhance the quality of 

the extracted plane, residual noise is removed using a median filter. Segmentation, a critical step, isolates the 

diseased regions or ROI within the leaf images, enabling a focus on features most relevant to disease 

classification. The segmentation method was evaluated using the DS1 rice dataset [2], which includes 120 

images equally distributed among three diseases: brown spot, bacterial leaf blight, and leaf smut. 

Comparisons were made between the segmentation performance in LAB and HSV color spaces to identify 
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the most effective approach. The LAB color space posed challenges: diseased regions often appeared 

scattered across different clusters, complicating isolation, and healthy green areas sometimes overlapped with 

diseased clusters, potentially causing misidentification. Based on these observations, the HSV color space 

was selected for segmentation due to its superior performance in isolating diseased regions. 

To address segmentation challenges, the HSV color space was utilized due to its effectiveness in 

handling color information. DT with Otsu's method was employed for optimal threshold selection, achieving 

segmentation through two thresholds. The first threshold (th1) was applied to the saturation plane (S-plane) 

to create a mask (mask1) that isolated potential diseased areas. The second threshold (th2) was applied to the 

hue plane (H-plane) of the background-removed image (using mask1) to generate a refined mask (mask2), 

further isolating the diseased regions. Optimal threshold values (th1 and th2) for different diseases were 

determined based on their color characteristics: for bacterial blight and blast disease, th1=0.28 and th2=0.15; 

for brown spot and leaf smut, th1=0.28 and th2=0.12. These thresholds were selected after analyzing their 

impact on detection accuracy using a set of 10 sample images. During segmentation, some diseased clusters 

contained green pixels, which could affect detection accuracy. To mitigate this, the hue color wheel 

properties [2] were utilized. Green, corresponding to a hue range of 17.2° to 45°, translates to 0.048 to 0.125 

in the H-plane. A binary map was created based on this range to remove unwanted green pixels, resulting in 

improved segmentation of the diseased areas. 

The next step, feature extraction, identifies key aspects of the images, including color, shape, and 

texture. Thirteen features were extracted to represent each image. Color features were obtained using 

techniques like color histogram descriptors and color moments, which include mean, standard deviation, 

kurtosis, and skewness. Shape features, such as the area, percentage of diseased area, eccentricity, circularity 

ratio, and convexity, were calculated to characterize the visual information of the image. Texture features, 

derived from the GLCM, included contrast, energy, variance, correlation, homogeneity, and inverse 

difference moment. GLCM, based on second-order statistics, is computed using a displacement vector d(δ,θ), 

where δ represents the radius and θ the angle of rotation (0°, 45°, 90°, and 135°). These features help capture 

the spatial variation of brightness, contributing to accurate image representation. 

The final stage involved disease classification using three SVM variants: least squares SVM  

(LS-SVM) [12], proximal SVM (PSVM) [13], and twin SVM (TWSVM) [14]. SVMs are widely used due to 

their ability to separate classes with wide margins, making them effective for high-dimensional data while 

being memory-efficient [15]. However, SVMs face limitations, such as slower performance on large datasets 

and difficulties with overlapping class boundaries. Additionally, SVMs do not provide probabilistic outputs 

and may underperform when there are more features than training samples. To overcome these issues, 

advanced variants like LS-SVM, PSVM, and TWSVM were employed, which enhance SVM efficiency in 

terms of speed and accuracy, making them suitable for disease classification tasks. 

The performance and accuracy of SVM depend on tuning certain training parameters, which can result 

in longer training times. However, proximal SVM for binary classification assigns a class to the nearest of two 

parallel planes that are driven apart as far as possible [16]. Here, the training time is very fast, but the accuracy 

degrades due to the presence of slack variables. Hence, class assignment is done by measuring proximity to the 

two parallel hyper-planes. TWSVM is another important machine learning classifier, nearly four times faster 

than SVM [17]. TWSVM is a nonparallel extension of multiclass classification. In comparison to SVM, 

TWSVM solves two small quadratic programming problems (QPP) rather than one larger one. 

 

 

4. RESULTS 

The proposed model is compared and analyzed with several established supervised classification 

methods, including SVMs [18], KNN [19], and ANNs [20]. Due to its sensitivity to parameter selection, a 

dedicated subsection details the process of optimizing SVM parameters for the best performance. The 

performance of these SVM variants is evaluated against the proposed dual stage thresholding (DST) with 

TWSVM method. This comparison focused on both accuracy and time complexity. For training and testing, both 

datasets were split into 80% training and 20% testing sets. The trained models were then evaluated on the testing 

data to assess their classification accuracy. The simulations were conducted in a MATLAB-2018 environment on 

a system with an Intel Core i5 processor running at 2.4 GHz, a 64-bit operating system, and 6 GB of RAM. 

 

4.1.  Pre-processing of sample image 

The pre-processing operation is first performed on the images. In this step the images are resized to 

(3×3) pixels and are converted to HSV colour space. The saturation plane (S-plane) is extracted from the 

HSV colour images and passed through a median filter of size (3×3) to remove the noise [21]. Figure 4 

shows the original sample frame (Figure 4(a)), the HSV image (Figure 4(b)), and the extracted S-plane after 

the application of median filter. In leaf disease detection, diseases often cause changes in the intensity value 

of the pixels in the image. Hence, S-plane is extracted to indicate any colour variation in the diseased part of 
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the image. It is observed from Figure 4(c) that there exists a colour variation at the beginning and towards the 

end portion of the S-plane image. This colour variation shows the possibility of diseased region on the rice 

leaf. These regions are extracted through the segmentation operation which is narrated in section 4.2. 
 

 

   
(a) (b) (c) 

   

Figure 4. Pre-processed images; (a) original image, (b) HSV plane image, and (c) S-plane median filtered image 
 

 

4.2.  Segmentation of sample image 

The step-by-step process for segmenting diseased areas in a sample image is illustrated in  

Figures 5(a) to (e), using a sample image from the bacterial blight dataset. Figure 5(a) shows the S-plane 

thresholded image, marking the first stage of segmentation. In Figure 5(b), the background is removed, 

isolating the ROI in the image. Figure 5(c) displays the Hue-plane thresholded image, highlighting specific 

color ranges that potentially correspond to the disease. Figure 5(d) represents the non-diseased portion, 

showing the healthy areas of the rice leaf, while Figure 5(e) presents the segmented diseased area, illustrating 

the final result of the segmentation process for the bacterial blight sample. 
 

 

     
(a) (b) (c) (d) (e) 

     

Figure 5. Segmentation result; (a) S-plane image after applying threshold, (b) image after background 

removal, (c) hue-plane image after applying threshold, (d) segmented image showing non-diseased areas, and 

(e) segmented image highlighting diseased areas affected by bacterial blight 
 

 

Figure 6 provides a visual analysis of the segmentation process for brown spot disease, 

demonstrating the refinement achieved using the hue color wheel. Figure 6(a) depicts initial segmentation, 

where diseased spots are identified along with extraneous green portions, indicating inaccuracies. In  

Figure 6(b), the segmentation is improved by applying the hue color wheel, which eliminates irrelevant green 

areas, resulting in a more precise representation of the diseased cluster. This highlights the effectiveness of 

the hue color wheel in enhancing segmentation accuracy by excluding non-diseased regions. For blast 

disease, segmentation results are shown in Figure 7. Figure 7(a) depicts the segmented diseased area in the 

sample image, while Figure 7(b) illustrates the disease cluster after background removal. The percentage of 

the leaf affected by blast disease is quantified and visualized in Figure 8, providing a clear representation of 

disease impact on the sample rice leaf. 
 

 

    
(a) (b) (a) (b) 

    

Figure 6. Sample segmented image for brown spot 

disease; (a) diseased cluster with unnecessary green 

portion and (b) diseased cluster after applying hue 

colour wheel 

Figure 7. Sample segmented image for blast disease; 

(a) diseased cluster and (b) background removed 

image 

 

 

The performance of SVM classifiers depends significantly on parameter selection. To ensure a fair 

comparison with other state-of-the-art methods, the effects of kernel function variation and regularization are 

analyzed. The optimal kernel function and regularization parameter obtained from this study are then used for 

the performance evaluation of the proposed algorithm. To examine the impact of kernel function variation, 

accuracies for different kernel functions are plotted in Figure 9. Training accuracies for all kernel functions 
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range between 91% and 95%. However, the selection of the optimal kernel function requires validation using 

cross-validation and testing accuracy. From Figure 9, the RBF kernel is found to outperform other kernel 

functions and is thus used for the performance analysis of all SVM variants. 
 

 

 
 

Figure 8. Feature extraction of sample image 
 

 

 
 

Figure 9. Accuracies for different kernel function for K=10 
 
 

The different cost function parameters of RBF kernel are box constraint or regularization parameter 

or penalty factor denoted as ‘C’ and kernel scale parameter denoted as ‘γ’. ‘C’ controls the influence of test 

data. The higher the ‘C’ value higher is the cost of misclassified points [22]. Now γ controls the similarity of 

data. When γ is zero, all points are treated as same class and if it is high, overfitting condition may occur 

where all the training data behave as support vector. But it should not be too high as well [22]. To study the 

effect of variation of (C) at constant γ on the performance of the RBF kernel, the value of ‘C’ is varied from 

1e-3 to 1e3 and corresponding training accuracy, testing accuracy and cross validation accuracy are reported 

in Table 2. Moreover, cross validation with 5 and 10 fold cross validation are applied to predict lowest 

classification error. It is observed from Table 2 that a C value of 1e-3 provides the best result among all other 

values of ‘C’ and 10 fold cross validation produced better result than 5 fold cross validation. Hence 10 fold 

validation is used for all our simulation analysis. 
 

 

Table 2. Performance comparison of different classifiers on DS1 & DS2 

Classifier 
Cross validation accuracy (%) Test accuracy (%) Elapsed time (sec) 

DS1 DS2 DS1 DS2 DS1 DS2 

ANN 59.4 45 66.6 61 3 12 

KNN 80 87.3 83 99.24 136 711 

SVM 82 98.3 83.3 98.75 128 640 

 

 

The performance of SVM was analyzed and compared with two widely used algorithms, ANN and 

KNN, based on cross-validation and testing accuracy for both datasets, DS1 and DS2, as shown in Table 3. 

The data was split into an 80:20 ratio for training and testing in all simulations. The ANN model used for 

classification consisted of one hidden layer with 13 inputs and 3 outputs. KNN classified data points based on 

the KNN using a specific distance metric. KNN is known for its effectiveness in low-dimensional spaces, 

making it suitable for this application [23]. The results for KNN were reported using the optimal distance 

metric and the best value of k for each observation. SVM performance was evaluated using the RBF kernel. 

As shown in Table 3, SVM achieved the highest testing accuracy of 83.3% for DS1, while KNN 

outperformed other methods for DS2 with a testing accuracy of 99.24%. 

For DS1, SVM outperformed other classifiers, while for DS2, KNN showed better performance as 

the data size increased, as detailed in Table 3. The performance of SVM variants, including LS-SVM, PSVM, 

and twin support vector machine (TW-SVM), was evaluated for leaf image-based disease classification using a 

multi-class framework. The results in Figure 10 and Table 3 indicate that TW-SVM achieved the highest 

accuracy of 95% for DS1 and 99.3% for DS2, followed by LS-SVM, while PSVM had the lowest accuracy at 

77.6% and 70.6%, respectively. ANN showed the lowest performance among classical classifiers. These 

60%

70%

80%

90%

100%

Linear function sigmoid function RBF function Polynomial function

Training Accuracy Testing Accuracy Cross Validation  Accuracy (k=10)
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findings highlight the superior accuracy and efficiency of TW-SVM compared to other classifiers and SVM 

variants in this study. 
 
 

Table 3. Performance comparison of DS1 and DS2 with different classifiers 
Diseases classes Dataset ANN (%) KNN (%) SVM (%) LS-SVM (%) P-SVM (%) TW-SVM (%) 

BLB, BS, and LS DS1 66.25 83 83.3 91 77.6 95.2 
BLB, BS, and BLST DS2 61 99.24 98.84 98.87 70.6 99.24 

 

 

 
 

Figure 10. Performance comparison of SVM Variants for DS1 and DS2 
 
 

The proposed DST TW-SVM method is compared with state-of-the-art methods, including those by 

Prajapati et al. [2], Azim et al. [24], Chen et al. [25] for DS1 dataset and Sethy et al. [11] for DS2 dataset 

with results summarized in Table 4. Prajapati et al. [2] reported a testing accuracy of 73.3%. Azim et al. [24] 

utilized LBP and GLCM-based feature extraction followed by SVM and XGBoost classifiers, achieving 

accuracies of 81.6% with SVM and 86.58% with XGBoost. Chen et al. [25] employed a DenseNet-201 pre-

trained network with an SVM classifier, achieving a test accuracy of 94.07%, enhanced by fully connected 

layers and a focal loss function. For the DS1 dataset, the proposed TW-SVM method achieved the highest 

accuracy of 95%, outperforming these approaches. For the DS2 dataset, Sethy et al. [11] evaluated transfer 

learning models with SVM for rice leaf disease detection, achieving a test accuracy of 98.3% using ResNet50 

features. However, the proposed TW-SVM method achieved the highest accuracy of 99.3%, demonstrating 

superior performance for rice leaf disease classification. 
 

 

Table 4. Comparison of performance of the suggested technique with existing best performing methods 
Author's name Dataset Methods Testing accuracy (%) 

Prajapati et al. [2] DS1 K-mean segmentation+SVM 73.3 

Azim et al.[24] DS1 LBP and GLCM feature+XGBoost 86.58 

Chen et al. [25] DS1 DenseNet-201+SVM 94.07 
Sethy et al. [11] DS2 ResNet50+SVM 98.3 

Proposed method DS1 DST+P-SVM 76 

    DST+LS-SVM 91 
    DST+SVM 83.3 

    DST+TW-SVM 95 

Proposed method DS2 DST+P-SVM 70.6 
    DST+LS-SVM 98.84 

    DST+SVM 98.4 

    DST+TW-SVM 99.3 

 

 

4.3.  Computational complexity of support vector machine and its variants 

Big 'O' notation is commonly used for evaluating time and space complexity. This study analyzes 

the time complexity of SVM and its variants. The time complexity of standard SVM ranges between O(n2) 

and O(n3), depending on the number of loops in the algorithm, where n is the total number of training 

instances. LS-SVM improves computational efficiency by replacing inequality constraints with equality 

constraints and using a squared error term. It solves a set of linear equations instead of quadratic equations, 

resulting in a time complexity less than O(n3). PSVM, interpreted as regularized least squares, generates two 

parallel planes, each closer to one class and as far apart as possible. Its complexity is approximately O(m3), 
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where m is the input space dimension, making it faster than standard SVM. TW-SVM uses a non-parallel 

plane classification strategy, where each plane is closer to one class and farther from the other. It solves two 

smaller QPPs instead of one larger one. If both classes have equal numbers of instances (n/2 each), the time 

complexity is O(2×(n/2)3), which is nearly four times faster than the O(n3) complexity of standard SVM. This 

makes TW-SVM significantly more efficient for classification tasks [14]. 

 

 

5. CONCLUSION 

This work introduces a DST technique combined with TW-SVM for the automatic detection of rice 

leaf diseases and evaluates the performance of various SVM variants. Machine learning-based approaches are 

increasingly favored for their non-invasive, fast, and accurate detection capabilities, making them suitable for 

agricultural applications. The proposed method involves detecting diseased areas in leaf images, extracting 

relevant features, and classifying them using four SVM variants: SVM, LS-SVM, PSVM, and TW-SVM. 

Among these, TW-SVM achieved the highest detection accuracy of 95.2% and 99.3% on datasets DS1 and 

DS2, respectively, with training-testing times of 0.27 seconds for DS1 and 0.47 seconds for DS2. These 

results highlight the robustness of TW-SVM across varying conditions and its lower time complexity 

compared to other methods. This study contributes to precision agriculture by providing an efficient and 

accurate system for detecting common rice leaf diseases. Future work will focus on expanding the dataset, 

enabling real-time field applications, and developing a hybrid model integrating machine learning and deep 

learning for multi-disease detection. Addressing challenges such as dataset quality, availability, and 

environmental variability will be crucial for enhancing the system's practicality and effectiveness. This 

research underscores the potential of integrating image processing, machine learning, and remote sensing 

techniques for scalable plant disease detection. 
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