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 The increasing demand for the internet of things (IoT) and massive machine-

type communications has significantly expanded network size and 

complexity. Recent research indicates that 95% of network tasks are 

monitored manually, leading to configuration complexity, human errors, 

faults, downtime risks, and time consumption. Network automation emerges 

as a practical solution by reducing administrative overhead and enabling 

reliable, scalable, and self-managing networks through scripting and 

standardized programming languages. This paper proposes a model for 

automated networks using Python-based methods, specifically Paramiko, 

Netmiko, and the network automation and programmability abstraction layer 

with multivendor support (NAPALM), to configure the enhanced interior 

gateway routing protocol (EIGRP) within the graphical network simulator-3 

(GNS3) environment. The performance of the automated network was 

evaluated using two scenarios: with threading and without threading. Key 

metrics included execution time, configuration accuracy, error rates, and 

resource utilization. Simulation results demonstrate that the automated 

approach significantly outperforms manual configuration. In addition, the 

automated model with threading outperformed the automated model without 

threading, achieving execution time reductions up to 67% and 100% 

configuration accuracy with zero errors. These findings underscore the 

effectiveness of the proposed system for automating complex network tasks 

in large-scale IoT deployments. 
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1. INTRODUCTION 

The rapid expansion of the internet of things (IoT) and advancements in cloud computing have 

substantially increased the complexity of network infrastructure, intensifying the demand for robust intrusion 

detection and secure data handling mechanisms in diverse applications [1], [2]. In addressing these 

complexities, human expertise in microservices and cloud solutions plays a critical role, particularly in the 

strategic implementation of containerization and orchestration to enhance scalability and security in modern 

networked systems [3]. Consequently, IoT’s proliferation across sectors like healthcare, industrial 

automation, and smart cities has amplified the attack surface, posing significant cybersecurity risks, which 

require advanced intrusion detection systems to ensure network security and data privacy [4]. This 

https://creativecommons.org/licenses/by-sa/4.0/
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necessitates that network engineers manage an ever-increasing workload in provisioning, maintaining, and 

monitoring these complex systems, particularly against threats like distributed denial of service (DDoS) 

attacks that can impact critical infrastructure [5]. 

This growth has created scalability challenges for network administration activities, particularly 

when dealing with numerous devices. The complexity of networks has also increased, making it difficult for 

administrators to configure various types and brands of routers. This complexity, coupled with the potential 

for human error, poses significant challenges [6]. Additionally, network administration is time-consuming, 

with the manual configuration of numerous routers in extensive network environments further amplifying 

complexity [7], [8]. Therefore, effective management of computer network systems is imperative [9]. An 

efficient approach to assist network administrators is network automation. Network automation involves 

automating the configuration, administration, testing, and utilization of network devices, both physical and 

virtual [10]. Various protocols and tools have been introduced to address these needs. 

Automation protocols such as network configuration protocol (NETCONF), representational state 

transfer configuration protocol (RESTCONF), and yet another next generation (YANG) have become 

foundational in programmable networking. These protocols enable structured and vendor-neutral device 

configuration and state management. YANG, in particular, supports service abstraction and modularity in 

complex deployments [11]. Moreover, software-defined networking (SDN) has revolutionized network 

architecture by decoupling the control and data planes, enabling centralized and programmable management 

through controllers such as OpenDaylight and ONOS. SDN's programmability and adaptability are 

particularly beneficial in IoT environments, where networks often require dynamic reconfiguration [12]. 

Emerging strategies further integrate machine learning (ML) and artificial intelligence (AI) into 

automation workflows. These technologies facilitate predictive analytics, anomaly detection, and self-healing 

capabilities, enhancing modern networks' resilience and security. For instance, ML-enhanced SDN 

controllers can identify traffic anomalies and optimize routing paths in real time [13], [14]. 

In addition to these protocols and architectural innovations, common approaches involve using 

scripting languages to automate device setups and reduce configuration time and errors [15]. Python and 

Ansible are widely adopted tools for network automation due to their flexibility, modularity, and user-

friendly development environments [16], [17]. Python, in particular, is a high-level programming language 

with a vast ecosystem of libraries and modules that facilitate the automation of complex networking tasks. It 

supports the development of application programming interfaces (APIs) capable of replacing traditional 

command-line interface (CLI) configurations, thereby promoting consistent, scalable, and scriptable 

workflows [18]–[20]. Ansible, by contrast, offers a declarative, agentless framework well-suited for 

automating routine tasks across heterogeneous network environments. 

Python distinguishes itself through its versatility and scalability, particularly in the context of IoT 

platforms. Unlike domain-specific tools such as Ansible, which are optimized for standardized automation, 

Python provides a general-purpose programming environment that supports imperative logic, modular 

design, and advanced flow control. This allows developers to implement customized, event-driven workflows 

that align with the dynamic and diverse requirements of IoT systems. Moreover, Python’s rich library 

ecosystem—including Netmiko, network automation and programmability abstraction layer with multivendor 

support (NAPALM), Paramiko, and PyYANG enables native support for essential network protocols such as 

NETCONF, RESTCONF, SNMP, and YANG, ensuring seamless interoperability in multi-vendor 

environments [21]. 

Additionally, Python’s integration with AI and ML frameworks (e.g., TensorFlow and scikit-learn) 

enhances its capabilities for intelligent network automation. These include predictive analytics, anomaly 

detection, and adaptive system control critical features in managing large-scale, heterogeneous IoT 

infrastructures. While Ansible remains a powerful tool for executing standardized configurations efficiently, 

it lacks the advanced programmability and data-processing flexibility offered by Python. Consequently, 

Python represents a more comprehensive and adaptable solution for network automation in complex IoT 

deployments [22]. Table 1 compares Python and Ansible in the context of IoT network automation, 

highlighting the advantages of Python-based systems regarding flexibility, scalability, and protocol 

integration [21]-[23]. 

This comparative analysis complements the findings in recent research. Recent research has made 

significant advances in network automation. For example, Islami et al. [23] investigated the use of network 

automation on the Raspberry Pi for configuring network devices using Ansible, highlighting its potential in 

reducing configuration and maintenance duration while minimizing human errors. Fuzi et al. [24] utilized 

Ansible for network automation to set up EIGRP routing and advanced configurations within the graphical 

network simulator-3 (GNS3) environment. Mazin et al. [25] create a Python-centered framework that 

facilitates communication with various third-party network devices. This is accomplished by harnessing the 

expansive collection of Python libraries and APIs tailored specifically for networking [25].  
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Ortiz-Garcés et al. [26] proposed a network automation model using Ansible and open shortest path first 

(OSPF) to harden campus networks, focusing on communication protocols, hardening configurations, and 

playbook deployment [26]. Datta et al. [27] introduce an integrated platform that simplifies the management 

of various network devices by providing a unified solution. Al-Mekhlal et al. [28] explored efficient Python 

programs for network automation in data centers, aiming to automate tasks in private cloud environments. 

Datta et al. [29] utilized Ansible for network automation to set up BGP routing and advanced configurations 

in a live network setting. Chen et al. [30] proposed an automated configuration framework covering task 

design, parameter arrangement, sequence arrangement, scenario design, scheme design, and interaction with 

configuration tool interfaces. Alfaresa et al. [7] analyzed the performance of network automation using the 

Paramiko and Telnetlib libraries, focusing on OSPF for IGP and BGP for EGP. 

 

 

Table 1. Comparison of Ansible vs. Python in IoT network automation 
Criteria Python-based automation Ansible 

Programming model Imperative and object-oriented; supports advanced 
logic, loops, exception handling 

Declarative; limited flow control and logic 
customization 

Performance and 

scalability 

High performance with support for threading, 

multiprocessing, and persistent SSH sessions 

Slower for large-scale tasks due to repeated SSH 

connections per task 

Customization and 

extensibility 

Easily extensible with native libraries (e.g., 

Netmiko, NAPALM, and PyYANG) 

Requires custom module development; steeper 

learning curve for advanced customization 
Real-time interaction Supports dynamic decision-making and real-time 

device feedback handling 

Lacks native support for real-time adaptation during 

execution 

AI/ML integration Seamless integration with ML frameworks (e.g., 
TensorFlow and scikit-learn) 

No built-in AI/ML support; limited to static 
playbook logic 

Protocol support Fine-grained support for NETCONF, RESTCONF, 

YANG, and SNMP through multiple libraries 

Relies on existing modules; limited flexibility for 

direct protocol-level scripting 
Vendor flexibility Highly adaptable across multi-vendor environments Requires module support per vendor; not all 

hardware features may be accessible 

Suitability for IoT 
environments 

Excellent for heterogeneous, resource-constrained, 
and dynamic IoT deployments 

Suitable for standard automation, but less effective 
in complex, real-time IoT contexts 

 

 

This paper identifies the best method to improve scripting efficiency using Python, specifically 

through the use of Paramiko, Netmiko, and NAPALM for configuring EIGRP routing and advanced 

configurations in the GNS3 environment. This analysis aims to evaluate the performance of automated 

network deployment, improve the efficiency of configuring network devices, and determine the differences 

in performance regarding the time needed to configure network devices. Additionally, it investigates the 

integration of threading techniques with Paramiko, Netmiko, and NAPALM to enhance the automation 

process by parallelizing tasks and reducing execution time providing a scalable and lightweight solution 

tested within a simulated environment tailored to IoT scenarios. Two scenarios were used to investigate 

performance: without threading and with threading. Performance evaluation for both scenarios was 

conducted for various methods (Paramiko, Netmiko, and NAPALM) in terms of execution time and errors, 

impacting the quality of service (QoS) and management in computer networks. 

The remainder of this paper is organized as follows: section 2 covers the method, section 3 describes 

network automation methods using Python scripting without threading, section 4 details network automation 

methods using Python scripting with threading, section 5 presents simulation results, and section 6 concludes 

and discusses future work. 

 

 

2. METHOD 

This section outlines the methodology for designing and evaluating a Python-based network 

automation configuration system to configure the enhanced interior gateway routing protocol (EIGRP) in a 

simulated network environment using GNS3. The automation workflow leverages Python libraries such as 

Paramiko, Netmiko, and NAPALM to automate the configuration of network devices via secure shell (SSH) 

connections. The methodology is divided into three key components: emulator overview, network topology 

design, and automation workflow. 

 

2.1.  Emulator overview 

GNS3 is a network software emulator first released in 2008. It allows the combination of virtual and 

real devices to simulate complex networks and uses Dynamips emulation software for simulating and testing 

the Cisco internet work operating system (IOS). GNS3 consists of two main components: the all-in-one 

software, a graphical user interface (GUI) that facilitates network design and simulation; and the virtual 

machine (VM), a server that runs in a virtual environment, providing better topology size and device support. 
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GNS3 features significantly ease usability, reusability, manageability, interconnectivity, and distribution, 

thereby decreasing both cost and time. 

 

2.2.  Network topology design 

To apply and evaluate the script with various methods using Python, namely Paramiko, Netmiko, 

and NAPALM, we designed a simple network topology to configure the EIGRP routing protocol in the 

GNS3 environment. The topology includes an Ubuntu Docker container, which runs the automated Python 

scripts for configuring network devices via SSH connections [27], [28]. SSH is a cryptographic network 

protocol for securely operating network services over an insecure network. The topology also includes a 

Layer 2 switch (using real Cisco IOS) that connects to three routers (also using real Cisco IOS) to be 

automatically configured, and a cloud component for internet access, as shown in Figure 1. 

 

 

 
 

Figure 1. Simple network topology 

 

 

The topology ensures a controlled environment to test the automation scripts, with SSH enabled on 

all devices for secure remote access. The GNS3 emulator, combining a GUI and a VM, supports the 

simulation of Cisco IOS devices using Dynamips emulation software, ensuring accurate replication of real-

world network behavior. 

 

2.3.  Automation workflow 

The automation workflow configures the EIGRP on three routers (R1, R2, and R3) using Python 

scripts within an Ubuntu Docker container. The process leverages the Paramiko, Netmiko, and NAPALM 

libraries for secure and efficient configuration. The workflow consists of the following steps: 

a. Initialization: import libraries (Paramiko, Netmiko, NAPALM, threading, and time) and define device 

parameters (IP addresses, credentials, and EIGRP settings). 

b. SSH connection: establish secure SSH connections to routers using: 

− Paramiko: low-level SSHv2 for command execution. 

− Netmiko: simplified SSH with Cisco IOS support. 

− NAPALM: unified API for multi-vendor configuration. 

c. Configuration: apply EIGRP commands (e.g., enable protocol and advertise networks) tailored to each 

router’s interfaces. 

d. Validation: verify configurations via commands (e.g., show IP EIGRP neighbors) and log outputs. 

The workflow is executed in the GNS3 environment, with flowcharts in Figure 2 illustrating the 

process for each library. This structured approach ensures reliable and scalable automation, suitable for large-

scale IoT deployments. 
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Figure 2. Flowchart illustrating the setup processes for Paramiko script 

 

 

3. NETWORK AUTOMATION METHODS USING PYTHON SCRIPTING LANGUAGE 

Python is a powerful and flexible programming language, ideally suited for automation and a wide 

range of programming tasks. It offers an extensive set of tools and functions that enable the creation of 

scripts to automate the configuration and management of network devices, including routers, switches, 

firewalls, and servers [25]. This paper proposes a model for implementing Python scripts to automate 

network configuration using various methods, including Paramiko, Netmiko, and NAPALM. These methods 

are utilized to configure EIGRP routing and perform advanced configurations within the GNS3 environment. 

An Ubuntu Docker container is employed to run the Python scripts, facilitating secure connections to devices 

and automating their configuration via SSH. 

 

3.1.  Paramiko 

Paramiko is a pure Python interface that implements the SSH protocol version 2 in Python, 

providing both client and server functionality. It achieves high performance through low-level cryptographic 

concepts. Any device configurable via SSH can also be managed using Python scripts with this module [7]. 

Figure 2 illustrates the Paramiko script used to configure the EIGRP. This flowchart provides a step-

by-step process of using Paramiko to automate the configuration of EIGRP routing on network devices, 

highlighting the importance of secure and efficient network management. In this script, SSH encryption is 

enabled to ensure the secure transfer of information between the client and server, allowing users to execute 

shell commands on a remote computer as if they were physically present. The EIGRP protocol is activated to 

share routes with other routers within the same autonomous system. 

Figure 3 provides validation of the successful implementation of the Paramiko script for the 

automated configuration of the EIGRP across three routers (R1, R2, and R3) in the GNS3 environment. The 

subfigures delineate the script's execution: 

Figure 3(a), depicting Router 1 (R1), illustrates the establishment of an SSH connection and the 

application of EIGRP configuration commands. The displayed output confirms the activation of the protocol, 

including the assignment of an autonomous system (AS) number and network advertisements. Figure 3(b), 
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focusing on Router 2 (R2), demonstrates the replication of the process for R2, with the script tailored for its 

specific interface IPs. The output verifies the consistent replication of configurations across the network 

devices. Figure 3(c), illustrating Router 3 (R3), completes the triad, showcasing the script's capability to 

manage concurrent configurations while preserving consistency. 

 

 

   
(a) (b) (c) 

 

Figure 3. Outputs of the Paramiko script for different devices: (a) R1, (b) R2, and (c) R3 

 

 

Each subfigure effectively showcases the automated application of EIGRP configuration commands, 

the successful establishment of routing information exchange, and the retrieval of dynamic routing tables. 

These results authenticate the effectiveness of Paramiko in automating network device configuration with 

precision. No errors were reported throughout the execution, and the total execution time of 8.7654743 

seconds (across all devices) exemplifies the tool's efficiency in multi-device automation. The precise 

execution time of the script, 8.7654743 seconds, highlights its high efficiency for deploying routing protocols 

across multiple network nodes. 

 

3.2.  Netmiko 

Netmiko is an open-source, multi-vendor library that allows devices from various vendors to be 

configured using Python. It supports a range of devices, including Cisco IOS, Juniper, Arista, HP, and Linux, 

with limited testing on vendors such as Alcatel, Huawei, and Ubiquity. Netmiko runs on top of Paramiko, 

simplifying SSH connections to network devices, making them less complex, more versatile, and easier to 

use. While Netmiko is easier to use and supports specific vendors, Paramiko can communicate with any 

device that supports SSH. Both Paramiko and Netmiko are viable options for devices that do not support 

APIs [7], [30]-[32]. 

Figure 4 shows the flowchart of the Netmiko script used to configure EIGRP. This script enables 

SSH encryption to secure the transfer of information between the client and server, allowing users to execute 

shell commands on a remote computer. Additionally, the EIGRP protocol is activated to share routes with 

other routers within the same autonomous system. 

Figure 5 illustrates the results of the Netmiko script applied to three routers following the execution 

of the SSH connection and the configuration of the EIGRP protocol. This figure demonstrates the successful 

implementation of network automation using Netmiko to establish EIGRP routing across multiple devices, 
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showcasing the efficiency and accuracy of Python-based methods for network configuration tasks. Notably, 

the execution time for the Netmiko script was recorded at 6.66721 seconds, highlighting its rapid 

performance in automating complex network configurations 

 

  

  
  

Figure 4. Flowchart illustrating the setup 

processes for Netmiko script 

Figure 5. The output of the Netmiko script applied to 

three routers 

 

 

3.3.  Network automation and programmability abstraction layer with multivendor support 

NAPALM is a Python library that provides a unified API to interact with various network device 

operating systems. NAPALM supports multiple methods to connect to devices, manipulate configurations, 

and retrieve data. Figure 6 shows the flowchart of the NAPALM script used to configure EIGRP. This script 

enables SSH encryption to secure the transfer of information between the client and server, allowing users to 

execute shell commands on a remote computer. Additionally, the EIGRP protocol is activated to share routes 

with other routers within the same autonomous system. 

Figures 7(a) and (b) illustrate the results of the NAPALM script applied to three routers following 

the execution of the SSH connection and the configuration of the EIGRP protocol. These figures demonstrate 

the successful implementation of network automation using NAPALM to establish EIGRP routing across 

multiple devices, showcasing the efficiency and accuracy of Python-based methods for network 

configuration tasks. Notably, the execution time for the NAPALM script was recorded at 7.590587 seconds, 

highlighting its rapid performance in automating complex network configurations. 
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Figure 6. Flowcharts illustrating the setup processes for NAPALM script 

 

 

  
(a) (b) 

 

Figure 7. Outputs from NAPALM script: (a) R1 and R2, and (b) R3 
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4. NETWORK AUTOMATION TOOLS WITH THREADING 

Threading is an effective tool for establishing parallelism and improving performance in Python 

programming. Threading opens new possibilities for effectively utilizing system resources by enabling the 

simultaneous execution of several tasks within a single process. By merging this tool with network 

automation methods such as Paramiko, Netmiko, and NAPALM, threading can send connection and 

configuration commands simultaneously instead of waiting to finish the configuration on one device before 

continuing with the rest. This approach significantly reduces the time required for the application to 

complete. 

By applying threading to the scripts of network automation methods such as Paramiko, Netmiko, 

and NAPALM to configure the EIGRP for the same topology shown in Figure 1, we enable SSH encryption 

to ensure the secure transfer of information between the client and the server. This setup allows users to 

execute shell commands on all remote devices simultaneously, as if they were physically present at each 

device. Additionally, the EIGRP protocol is activated to share routes with other routers within the same 

autonomous system, as shown in Algorithms 1-3. As detailed in those algorithms, the threading process 

involves initializing device parameters, establishing SSH connections, sending configuration commands, and 

logging execution times, thereby streamlining the automation process and significantly reducing overall 

execution time. 

 

Algorithm 1. Execution flow of Paramiko script for network configuration with threading 
Step 1: Initialize process 

Step 2: Import libraries: Paramiko, time, threading 

Step 3: Start timer 

Step 4: Define connect function to establish SSH connection 

Step 5: Define get shell, send command, show, and close shell functions for shell 

interaction 

Step 6: Define EIGRP function for routing configuration  

Step 7: Set connection parameters (e.g., IPs, credentials)  

Step 8: Create device parameter list 

Step 9: Initialize multi-threading for concurrent configuration 

a. Send command and apply configuration on Router 1 (R1) 
b. Send command and apply configuration on Router 2 (R2) 
c. Send command and apply configuration on Router 3 (R3)  

Step 10: Finalize multi-threading 

Step 11: End timer and record duration 

Step 12: End process 

 

Algorithm 2. Execution flow of Netmiko script for network configuration with threading 
Step 1: Start process 

Step 2: Import libraries: time, Netmiko, threading 

Step 3: Start timer 

Step 4: Define EIGRP configuration function 

Step 5: Define connect function for SSH connection setup 

Step 6: Set up connection parameters (e.g., IP addresses, credentials)  

Step 7: Create parameter list for device configurations 

Step 8: Initialize multi-threading for concurrent configuration 

a. Send command and apply configuration on Router 1 (R1) 
b. Send command and apply configuration on Router 2 (R2) 
c. Send command and apply configuration on Router 3 (R3) 

Step 9: Finalize multi-threading 

Step 10: End timer and record execution duration 

Step 11: End process 

 

Algorithm 3. Execution flow of NAPALM script for network configuration with threading 
Step 1: Start process 

Step 2: Import necessary libraries: napalm, threading, time 

Step 3: Initialize timer 

Step 4: Define EIGRP configuration function 

Step 5: Specify device parameters (IP addresses and connection details) Set 

Step 6: username and password for device access  

Step 7: Begin multi-threading for concurrent configuration 

a. Send EIGRP configuration command to Router 1 (R1) 
b. Send EIGRP configuration command to Router 2 (R2) 
c. Send EIGRP configuration command to Router 3 (R3) 

Step 8: End multi-threading 

Step 9: Stop timer and log execution time 

Step 10: End process 
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5. RESULTS AND DISCUSSIONS 

Figure 8 demonstrates the significant performance improvement achieved by integrating threading 

with the Paramiko script, as applied to the same three routers (R1, R2, and R3) in the GNS3 environment. 

Each subfigure highlights the parallel execution of configurations: 

Figure 8(a) (R1): displays the threaded SSH connection and EIGRP configuration output for  

Router 1. The output confirms successful protocol activation while showing the reduced time taken due to 

parallel processing. Figure 8(b) (R2): illustrates the concurrent configuration of Router 2, with identical 

EIGRP settings applied simultaneously with R1. The output verifies consistency in multi-device automation 

under threaded execution. Figure 8(c) (R3): completes the set, showing Router 3's configuration running in 

parallel with R1 and R2. The output emphasizes the script's ability to maintain accuracy while drastically 

cutting execution time. 

Collectively, these subfigures showcase how threading reduces the total configuration time to just 3.58 

seconds (compared to 8.76 seconds without threading), while maintaining zero errors across all devices. This 

visual evidence underscores threading's critical role in scaling network automation for large deployments. 
 
 

   
(a) (b) (c) 

 

Figure 8. Outputs of Paramiko script with threading for different routers: (a) R1, (b) R2, and (c) R3 
 

 

Figure 9(a) shows the results of the Netmiko script with threading, achieving an execution time of 

2.217 seconds. Figure 9(b) depicts the results of the NAPALM script with threading, with an execution time 

of 4.011 seconds. These figures collectively demonstrate the enhanced performance and efficiency of 

utilizing threading techniques in Python-based network automation for configuring EIGRP routing across 

multiple devices. 

Figure 10 show the performance evaluation of the proposed model for automated networks using 

various methods, namely Paramiko, Netmiko, and NAPALM, to configure EIGRP routing and advanced con- 

figurations in the GNS3 environment as depicted in Figure 1. Two scenarios were evaluated: without 

threading and with threading. The performance evaluation for both scenarios was conducted by measuring 

the run time (execution time). 

The obtained results indicate that the execution times for Paramiko, Netmiko, and NAPALM 

without threading are 8.76 seconds, 6.66 seconds, and 7.59 seconds, respectively. Conversely, with threading, 

the execution times for Paramiko, Netmiko, and NAPALM are 3.58 seconds, 2.21 seconds, and 4.01 seconds, 

respectively. 

These simulation results demonstrate that the performance of the proposed model for automated net- 

works using Python significantly improves with threading. Specifically, the execution times with threading 

show a reduction of 59.13% for Paramiko, 66.82% for Netmiko, and 47.17% for NAPALM compared to 

with- out threading. 
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(a) (b) 

 

Figure 9. Outputs of network automation scripts with threading for three routers: (a) Netmiko Script and  

(b) NAPALM Script 

 

 

 
 

Figure 10. Performance evaluation of the network automation methods (Paramiko, Netmiko, and NAPALM) 

with and without threading 

 

 

Furthermore, the results highlight that the execution time for network automation using Netmiko is 

consistently faster than for Paramiko and NAPALM in both scenarios. Therefore, integrating threading 

techniques with network automation methods such as Paramiko, Netmiko, and NAPALM can effectively 

reduce execution time and enhance overall performance. 

To rigorously evaluate the performance of the proposed model for automated networks 

configuration methods, we conducted an extensive analysis comparing three automated methods: Paramiko, 

Netmiko, and NAPALM with manual CLI configuration. Our study employed a meticulous statistical 

approach to scrutinize execution time, configuration accuracy, error rates, and resource utilization. 

Tables 2 and 3 illustrate manual configuration was observed to have an average execution time of 

185.4 seconds (±12.3 seconds), with an accuracy rate of 90% and an error rate of 10% over 20 iterations. 

Contrastingly, automated methods demonstrated impeccable performance, achieving 100% accuracy, a 0% 

error rate, and notably faster execution times ranging from 2.21 to 8.76 s across 120 runs (20 runs per library 

and scenario). An independent t-test analysis (p<0.001) underscored the significant acceleration provided by 

automation, which was 46–84 times faster than manual methods. 
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Table 2. Configuration accuracy and resource utilization 
Library Success rate (%) Avg. CPU (%) Avg. memory (MB) 

Manual 90 20 150 
Paramiko 100 15.2 120.5 

Netmiko 100 12.8 105.3 

NAPALM 100 14.5 115.7 

 

 

Table 3. Execution time statistics 
Library Scenario Mean (s) SD (s) 95% CI (s) p-value(t-test) 

Manual --------- 185.4 12.3 [179.7, 191.1] <0.001* 

Paramiko Non-threaded 8.76 0.45 [8.56, 8.96] <0.001† 
Paramiko Threaded 3.58 0.22 [3.48, 3.68]  

Netmiko Non-threaded 6.66 0.38 [6.49, 6.83] <0.001† 

Netmiko Threaded 2.21 0.15 [2.14, 2.28]  

NAPALM Non-threaded 7.59 0.42 [7.40, 7.78] <0.001† 

NAPALM Threaded 4.01 0.28 [3.89, 4.13]   

*p-value from independent t-tests comparing manual vs. each automated method’s threaded scenario.  

†p-value from paired t-tests comparing threaded vs. non-threaded scenarios for automated methods, reported under non-threaded 
rows. ANOVA p<0.001 for comparisons across all methods. 

 

 

The reliability of automated configuration was further validated by parsing outputs from "show 

running config" and "show ip eigrp neighbors" commands. Additionally, we measured resource utilization 

using "psutil", which revealed Netmiko's exceptional efficiency with a CPU usage of 12.8% and memory 

consumption of 105.3 MB. This was followed by NAPALM (14.5% CPU, 115.7 MB memory) and Paramiko 

(15.2% CPU, 120.5 MB memory), while manual configuration was estimated to utilize 20.0% CPU and 

150.0 MB memory as shown in Table 2. 

Paired t-tests (p<0.001) showed that threading significantly reduced execution time, exemplified by 

Netmiko's improvement from 6.66 s to 2.21 s. Further, an ANOVA test (p<0.001) affirmed Netmiko's 

superior performance over other libraries. 

Our research findings, meticulously detailed in Tables 2 and 3 illustrated, provide compelling 

evidence of the advantages of automated configuration methods over manual approaches. Automation not 

only ensures superior speed and reliability but also optimizes resource efficiency, thereby presenting a more 

effective solution for network configuration tasks. 

The simulation findings validate the efficiency of the designed Python-driven network automation 

system in minimizing both configuration time and errors. However, implementing it in practical, live 

environments requires careful attention to various factors. The following section addresses potential 

implementation challenges, security vulnerabilities, and operational elements that are critical to overcome for 

widespread and successful integration. It explores how these aspects can impact the deployment and adoption 

of the system in larger, more complex settings. 

 

5.1.  Real-world implementation challenges, security risks, and deployment considerations 

Despite the proven advantages of the suggested automation system within controlled simulation 

environments, transitioning to live settings necessitates addressing numerous practical implementation issues 

and deployment nuances to achieve broad acceptance: 

 

5.1.1. Implementation issues 

This subsection highlights the main practical challenges encountered during the real-world 

implementation of the proposed network automation system. These challenges arise from infrastructure 

diversity, system compatibility limitations, and the increased complexity of operational networks compared 

to simulated environments. 

− Vendor diversification: actual networks frequently consist of equipment from various vendors, each with 

a unique CLI syntax, API support, and firmware features. Achieving complete compatibility may require 

substantial customization or a combination of scripting techniques. 

− Integrating legacy systems: many organizations still operate using older hardware or outdated software 

that do not support modern API or SSH features. Merging these into an automated framework can be 

challenging and may require alternative procedures. 

− Network intricacy: real-world implementations often encompass more complex network structures and 

dependencies than those found in simulations, making thorough testing essential to mitigate the risk of 

configuration failures that can have a domino effect. 
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5.1.2. Security concerns 

This subsection discusses the security challenges associated with deploying automated network 

management systems in real operational environments. Since automation frameworks rely heavily on remote 

access, credential handling, and large-scale device interaction, inadequate security measures can introduce 

serious risks that may compromise network integrity and confidentiality. 

− Credential security: the storage and transmission of SSH credentials within scripts or unencrypted files 

pose significant security risks. Implementing secure vaults (like HashiCorp Vault or Ansible Vault) or 

encryption is imperative in live environments. 

− Access management: integration with robust role-based access control (RBAC) mechanisms is necessary 

to prevent unauthorized or inadvertent alterations to configurations. 

− Increased vulnerability: the automation of SSH connections across numerous devices expands the attack 

surface, making it vulnerable to brute-force attempts and credential exposure. Therefore, it is essential to 

use key-based authentication, IP whitelisting, and implement rigorous logging practices. 

 

5.1.3. Deployment aspects 

This subsection addresses the practical considerations that must be taken into account when 

transitioning a Python-based network automation framework from a simulated environment to real-world 

deployment. Unlike simulations, live networks impose operational constraints related to scalability, 

reliability, and service continuity, which necessitate careful planning and rigorous validation to ensure stable 

and dependable operation. 

− Scalability forethought: as the network expands, monitoring the resource consumption (CPU and 

memory) by automation tools becomes crucial to steer clear of performance issues. 

− Failover preparations: the automation system should be equipped with error handling and recovery 

measures to revert to prior configurations if a deployment fails or is incomplete. 

− Verification and testing: automation scripts should undergo extensive validation in controlled environments 

mirroring the production setup to ensure correctness and minimize disruption upon live deployment. 

By carefully considering these elements, the transition from simulation to live deployment can be 

made secure, dependable, and adaptable. These considerations are fundamental to the successful expansion of 

Python-based network automation within both enterprise and IoT ecosystems. 

 

5.1.4. Cloud-based automation possibilities 

Modern network infrastructures are increasingly migrating to hybrid or cloud-native models. 

Integrating the proposed automation framework with cloud-based orchestration platforms can significantly 

enhance scalability, manageability, and flexibility: 

− Centralized orchestration: platforms such as AWS Systems Manager, Azure Automation, and Google 

Cloud Deployment Manager enable central control over geographically distributed IoT or enterprise 

networks. Python scripts can be embedded within cloud-native workflows for on-demand automation. 

− Infrastructure as code (IaC): integrating with tools like Ansible, Terraform, or NetBox in the cloud allows 

declarative, scalable configuration of physical and virtual network infrastructure. 

− Elastic resource management: cloud-based automation can dynamically scale compute resources required 

for parallel automation tasks, supporting larger networks without performance degradation. 

− Secure access and policy management: cloud platforms offer built-in tools for key management (e.g., 

AWS KMS), policy enforcement (IAM roles), and secure logging, which complement the security 

measures discussed in subsubsection 5.1.2. 

 

 

6. CONCLUSION  

The proposed network automation configuration system for massive IoT devices, implemented using 

Python within the GNS3 environment, offers an effective solution to the challenges faced by network 

administrators in managing complex, large-scale infrastructures. By leveraging Python-based scripting and 

libraries such as Paramiko, Netmiko, and NAPALM, alongside multithreading techniques, the system 

automates traditionally manual, time-consuming, and error-prone network configuration tasks, thereby 

significantly improving both accuracy and operational efficiency. 

Experimental results demonstrate that the automated approach outperforms manual configuration 

across multiple performance dimensions. Automation achieved 100% configuration accuracy and a 0% error 

rate over 120 runs, compared to 90% accuracy and a 10% error rate in 20 manual configuration runs. These 

differences were statistically significant, as validated by chi-square tests (p<0.05). In terms of execution time, 

automated methods (2.21 to 8.76 s) were 46 to 84 times faster than manual methods (185.4 s), as confirmed 

by independent t-tests (p<0.001). 
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Multithreading further enhanced performance, reducing execution times by 40–67%: from 8.76 s to 

3.58 s (Paramiko), 6.66 s to 2.21 s (Netmiko), and 7.59 s to 4.01 s (NAPALM), as supported by paired t-tests 

(p<0.001). Resource utilization, measured using the psutil library, highlighted Netmiko’s superior efficiency 

(12.8% CPU, 105.3 MB memory) compared to the estimated 20.0% CPU and 150.0 MB memory usage of 

manual configuration. ANOVA tests (p<0.001) further confirmed Netmiko’s overall superiority among the 

evaluated libraries. 

These findings underscore the substantial benefits of automation in terms of speed, reliability, 

scalability, and resource optimization. The system’s ability to deliver consistent, error-free, and high- 

performance configurations positions it as a robust solution for modern, large-scale IoT networks. 

Future work will focus on expanding the system to support larger and more diverse network 

topologies, integrating ML for intelligent automation, and exploring cloud-based platforms such as AWS or 

Azure for centralized, scalable orchestration. These developments aim to ensure the system remains robust, 

efficient, and adaptable for real-world deployment. 
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