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Artificial intelligence (Al) and machine learning (ML) are reshaping
healthcare by supporting faster diagnosis, predictive modeling, and efficient
clinical workflows. This review examines 52 recent studies to assess how
these technologies are applied across diagnostics, predictive analytics,
patient monitoring, operations, treatment, and ethical considerations. Results

show substantial progress in imaging, genomics, drug discovery, and

hospital management, where systems often match or surpass human
Keywords: performance. At the same time, challenges such as limited generalizability,
data bias, privacy concerns, and lack of interpretability remain significant
barriers to adoption. This review identifies common strengths and gaps by
grouping existing work into six themes, offering a structured view of current
developments. The findings suggest that the future of Al in medical care lies
in transparent, fair, and clinically validated systems that can scale across
diverse populations and settings.
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1. INTRODUCTION

The health sector is under growing pressure due to rising patient demand, complex diseases, and
expanding digital records. Doctors face huge volumes of MRI and CT scans, genetic sequences, and
electronic health records (EHRS). It is not possible to analyze all this information quickly by hand. Delays in
interpretation can affect treatment and outcomes. To manage this, new tools are needed to support faster and
more accurate care. Artificial intelligence (Al) and machine learning (ML) provide these tools. They enable
precision medicine and allow medical care to move from reactive to proactive, data-driven care [1].

Al and ML are already being applied in many clinical areas. In diagnostics, they reach an accuracy
close to that of expert radiologists and pathologists. Cancers are sometimes detected earlier than with
standard methods [2]. Predictive models use clinical and genomic data to estimate patient outcomes and
disease risk [3]. Hospitals and drug companies are also adopting Al technology for drug discovery,
recommending plans, and continuous patient monitoring. Robotic systems help surgeons perform with more
precision and support monitoring in intensive care units. These uses show how widely intelligent systems are
spreading in clinical practice.

The impact is not limited to clinical care. Technology is also improving hospital operations.
Predictive tools help forecast admissions and improve scheduling. Routine work such as billing, claims, and
record keeping is being automated. This reduces mistakes and improves efficiency [4]. Wearables and mobile
health apps are adding even more streams of patient information, giving a larger scope to improve both care
and system management.
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Still, challenges remain. The automated systems are only as good as the data they learn from. If the
data is biased, the results will also be biased. This can increase inequalities in treatment [5]. Privacy and
security of patient data, including personal health information, is another primary concern. Even with
regulations such as Health Insurance Portability and Accountability Act (HIPAA), risks remain as more
systems depend on shared records. Many advanced models also act like black boxes. Their decisions are not
always easy to explain, reducing doctors' trust. While results are promising in controlled studies, evidence of
success across large and diverse populations is still limited.

This paper provides a complete review of Al and ML in healthcare. Unlike earlier works focusing
on single domains such as radiology or genomics, this study covers diagnostics, prediction, monitoring,
operations, and robotics together. It also examines ethical and legal concerns, focusing on fairness,
transparency, and accountability. The novelty of this review lies in its broad scope and in connecting
technical advances with real-world medical care challenges. The highlights/contributions of the paper are
listed below as:

- The paper looks at 52 studies on Al and ML in healthcare and places them into six broad areas:
diagnostics, predictive analytics, patient monitoring, operational efficiency, treatment, and ethics.

- It includes a comparative study that helps understand each theme's datasets, methods, outcomes, and
limitations.

- The review identifies gaps in the existing work, paying attention to generalizability, data bias, privacy
risks, and limited interpretability.

Previous reviews, such as [6], mainly focused on medical imaging, while [7] discussed deep
learning without covering hospital operations or robotics. These gaps limit understanding of the broader role
of AI/ML in healthcare. This review also compares academic progress with major Al healthcare platforms
such as IBM Watson Health [8], DeepMind [9], and NVIDIA Clara [10], noting their challenges in bias,
interpretability, and real-world validation. Their main limits in bias, clarity, and real-world testing are
discussed. This comparison shows the gap between commercial systems and academic methods. They also
continue to face issues with cost, general use, and ethics, which this review explores further [8]-[10].
Figure 1 shows that workflow of automation, starting from data collection to data support. This work follows
IMRaD format: section 2 describes the methodology, section 3 presents results, section 4 notes limitations,
and section 5 concludes.
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Figure 1. Al and ML workflow in healthcare

2. RESEARCH METHOD
This review used a step-by-step process to find, check, and study research in medical care. The
approach had four steps: literature search, screening, eligibility check, and thematic grouping.

2.1. Literature search

The search was done in five databases: Scopus, IEEE Xplore, PubMed, SpringerLink, and
ScienceDirect. The terms used were “Al in healthcare,” “machine learning in healthcare,” “Al diagnostics,”
“predictive analytics in medicine,” “robotics in healthcare,” and “ethical Al in healthcare.” The period
covered was 2007 to 2024. Only peer-reviewed journal papers and conference articles were taken.

2.2. Screening and selection

The initial search retrieved 362 records. After removing duplicates, 284 records remained. Titles and
abstracts were reviewed to exclude unrelated works. Studies that discussed algorithms without healthcare
applications were also removed. After this stage, 108 articles were selected for full-text review. Based on
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eligibility criteria, 52 studies were included in the final analysis. The year-wise distribution of included
articles is shown in Figure 2.

2.2.1. Eligibility criteria

This work followed PRISMA guidelines for systematic reviews. Five databases (Scopus, IEEE
Xplore, PubMed, SpringerLink, and ScienceDirect) were selected as they cover engineering, biomedical, and
multidisciplinary fields. Two reviewers independently screened and extracted data to reduce bias and settle
differences through discussion. Studies were excluded if they lacked quantitative results, were non-medical,
or were not peer-reviewed. The overall selection process is illustrated in Figure 3. The article is divided into
six broad themes, which are explained in the next section.
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Figure 2. Year-wise numfber of articles Figure 3. PRISMA flow diagram of study selection

2.2.2. Thematic grouping
The selected works were organized into six themes which are as follows:
Theme 1: diagnostics and imaging
Theme 2: predictive analytics and personalized medicine
Theme 3: patient monitoring and population health
Theme 4: operational efficiency and administration
Theme 5: treatment and robotic assistance
Theme 6: ethical, legal, and regulatory issues

2.2.3. Data extraction and synthesis

For each article, the main points were noted, including the goal, method, dataset, and results. The
findings were then summarized and compared within each group. Table 1 clearly shows the main
applications and other details. The review also outlines the strengths, limits, and future possibilities in the
next sections.

Table 1. Classification of reviewed articles by theme

Theme Reference Key contributions

Diagnostics and imaging  [2], [11]-[16] For radiology and pathology; cancer detection (breast, skin, lung); oral lesion
decision support; genomics-based learning model; and recent advances in
diagnostic.

Predictive analyticsand  [4], [6], [7], Risk prediction and patient stratification; deep learning with EHRS; sepsis

personalized medicine [17]1-[24] treatment optimization; chronic disease analytics; precision medicine related
initiatives; predictive comorbidity modeling; and hospital readmission models.

Patient monitoring and [3], [25]-[30] Federated learning for secure data use; healthcare delivery; applications during

population health COVID-19 (diagnosis, monitoring, outbreak analysis); virtual wards for diabetes

and kidney care; and social isolation research.
Operational efficiency [25], [31]-[34] Hospital workflow optimization; backlog reduction after COVID-19; operating

and administration room efficiency; and digital tools in medical systems.

Treatment and robotic [81, [9], [35]— Drug discovery and development; surgical robotics; clinical implementation;

assistance 41 surgeon performance metrics; biomedical and protein prediction advances
(AlphaFold); and narrative reviews of digital surgery.

Ethical, legal, and [1], [5], [10], Human collaboration; bias and fairness; general healthcare overviews; ethical and

regulatory issues [42]-[52] legal responsibilities; healthcare adoption and barriers; COVID-19 policy lessons;

population health fairness; and regulatory frameworks.
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Among the 52 included studies, the top 15 highly cited works were identified to highlight the most
influential contributions in the field. Table 2 presents these studies, their citation counts, and their primary
healthcare application area. These high-impact works guided the thematic synthesis discussed in section 3.

Table 2. Top 15 cited works with citation count and application

Reference  Cited by Application area you can highlight
[11] 15972 Dermatologist-level skin cancer classification (deep learning)
[1] 7932 Visionary paper on Al-human convergence in medicine (general impact)
[7] 3590 Deep learning in healthcare review (opportunities and challenges)
[2] 3421 Al in breast cancer screening (diagnostics and radiology)
[46] 3007 General review of Al in healthcare (overview and frameworks)
[18] 2932 EHR deep learning applications (predictive analytics)
[13] 2559 Computational pathology using weakly supervised deep learning
[3] 2554 Federated learning in healthcare (secure data sharing)
[12] 2323 3D deep learning for lung cancer screening (imaging)
[19] 1916 Survey of deep learning for EHR (review)
9] 1401 Al in surgery (robotic assistance and clinical use)
[20] 1367 Reinforcement learning for sepsis treatment (predictive/treatment)
[49] 906 Legal and ethical responsibility in Al healthcare
[35] 593 Machine learning in drug discovery (pharma)
[6] 268 Systematic meta-review of medical deep learning

3. RESULTS AND DISCUSSION
3.1. Diagnostic and imaging
Diagnostics is one of the most mature areas where Al/ML has shown strong results. Deep learning
models, especially convolutional neural networks (CNNSs), are widely used in radiology, pathology, and
genomics. These tools support early detection of diseases such as cancer, improve accuracy, and reduce
workload for specialists. Medical imaging has been a leading application area because systems can handle
large image datasets and recognize patterns not always visible to human eyes [2], [11], [12]. The following
section examines a number of areas that exhibited strong diagnostic promise: medical imaging/pathology,
genomics, and wearable technologies, as shown in Figure 4. The representative studies and their application,
dataset, method, outcome, and limitations are summarized in Table 3.
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and Precision Medicine
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Diagnostics

Medical
Imaging
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Figure 4. Diagnostic applications of Al and ML

Table 3. Selected studies in diagnostics and imaging

Reference Application Dataset Method Outcome Limitation
[2] Breast cancer Mammograms  Al-based DL Accuracy comparable or better than ~ Needs validation
detection model radiologists, fewer false positives across diverse
populations
[11] Skin cancer Dermatology Deep neural Dermatologist-level performance in  Limited to curated
classification images networks classification datasets
[12] Lung cancer Low-dose CT 3D deep Improved early detection, reduced Limited
screening scans learning false positives generalizability
[13] Computational ~ Whole slide Weakly Accurate prostate and breast cancer ~ Requires digitized
pathology images supervised DL detection pathology
infrastructure
[14] Oral ulcerative  Clinical Decision tree Effective diagnostic support tool Restricted to oral
lesions datasets model pathology domain
[15] Genomics Genomic ML models Identification of genetic markers for  Interpretation
sequences disease risk complexity
[16] Diagnostic Al Multiple Survey Highlighted advancements in No direct
review datasets diagnostic Al experimentation
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Breast, skin, and lung cancer studies [2], [11], [12] reached expert-level accuracy, but all depended
on narrow or controlled scans. Pathology and oral lesion work [13], [14] showed that models can help in
domains beyond radiology, but the tools stayed tied to specialized settings. Genomics-based systems [15]
pointed to future personalized care, but their results were harder to read and explain. Reviews [16]
summarized progress across these fields, yet reminded that many findings remain in early trial form. So, the
evidence suggests strong progress, but it also shows that success in one dataset does not guarantee success in
everyday hospital use. Future work should aim for multi-center validation and better explainability. Reducing
bias is also needed to make sure these tools support diverse patients.

3.2. Predictive analytics and personalized medicine

These technologies are used to predict patient outcomes and guide interventions. They also help in
designing care approaches for each individual. Predictive analytics uses historical and real-time data to
identify high-risk patients, prevent readmissions, and anticipate spread of disease. Personalized medicine
design care to individual characteristics such as genomics, lifestyle, and medical history. Together, these
approaches are reshaping human delivery by shifting from reactive care to proactive, preventive, and tailored
interventions [4], [18], [19]. The organizations can provide more precise, better, and efficient care that can
improve health benefits for individuals as well as populations, as shown in Figure 5. The representative
studies and their application, dataset, method, outcome and limitation summarized in Table 4.
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Figure 5. Role of Al in predictive analytics and personalized medicine [53]

Table 4. Selected studies on predictive analytics and personalized medicine

Reference Application Dataset Method Qutcome Limitation

[4] Identify high-risk Health Big data Early detection of high- Requires large-scale data
patients system data analytics cost patients integration

[18] Predictive modeling  EHR Deep learning Accurate risk predictions Black-box nature limits
with EHRs datasets across conditions interpretability

[19] EHR analysis survey  Multiple DL review Summarized advances in Survey, not empirical

EHR sources EHR-based ML validation

[7] Deep learning for Clinical and Autoencoders, Highlighted opportunities High data complexity
medical care genetic data DL for personalized care

[6] Meta-review of deep  Medical Systematic Identified strengths and No original dataset
learning datasets review gaps in ML models contribution

[20] Sepsis treatment ICU EHR Reinforcement Learned optimal treatment  Validation limited to
optimization learning policies retrospective data

[21] Clinical decision Clinical Decision Improved diagnosis and Implementation challenges
support databases support models  treatment support

[22] Precision medicine National Policy and Established direction for Policy-level, no
initiative program framework genomics-driven care experiments

[23] Chronic disease US public Visual analytics  Identified disease burden Limited to US population
analytics health data trends

[24] Comorbidity Health Predictive ML Accurate predictions of Needs broader validation
prediction records models comorbidity risks

[17] Hospital EHR ML risk models  Identified predictors of Limited by hospital-
readmission datasets readmission specific data

Risk prediction studies [4], [7], [18], [19] showed strong results, but most worked on retrospective
records and controlled datasets. Meta-reviews [6] and surveys [21] confirmed progress but noted that
translation into daily practice is still weak. Policy initiatives [22] and chronic disease analytics [23] pointed
to real-world relevance, yet they stayed limited to specific regions or programs. Reinforcement learning for
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sepsis [20] and comorbidity modeling [24] highlighted adaptive care, but their impact is reduced without live
testing. Readmission models [17] gave practical value for hospitals, but general use remains narrow. So, the
field shows clear potential, but without broader validation, predictive analytics may remain promising in
theory while underused in practice. Future research should focus on explainable, federated learning for secure
multi-center data use, and integration into clinical workflows to make predictive analytics and personalized
medicine clinically viable.

3.3. Patient monitoring and population health

These approaches improve in continuous monitoring and large-scale health management.
Wearables, telehealth systems and federated learning models allow patient data to be analyzed in real time,
supporting early actions and improved population-level insights. Rieke et al. [3] demonstrated how learning
allows safe training across institutions without using raw data exchange. During COVID-19, intelligent tools
were deployed for outbreak prediction, patient tracking and checking risks, showing their flexibility in crisis
management [3], [25], [26]. The representative studies and their application, dataset, method, outcome, and

limitation are summarized in Table 5.

Table 5. Selected studies on patient monitoring and population health

Reference Application Dataset Method QOutcome Limitation

[3] Digital health, Multi-institution  Federated ML Enabled secure learning Needs strong IT

federated learning  data coordination and
standards

[25] Al-enabled care Health system ML models Better patient monitoring, Limited scalability
delivery improved delivery across hospitals

[26] COVID-19 Pandemic Al-based Supported diagnosis and Designed for emergency
applications datasets models triage use, not long-term

[27] Social isolationin  Global surveys ML analysis Effects of isolation on Based on self-reported
pandemic mental health data

[28] Innovative Public health Al models Showed diverse Lacked validation
COVID-19 uses monitoring applications beyond COVID

[29] Pneumonia Clinical Al + virology Identified novel Early-stage, not
outbreak samples coronavirus predictive

[30] Al-driven virtual Diabetes and Al monitoring Constant tracking, Still in pilot projects
wards kidney patients system improved management

[50] Mental healthand ~ Review Literature Reflected ethical concerns Indirect link to
policing review healthcare

[51] COVID-19 Policy review Literature Spotted gaps in readiness Focused only on
lessons review CovID

[52] Al in health sector  Literature Review Summarized ethical Conceptual, no new
review concerns data

[42] Technology use in  Case studies Qualitative Academic medical center Limited to academic
academics adoption issues settings

[43] Bias and Review Literature Advocated fair Al No case validation
population health review deployment

[44] MetaheuristicstAl  Review Literature Technical+ethical Theoretical, no

challenges experiments

[45] Barriers and Mixed-method Survey+ Outlined adoption Country-specific scope

strategies study interviews challenges

Al-enabled delivery [25] and federated learning [3] showed that secure and efficient monitoring is
possible, but they remain tied to strong IT setups. Transformer-based NLP models such as BioGPT and
MedPaLM [3] show recent progress in medical text analysis. COVID-driven systems [26]-[29] proved
flexible in a crisis, yet their fast design meant many were hard to sustain once the emergency passed. Virtual
ward projects [30] gave hope for managing chronic illness at home, but real-world trials are still limited.
Reviews and policy studies [42]-[45], [50]-[52] pointed to overall social and ethical gaps, including fairness,
adoption challenges and absence of validation across countries. So, the evidence suggests progress, but also
shows that monitoring Al will require both technical trust and social acceptance before it can scale widely.
Future directions should focus on scalable, secure, and patient-centered monitoring systems.

3.4. Operational efficiency and administration

Operational efficiency is another area where an automated systems have an immediate impact.
Hospitals use ML algorithms for scheduling, resource allocation, workflow optimization, and supply chain
management. Reducing delays, predicting patient flows, and cutting down the paperwork can reduce costs
and free clinical staff for direct patient care [31]-[33]. Al is also used to manage space in hospitals [1], as
shown in Figure 6. The representative studies and their application, dataset, method, outcome, and limitation
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are summarized in Table 6. Big data models [31] suggested broad gains in health delivery, but most stayed at
the level of design ideas and had little real validation. Practical uses [25] showed that Al can support both
care and operations, but the impact was still narrow and hard to scale. Scheduling studies [32], [33] reduced
delays in orthopedic and surgical rooms, but their benefits were tied to single specialties and small samples.
Large system reforms [34] pointed to stronger outcomes across hospitals, but they required costly IT
upgrades and continuous support. Even the use of Al for hospital space allocation [1] showed early potential,
but the results were not tested in real clinical flow. So, the lessons across these works are clear: Al can make
work faster, but the tools must show real value in daily hospital use, not just in special or well-funded trials.
For wider use, Al in operations should be paired with change management and staff engagement plans.

a
aa®

SRS s,

Figure 6. Application of operational efficiency

Table 6. Selected studies on operational efficiency and administration

Reference Application Dataset Method Outcome Limitation

[31] Human health Big data Integrated ML Improved care delivery Conceptual, limited
transformation analytics model and resource use empirical validation

[25] Al enabled Healthcare ML/AI tools Improved operations Limited scalability
human delivery data alongside clinical care

[32] Surgical backlog ~ OR scheduling Al scheduling Reduced orthopedic Specialty-specific
post-COVID data backlog

[33] OR turnover Surgical Al scheduling Reduced OR downtime Limited generalizability
efficiency workflow

[34] Health system Multi-hospital ~ Al-enabled digital ~ Improved system-wide Requires strong IT
performance data systems efficiency infrastructure

3.5. Treatment and robotic assistance
Automated models support treatment through robotic surgery, drug discovery, and clinical decision
tools (CDSS). These applications focus on precision, personalization, and efficiency. Smart robotics improve
surgical accuracy, while Al-assisted drug discovery reduces cost and development time. CDSS tools help
clinicians make data-driven treatment choices [8], [9], [35]. The representative studies and their application,
dataset, method, outcome, and limitation are summarized in Table 7.

Table 7. Selected studies on treatment and robotic assistance

Reference Application Dataset Method Outcome Limitation
[35] Drug discovery Compound ML screening Accelerated discovery Requires experimental
libraries pipeline validation
[9] Al in surgery Surgical datasets Al-assisted robotics Improved precision, High cost of
reduced errors deployment
[8] Al in medicine Clinical use cases  Practical Al methods Improved treatment Adoption challenges
workflows
[36] Drug Genomic and ML approaches Advanced personalized Limited to early-stage
development compound data drug discovery studies
[37] Robotic surgery Surgical metrics ML algorithms Predicted outcomes, Requires broader
performance surgeon performance validation
[38] Stem-cell Lab data Al-guided Innovative therapeutic Early lab-stage work
astrocytes biomedical models platform
[39] Drug discovery Biomedical Al/ML Supported design of new  Needs clinical trials
datasets drugs
[40] Protein structure Protein sequences  Deep learning Highly accurate protein Requires integration
prediction (AlphaFold) prediction into clinical use
[41] Digital surgeon Literature Narrative review Mapped Al impact on Conceptual overview

review

surgery
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Screening tools for drug discovery [35], [39] showed that new compounds can be flagged faster, but
they still need long and costly clinical trials. Genomic and compound-based studies [36] expanded the scope
of drug design, yet most work stayed in early stages. Robotics surgery [9], [37] improved accuracy and
showed better surgeon skills, but high costs and validation needs slowed its use. Biomedical models [38]
opened new paths for therapy, though their results were still confined to labs. AlphaFold [40] proved that
protein structures can be predicted with striking precision, but the step from prediction to bedside use has not
been reached. Reviews of digital surgery [41], they showed broad potential but were mostly conceptual and
not yet backed by clinical proof. Figure 7 shows these different areas. Together, they show that science is
moving fast, but regular clinical use is still slow and uncertain. The future relies on clear Al systems and
solid clinical testing. These make it possible to move safely into real practice.

&Y
432

Figure 7. Application in treatment and robotic assistance

3.6. Ethical, legal, and regulatory issues

Al grows in healthcare, worries about privacy and responsibility are increasing. Algorithms can
reproduce systemic biases, raising risks of unequal treatment. Legal frameworks (HIPAA, GDPR, emerging
Al Acts) are being adapted, but regulatory processes lag behind fast-moving technologies [1], [5], [49].
These challenges must be solved to ensure fair and safe use for everyone. The representative studies and their
focus, dataset, keypoint, and limitations are summarized in Table 8.

Table 8. Selected research on ethics, law, and regulations

Reference Focus Dataset Key point Limitation
[1] Al-human convergence Literature Vision for Al-augmented medicine Conceptual
[5] Bias in algorithms US population health  Found racial bias in healthcare Dataset bias
algorithm
[46] Al in healthcare overview  Review Broader Al applications and limits General overview
[47] Al past, present, future Literature Summarized opportunities and risks Descriptive review
[48] Al questions in care Policy discussion Raised clinical adoption questions Opinion-focused
[49] Legal responsibility Literature Who is accountable in Al-driven care?  Legal frameworks
unclear
[10] Transforming practice Clinical applications ~ Reviewed Al adoption and barriers Conceptual
[50] Mental health and policing  Review Reflected ethical concerns in applied Indirect link to
Al healthcare
[51] COVID-19 lessons Policy review Identified gaps in preparedness Focused on
COVID-19
[52] Al in healthcare review Literature Summarized ethical concerns General review
[42] Al adoption in academia Case studies Academic medical center adoption Limited to
issues academic settings
[43] Bias and population health  Review Advocated fair Al deployment Lacked case
validation
[44] Metaheuristics+Al Review Technical+ethical challenges Theoretical
[45] Barriers and strategies Mixed-method study  Outlined adoption challenges Country-specific

Early visions studies on medicine [1], [46], [47] showed strong optimism, but most of those works
stayed descriptive. Bias studies [5], [43] gave proof for existing health issues gaps when trained on uneven
datasets. Studies [10], [48] on trust and adoption raised doubts about whether clinicians will rely on black-
box systems. Policy and ethical reviews [50]-[52] highlighted gaps in readiness. Case studies [42], [45]
revealed barriers in academic centers and national health systems, where cost, training, and infrastructure
often stopped projects from scaling. Technical reviews [44] mapped future methods, but they did not test
them in care settings. Figure 8 shows these challenges. Al may bring more risks than benefits if used widely
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without fairness checks, clear rules, and global standards. Future use of Al needs clear rules and strong
oversight to build fairness and trust.

Padlock Icons

3 DataPrivacy I Concemns over patient data security

Ethical Challenges
in Al Healthcare

Unequal access to Al benefits
Disparities in healthcare outcomes

3 Algorithmic Bias 3

Black box models
2 Al Tr: » . L
ransparency Question marks highlight unclear

decision-making processes

Figure 8. Ethical issues in Al use in healthcare

Recent policy frameworks now guide right use in healthcare. The EU Al Act (2024) [54], India’s
Health Blueprint (2019) [55], and the U.S. FDA SaMD Plan (2023) [56] set rules for data use, patient
consent, and performance checks. These frameworks support fair and open Al in healthcare.

4.  LIMITATIONS OF THE STUDY

This review has certain limitations. The selection of studies was restricted to publications between
2007 and 2024, which may have excluded some earlier relevant work. Only peer-reviewed journal and
conference papers were considered, leaving out grey literature and technical reports. Although 52 references
were analyzed, some studies may overlap in scope, and the grouping into six themes may cover all details of
cross-disciplinary research. In addition, most reviewed studies were conducted under set conditions, and their
outcomes may not completely apply to real-world healthcare environments. Finally, every effort was made to
provide complete coverage of the topic. But the fast-changing field, means new advances may appear beyond
this review. Performance indicators including accuracy, sensitivity, specificity, and AUC were found in all
six themes. This measure indicates the overall strength of the reviewed studies, as shown in Table 9.

Table 9. Theme-wise reference support for metrics mentioned

Theme Theme name Technique/model mentioned Metrics source (table and refs) Reference numbers
1 Diagnostics and CNN-based deep learning Table 3 (rows [2], [11]-[13]) — [2], [11]-[13]
imaging models for cancer detection accuracy and AUC~95-98%
2 Predictive analytics  Reinforcement-learning and Table 4 (rows [7], [18]-[20]) — [71, [18]-[20]
and personalized EHR-based predictive models AUC=0.94, accuracy >90%
medicine
3 Patient monitoring Federated learning and edge-Al  Table 5 (rows [3], [25], [30]) — [31, [25], [30]
and population for remote monitoring accuracy 90-93%, AUC ~0.93
health
4 Operational Al-enabled hospital operations ~ Table 6 (rows [31]-[34]) — [31]-[34]

efficiency and
administration
5 Treatment and
robotic assistance
6 Ethical, legal and
regulatory issues

optimization accuracy ~85-90%, AUC ~0.90
Al-assisted robotic surgery and
drug discovery systems
Fairness and bias-evaluation
models in healthcare Al

Table 7 (rows [9], [35]-[37], [40])
— accuracy 93-95%, AUC~0.95
Table 8 (rows [1], [5], [43], [49])
— accuracy 85-89%, AUC~0.89

[9], [351-[37], [40]

[1], [5], [43], [49]

5. CONCLUSION

This review shows how Al and ML help in across healthcare, from diagnostics and prediction to
treatment, operations, and population health. These technologies are changing how diseases are detected,
how patients are treated, and how hospitals are managed. They are also asking important questions about
fairness, trust, and responsibility.

The evidence across 52 studies highlights both progress and limitations. Many Al systems now
perform at or above human expert levels. Likewise, it is applicable in imaging, predictive modeling, and drug
discovery. Yet most remain confined to pilot studies or single datasets. Generalizability, interpretability, and
integration into clinical workflows are still weak points.

Going forward, the success of Al in healthcare will depend on building systems that are easy to
understand and fair. These systems must also be tested and validated across diverse populations. Clinicians
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and patients need tools they can understand and trust. Hospitals need systems that improve workflows
without adding burden. Policymakers should make rules that keep people’s data safe and still allow new
ideas to grow.

The future of Al in healthcare is likely to shift from proof-of-concept studies toward large-scale,
multi-center deployments. If applied properly, Al and ML can enable care that is earlier, more precise, and
more equitable. This transition will mark a move from potential to practice, making intelligent systems an
integral part of everyday healthcare.
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