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1. INTRODUCTION

Brain tumors are a deadly disease that causes numerous deaths worldwide annually [1]. Based on
their activity, brain tumors are frequently divided into two primary categories: benign, which are less
aggressive, and malignant, which are invasive and potentially fatal. The benign type is non-life-threatening
but does not migrate to surrounding tissues, while malignant tumors extend to other tissues and are harmful.
Early identification is crucial for patients' clinical preparation. Detection can be done via diagnostic imaging
techniques or histopathological examination; each method presents advantages and limitations. Practitioners
use both aggressive and non-aggressive methods, including experimental imaging techniques like computed
tomography (CT) and magnetic resonance imaging (MRI) [2]-[4]. The MRI is a significant tool for detection
and safety due to its lack of toxic radiation.

Deep learning techniques [5] has significantly outperformed traditional machine learning methods.
In various functions, including brain tumor grade classification [6]. In medical image analysis, convolutional
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neural networks (CNNs) [7], are especially beneficial at segmenting [8] and classifying images [9].
Researchers have employed pre-trained CNN architectures [10] and improved them, while others have
developed new models from scratch and proposed modern architectures. CNNs excel in object detection and
navigation support tasks.

The U-Net architecture has emerged as a predominant framework within medical image
segmentation applications [11]-[13]. This model effectively extracts both localized and broader features
through encoding and decoding pathways. Skip connections preserve vital spatial information during
reconstruction, making the U-Net architecture well-suited for delineating complex anatomical structures such
as brain tumors in MRI scans. In the domain of brain tumor region identification and delineation,
Nguyen-Tat et al. [14] developed an advanced segmentation approach that integrates a modified 3D U-Net
architecture with Transformer technology for precise MRI-based tumor detection. Their framework utilizes
self-attention mechanisms, incorporating contextual transformer and double attention components, to exploit
complex MRI image features, achieving an 85.2% Dice score in the Brain Tumor Segmentation Challenge
2019 dataset. Additionally, Almufareh et al. [15] investigated the application of a you only look once
(YOLO)-based deep learning framework for both the segmentation and classification of brain tumors,
focusing on pituitary, glioma, and meningioma types. YOLOv5 and YOLOv7 performed exceptionally in
identifying pituitary tumors, gliomas, and meningiomas. The meningioma class showed the highest recall,
with recall scores continuously exceeding 0.78. These results confirm the accuracy of classifying brain
tumors across different types and highlight the potential of YOLO models for detection. Kordnoori et al. [16]
introduced an automatic model for identifying three main brain tumors—pituitary adenomas, gliomas, and
meningiomas—in MRI images. The model features a shared encoder for feature representation, a
segmentation decoder, and an MLP-based classifier, achieving a significant accuracy of 97% in both
segmentation and classification tasks.While Bhimavarapu et al. [17] presents an improved segmentation of
MRI images utilizing the fuzzy C-means clustering method, focusing on extracting morphological, textural,
and chromatic features to reduce complexity. The extreme learning machine has a 99.25% recall, 99.14%
precision, and 98.56% accuracy rate when classifying tumors. On the Figshare dataset, the enhanced
algorithm demonstrated performance metrics of 98.47% for accuracy, 98.59% for precision, and 98.74% for
recall, while evaluation using the Kaggle dataset yielded superior results with 99.42% accuracy, 99.75%
precision, and 99.28% recall.

This paper emphasizes the development of an efficient model that can help in the precise
identification of tumors automatically. We present a dual hybrid encoder model for the extraction of richer
features and obtaining more accurate segmentation images. Two encoders can extract more complicated
patterns from input data through various convolution rates, which in turn improves performance. Our
segmentation model achieves more accurate results than U-Net and U-Net++. For the classification phase, we
introduce fine-tuning for the lightweight EfficientNetV2 network, which achieves accurate classification
compared to ResNet50V2 and Dense169 architectures. This framework might be used as the main detection
method for an early diagnosis.

This study is organized as follows: section 2 presents the suggested framework for segmentation and
classification and explains the data set, preprocessing, dual hybrid encoder model for segmentation,
EfficientNetV2-S tuning model for classification, and data augmentation. Section 3 displays experimental
findings and section 4 concludes the study and recommends further avenues of investigation.

2. METHOD
2.1. Dataset

Contrast-enhanced MRI (CE-MRI) scans comprise the Figshare dataset. Cheng [18] which served as
an evaluation platform for the recently developed brain tumor model. This collection encompasses 3,064
T1-weighted contrast-enhanced MRI images from 233 patients, including 708 slices of meningioma, 1,426
slices of glioma, and 930 slices of pituitary tumors. It features detailed annotations such as labels, patient
IDs, image data, tumor boundaries, and tumor masks. Data allocation across model training, hyperparameter
validation, and performance evaluation phases is illustrated in Figure 1.

2.2. Data pre-processing

Extracting tumor regions from brain-relevant structural information using MRI remains a difficult
task because of irregular contrast, irregular intensity distributions, and noise artifacts. Data pre-processing is
crucial and requires careful processes. To begin, smooth MRI masks and images using a bilateral filter [19],
maintain edges, and reduce noise. Resize filtered photos, crop, convert to grayscale, and normalize all images
by dividing image matrix values by 255 to fall between 0 and 1 to facilitate model training.
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Figure 1. The data distribution for model training

2.3. Data-augmentation

Data augmentation in machine learning and deep learning is a procedure that expands the training
dataset's size, enhancing the generalization and strength of learned models. So, augmentation is employed to
enhance outcomes on a limited dataset, utilizing techniques like rotation and flipping to enable the
architecture to comprehend changes while training. Our proposed image augmentation method is seen in
Figure 2.
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Figure 2. The augmentation technique of our proposed architecture

2.4. A suggested model for segmenting brain tumors

The encoder involves five blocks, the first block containing a 3x3 convolutional layer with a 32
filter size, a batch normalization layer, followed by another convolutional layer with 3x3 kernels, a ReLU
activation, a dropout layer with a 0.2 ratio, and then a 2x2 max pooling layer is added at the end of the block.
Subsequently, we expanded the convolution layers and filters up to 64, 128, 256, and subsequently 512, with
almost the same size of the filter, i.e., 3x3. As the total number of filters increases, these little patterns are
combined to form larger patterns like squares, circles, and so forth. The second encoder has the same
architecture of blocks, but we start filtering size with 16, then 32, 64, 128, up to 256. As shown in Figure 3,
the MRI input image is fed in parallel to the two encoders. So, features are extracted at different levels of
convolution. The expansive path’s decoder layers upsample feature maps from two encoders and perform
convolutional operations. Extra skip connections preserve spatial information lost in the contracting path,
enhancing the accuracy of feature location by the decoder layers.

2.5. Proposed model for brain tumor classification

CNNs' most vital accomplishment is transfer learning, employed when employing a limited data set,
such as the situation under study. "In this research, EfficientNetVV2-S was used for feature extraction, while
ResNet50V2 and DenseNet169 were employed to compare classification results with those obtained from the
EfficientNetV2-S model. To create a better design, we fine-tune by adding layers corresponding to the
classes of the desired brain MRI data. A layer of global average pooling was added. To prevent overfitting, a
dropout layer with a 0.4 factor is added after that. Finally, a dense layer with three neurons activated by
SoftMax is used to classify the output for one of three distinct categories (pituitary, meningioma, or glioma).
The proposed classification model, EfficientNetV2-S with fine-tuning, is illustrated in Figure 4.
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Figure 4. Fine-tuned EfficientNetV2-S architecture for brain tumor classification

2.5. Evaluation matrices
2.5.1. Evaluation matrices for segmentation

Several performance metrics, including Dice similarity coefficient (DSC), accuracy, precision, and
intersection over union (loU), were used to gauge the model's efficacy. These measures, which have the
following mathematical definitions, offer insights into the segmentation quality of the model:

Accuracy = % ?
Precision = TPT+PFP ?
Sensitivity= TprFN )
JoU = —T™ *

Tp+Fp+FN

where TP denotes true positive, FP is false positive, TN represents true negative, and FN represents false
negative.
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2.5.2. Evaluation matrices for classification

To evaluate the proposed classification model, "Finetuned Efficient-NetV2S,” a range of evaluation
metrics is utilized, including accuracy, precision, recall, and F1-score, to compare our findings with previous
studies. The formulas for recall and F1-score are defined as (5) and (6):

TP
TP+FN

Recall =

()

RecallxPrecision
F1l—score =2 X ———

(6)

Recall+Precision

3. RESULTS AND DISCUSSION
3.1. Environmental setup and model training

The suggested brain classification and segmentation framework was trained on a Colab GPU with a
Tesla NVIDIA K80 with 12 GB. Our models are implemented using the Keras library, with TensorFlow
serving as the backend. The hyperparameters used for both the segmentation phase and classification phase
are presented in Table 1.

Table 1. Hyperparameters for training segmentation and classification models
Classification Segmentation

Hyperparameter Value Value
Optimization algorithm Adam Adam

Initial learning rate/LR 0.0001 0.0001
Mini-batch size 64 4

Epochs 50 100

Loss function Categorical_crossentropy  Binary_crossentropy
Activation softMax sigmoid

3.2. Segmentation results

Figure 5 presents the performance metrics of the proposed segmentation model during the training
and validation phases over 100 epochs. The proposed method reaches a 95.27% Dice coefficient on the test
set, while for the loU score, it achieves 86.89 and a minimum loss of 0.047. Figure 5(a) shows the loU score
for both training and validation phases, while Figure 5(b) illustrates the Dice coefficient, and Figure 5(c)
presents the loss curves over 100 epochs. The dual hybrid encoder segmentation model is compared with U-
Net and U-Net++ architectures. As indicated in Table 2, the designed model outperforms U-Net and U-Net++.
Segmentation Dice score can be improved from 93.40% on U-Net to 95.27%, and minimize loss from 0.0532

to 0.047. Also, increase the Dice score with a 4.98% factor over U-Net++ and minimize the loss by 0.05823.
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Figure 5. Performance metrics for the proposed model during the training and validation phases over epochs;
(a) loU score, (b) Dice coefficient, and (c) loss curves for training and validation

Table 2. Comparison of the constructed model for segmentation with the U-Net and U-Net++ models

Model Dice coefficient  loU Loss
U-Net 93.390 86.85 0.0532
U-Net++ 90.287 9231 0.1053
Proposed dual hybrid encoder 95.27 86.89  0.047
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3.3. Classification results

Figure 6 presents the performance evaluation of the EfficientNetV2-S network compared with
ResNet50V2 and Densel69 architectures during the training and validation phases. Figure 6(a) illustrates the
accuracy curves for the training and validation phases, while Figure 6(b) shows the corresponding loss
curves. The suggested model achieves a remarkable 99% accuracy on the test set with a minimum loss of
0.0390, demonstrating its ability to correctly classify most test instances with minimal misclassifications. To
further demonstrate the model’s effectiveness, it was compared with ResNet50V2 and Densel69
architectures. Table 3 exhibits a comprehensive analysis of the evaluation metrics for each brain tumor
category with the three models. The suggested EfficientNetV2-S model has the best F1-score, precision, and
recall of about 99%, while Densel69 achieved 98.31% and ResNet50V2 achieved 98.64% for F1-score,
precision, and recall, respectively. To demonstrate the model's exceptional accuracy in consistently retaining
accuracy with true labels. Figure 7 shows a confusion matrix with diagonal elements indicating properly
predicted cases and off-diagonal elements signifying misclassifications. Finally, Table 4 compares our
suggested classification and segmentation model framework with the most recent models reported on
Figshare. Top performance indicators for classifying and segmenting brain tumors were obtained from the
created frameworks.
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Figure 6. Performance evaluation of the EfficientNetV2-S network during training and validation phases;
(a) accuracy curves and (b) loss curves
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Table 3. Comparison of the classification performance metrics report for EfficientNetV2-S

Model Class Precision  Recall  Fl1-score
Dense 169 Glioma 98.31 98.31 98.31
Meningioma 98.31 98.31 98.31
Pituitary 98.31 98.31 98.31
ResNet50V2 Glioma 98.64 98.64 98.64
Meningioma 98.64 98.64 98.64
Pituitary 98.64 98.64 98.64
EfficientNetV2-S  Glioma 99.0 99.0 99.0
Meningioma 99.0 99.0 99.0
Pituitary 99.0 99.0 99.0

400

300

-200

4e+02

Figure 7. Confusion matrix for EfficientNetV2-S predicted labels

An integrated hybrid U-Net and EfficientNetV2-S approach for brain tumor segmentation ... (Marwa Abbas)



708 a ISSN: 2302-9285

Table 4. Comparison with the most advanced existing techniques for categorizing and segmenting tumors on
the dataset from Figshare

Reference Classification technique Segmentation method Accuracy (%)  Dice score (%)
[20] ParalleldeepCNN - 98.13 -
[21] - Lightweight U-Net - - 93.0
[22] CNN+SVM e 9582 e
[23] MAG-Net MAG-Net 98 74
[24] - Deeplabv3+ResNet18 - - 91.23
[25] Multimodal deep pre-trained model 86.02
[26] Hybrid pre-trained (GN-AlexNet) 99.1 - -
[16] multi-layer perceptron Encoder-decoder U-Net 97 92
[27] VGG16+23-layer CNN - - 97.8 - -
[28] YOLO2+transfer learning U-Net+residual net backbone 97.0 90.11
[29] VGG16+ResNet50 - 98.98 -
[30] - EfficientNetB4 encoder+Multiscale 93.38

attention U-Net

Thiswork  Efficient-NetV2S Double hybrid encoder 99 95.27

3.3. Discussion

Table 4 comparison indicates that the proposed framework outperforms state-of-the-art models, as
reported on Figshare recently. The main novelty of this work is developing a double hybrid encoder for
segmentation, followed by a lightweight EfficientNetV2-S classifier. The traditional approaches using U-Net
and U-Net++ models often struggle to encode high-level context and, at the same time, fine structural details.
In contrast, the double hybrid encoder can utilize complementary encoding pathways simultaneously, leading
to more accurate delineation of tumor boundaries. In the classification task, EfficientNetV2-S replaced deep
backbones such as ResNet50V2 and Densel69 to be able to yield state-of-the-art accuracy (99% F1-score), at
a lower computational cost, and trained faster, which is paramount to have real-world clinical applications.
This dual contribution—better segmentation methods and more efficient, highly accurate classification—
shows the proposed models' novelty and practical significance within a neuro-oncological decision support
context.

4. CONCLUSION

This research introduced a deep learning system for brain tumor monitoring that pairs a double
hybrid encoder for segmentation with a fine-tuned EfficientNetV2-S classifier. Overall, the system performed
very well with a Dice score of 95.27% and an F1-score of 99%, outperforming both models based on
traditional encoders and deeper classification networks. These findings indicate that the proposed system is
an accurate and efficient method to assist in the neuro-oncological diagnostic and treatment process.
Conversely, this study has limitations, including the fact that the Figshare dataset focuses on T1-weighted
images. Future studies should validate this framework across larger multimodal MRI inputs and enhance it
with immersive imaging inputs to ensure usability on a larger clinical applicability level. These efforts will
improve the generalizability, interpretability, and potential clinical utility of the proposed system.
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