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 This paper proposes a method for detecting autism spectrum disorders 

(ASD) through the analysis of facial and motor features using machine 

learning. The aim is to develop an algorithm for automatic ASD diagnosis 

based on spatiotemporal behavioral patterns. Traditional diagnostic methods 

rely on subjective expert observations, often delaying intervention. To 

address this, a hybrid convolutional neural network and long short-term 

memory (CNN+LSTM) model was employed. Convolutional layers 

extracted spatial features from video frames, while recurrent layers tracked 

temporal dynamics. Using MediaPipe face mesh, pose, and hands models, 

1,639 parameters were obtained, including facial and pose coordinates, hand 

landmarks, mouth aspect ratio (MAR), and motion energy. The dataset 

comprised 100 children, aged 5–9 years (50 with ASD, 50 typically 

developing (TD)). Stratified cross-validation was applied to ensure subject-

independent evaluation. Results showed 90% accuracy on the training set, 

85–90% on validation, and an area under the curve (AUC) greater than 0.90, 

confirming model stability. Data visualization highlighted significant 

differences in motor activity and emotional expression between groups. The 

proposed approach demonstrates the potential for robust and objective ASD 

detection. It can be applied in clinical and educational contexts to improve 

early diagnosis and timely intervention. 
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1. INTRODUCTION 

This study reports outcomes within the area of medical diagnostics, specifically concerned with the 

application of novel technologies for identification and investigation of diseases [1]-[3], such as prediction of 

autism spectrum disorders (ASD) [4]. ASD is a neurodevelopmental disorder that manifests itself during 

early childhood and involves social deficits, difficulties in communication, and atypical patterns of behavior 

[5], [6]. Its diagnosis is problematic since, at the early stages, behavioral signs may be weakly expressed [7], 

but key characteristics include avoidance of eye contact, lack of or excessive expression of emotions [8], and 

repetitive stereotypical movements. 

https://creativecommons.org/licenses/by-sa/4.0/
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Early detection of this disorder plays a key role in ensuring early intervention and correctional 

programs that promote the social adaptation of children [9]. However, the complexity of diagnosis at early 

stages significantly limits the possibilities of timely provision of necessary assistance, emphasizing the 

relevance of research aimed at developing objective methods for identifying ASD [10]. Traditional diagnostic 

methods are based on subjective observations of parents and specialists, which increases the likelihood of late 

detection of the disorder and reduces the accuracy of diagnosis [11]. Modern machine learning and computer 

vision technologies, including hybrid models based on long short-term memory (LSTM) and convolutional 

neural network (CNN), make it possible to automate the analysis of behavioral characteristics, such as eye 

tracking [12], [13], emotional expression, head, hand, and posture movements, which contributes to the 

creation of more accurate and accessible diagnostic tools. These parameters can become objective indicators 

of ASD [14], which is especially important in the context of a shortage of qualified specialists and a high 

burden on healthcare systems. 

The work aims to develop and evaluate a method for detecting ASD by analyzing facial and motor 

features using machine learning algorithms. The approach is based on the automated extraction of 

quantitative characteristics of a child's behavior from video recordings and their subsequent processing using 

deep learning models [15]. The main problem is the complexity of identifying informative features that 

distinguish between neurotypical children and children with ASD, the high variability of ASD 

manifestations, as well as the need to integrate spatiotemporal analysis of behavioral patterns. The solution to 

the problem uses MediaPipe face mesh, pose, and hands computer vision models [16] to extract 1,639 

numerical parameters, such as the coordinates of the facial, pose, and hand mouth aspect ratio (MAR) points 

and movement energy. 

Manfredonia et al. [17], the authors developed facial expression analysis software (FAC-ET) aimed 

at studying the ability of emotional expression in patients with autism. In a subsequent study,  

Owada et al. [18] quantitatively analyzed facial expressions to identify their relationship with the primary 

social impairments in ASD. Martin et al. [19], applied a computer vision method to analyze attention based 

on children's head movements during social interactions. In the study by Jaiswal et al. [20], a depth camera 

(Microsoft Kinect) was used to collect video recordings of subjects while listening to stories and answering 

questions. They applied facial expression analysis and 3D behavior recognition to extract behavioral 

characteristics and used machine learning methods to assist in the diagnosis of ASD. In a subsequent study 

[21], the authors applied computer vision methods to assess children with autism, creating an experimental 

dataset including video recordings of children's faces while viewing content. Key features were identified, 

and machine learning algorithms were used to diagnose ASD. Studies [22], [23] examined computer vision 

and machine learning methods for automated analysis of abnormal hand movements characteristic of children 

with ASD. During the experiments, a computer vision classifier was developed for clapping analysis, where 

training an LSTM network on convolutional vector features demonstrated better results than models using 

hand coordinates extracted using MediaPipe [24], [25]. An algorithm for filtering data peaks was also 

presented to identify claps and determine their intensity and frequency, which can help assess stereotypical 

behavior in autistic children. 

Despite recent advances, existing ASD diagnostic methods using computer vision and machine 

learning often analyze isolated behavioral traits without considering their complex interactions, which 

reduces accuracy. They also require considerable preprocessing time and rarely capture the full 

spatiotemporal dynamics of behavior, limiting clinical applicability. To address these issues, we propose a 

hybrid convolutional neural network and long short-term memory (CNN+LSTM) model that simultaneously 

analyzes facial expressions, head movements, hand gestures, and posture over time, combining spatial and 

temporal learning for improved classification precision. These algorithms have the potential to objectively 

evaluate behavioral characteristics, allowing for earlier identification and timely referral to specialists. While 

our suggested system unifies several behavioral markers in one model, improving the detection of subtle 

patterns typical for ASD, future research ought to be aimed at the extension of the parameter set, utilization 

of deeper architectures, growth of dataset size, and optimization towards real-time high-accuracy 

performance. 

 

 

2. METHOD 

2.1.  Dataset collection 

In this study, we developed a method for automated ASD detection based on facial and motor 

feature analysis using machine learning techniques. The approach involved data collection, processing, and 

analysis using computer vision and deep learning technologies. To build the dataset, we designed a 

multimodal data acquisition protocol involving webcam-based video recordings of children in a controlled 

environment. The protocol included two balanced groups-children with ASD (n=50) and typically developing 
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(TD) peers (n=50)-aged between 5 and 9 years. Recordings were conducted during structured interaction 

tasks, including simple games, gesture imitation exercises, and short conversational prompts, to elicit both 

social and motor behaviors. Each session took around 8–10 minutes per child, resulting in more than 16 

hours of raw video data. All videos were recorded in full HD (1920×1080) resolution at 30 fps in 

standardized lighting conditions. Facial, pose, and hand landmarks were extracted from every frame using the 

MediaPipe library, comprising face mesh (468 points) for detailed face marking, pose (33 points) for 

identifying the position of major body parts, and hands (21 points per hand) for monitoring hand movements. 

From the facial and pose points, a bounding box of the head was computed, which was extended if needed 

for a closer examination. These parameters allowed for an objective assessment of behavioral characteristics 

and movement dynamics. 

 

2.2.  Validation strategy and overfitting control 

To provide strong model validation and prevent data leakage, a stratified 5-fold cross-validation 

strategy was utilized, preserving the ratio of ASD and TD participants in each fold. The dataset was divided 

on a subject-independent basis such that data from the same participant was not included in both training and 

validation datasets. Overfitting was prevented by early stopping with patience of 10 epochs while monitoring 

validation loss, the utilization of dropout layers with a rate of 0.5 to avoid co-adaptation of neurons, L2 

weight regularization with a coefficient of 0.001 to penalize complex models, and batch shuffling at each 

epoch to minimize temporal correlations in the data. This validation approach provided a reliable estimate of 

the model's generalization ability while minimizing the risk of inflated accuracy due to overfitting. 

 

2.3.  Feature extraction and preprocessing 

From each video frame, multimodal keypoints were extracted using the MediaPipe face mesh  

(468 points), pose (33 points), and hands (21 points per hand) modules. From these keypoints, dynamic 

behavioral descriptors were calculated, namely facial movement energy (FME), pose movement energy 

(PME), left hand movement energy (LME), and right hand movement energy (RME). Each of these 

descriptors was computed as the mean Euclidean displacement of landmark coordinates between two 

successive frames, comprehensively capturing fine-grained motion patterns across multiple modalities. The 

extracted features were normalized to a zero mean and unit variance in order to ensure uniform scaling along 

all dimensions. Sequences were segmented into fixed-length windows of 150 frames (~5 seconds) with 50% 

overlap to preserve temporal continuity and increase the number of training samples. Missing values caused 

by landmark detection errors were linearly interpolated to maintain data consistency. Calculation of key 

parameters: 

Calculations of the ranges of values of FME, PME, LME dynamics, and RME energy dynamics 

based on calculating the change in the Euclidean distance between the coordinates of landmark points in the 

current and previous frames. FME is calculated according to (1) as the average change in the positions of 

facial landmarks (468 points) between successive frames: 

 

𝐹𝑀𝐸𝑡 =
1

𝑁
∑ √(𝑥𝑖
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where, (𝑥𝑖
𝑡 , 𝑦𝑖

𝑡 , 𝑧𝑖
𝑡  ) represented coordinates of the i-th facial point in the current frame, (𝑥𝑖

𝑡−1, 𝑦𝑖
𝑡−1, 𝑧𝑖

𝑡 − 1 ) 

represented coordinates of the same point in the previous frame, and N=468 represented number of facial 

landmarks. 

Similarly, PME dynamics is calculated using (2), but for 33 pose landmarks: 
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M=33–number of pose points. 

LME dynamics is calculated using (3), similar to the previous calculations, but for 21 points of the 

left hand: 
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RME dynamics is calculated according to (4), but for 21 points of the right hand: 
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L=R=21 is the number of points for each hand. 

A CNN+LSTM hybrid model was utilized to investigate spatiotemporal patterns, with CNN being 

utilized to learn local features and LSTM tracking the temporal dynamics of change. The structure of the 

model was TimeDistributed(Conv1D) for single frame processing, LSTM (64, return sequences=True) and 

LSTM (32) layers for temporal dependency modeling, and fully connected dense (16, ReLU) and dense  

(1, sigmoid) layers in the output layer for binary classification. Binary_crossentropy was used as the loss 

function, and optimization was done via the Adam algorithm. The performance of the models was compared 

using accuracy, area under the curve (AUC), precision, and recall scores. 

 

 

3. RESULTS AND DISCUSSION 

During the study, a method for ASD detection was developed based on the analysis of facial and 

motor features using machine learning methods. Data is collected using a webcam, setting the highest 

possible resolution to obtain high-quality frames. Each image is processed using the MediaPipe library, 

including the detection of facial, pose, and hand landmarks. The dataset included 100 participants 50 children 

diagnosed with ASD and 50 TD peers-aged between 5 and 9 years. The ASD group consisted of 

approximately 84% males and 16% females, while the TD group had a near-balanced gender distribution 

(52% males and 48% females). Figure 1 shows an example of automated data collection using MediaPipe, 

where key points of the face (face mesh) and body (pose, hand) are superimposed on people. Figure 1(a) 

shows the detection of 468 facial points using the MediaPipe face mesh model, which allows for the analysis 

of facial expressions, facial structure, and key markers of emotional expression. Figure 1(b) shows the 

detection of pose and hand movements using MediaPipe pose and hands, where 33 key points of the body 

and 21 points on each hand are recorded, providing the ability to analyze motor patterns, pose, and spatial 

coordination of movements. 

 

 

  
(a) (b) 

 

Figure 1. Marker detection using MediaPipe includes; (a) face mesh markers and (b) pose and hand markers 

 

 

Based on facial and pose landmarks, a head bounding box was calculated and, if necessary, 

expanded to better cover the region of interest (ROI). Additionally, the MAR was computed as the ratio of 

vertical to horizontal lip distances, along with motion energy metrics-the mean Euclidean displacement of 

landmark coordinates between consecutive frames-for the face, pose, and both hands. From each processed 

frame, a feature vector of 1,639 numerical values was generated, including: timestamp, pose landmark 

coordinates (99 values), hand coordinates (63 values each), facial landmark coordinates within the ROI 

(1,404 values), head bounding box parameters (4 values), MAR (1 value), and motion energy values (4: face, 

pose, left hand, and right hand). The processed data were stored in two formats: CSV, with each row 

representing a 1,639-dimensional feature vector, and TFRecord, where each instance was serialized as a 

tf.train. Example containing all features. These data served as input for training the hybrid CNN+LSTM 

model. All reported results were obtained using a stratified 5-fold cross-validation protocol to ensure subject-

independent evaluation and balanced class representation in each fold. 

In Figure 2, which reflects “facial movement energy” in a child with typically development, it is 

evident that the values of FME are distributed in a narrow range (up to 0.02) with smooth fluctuations. This 

indicates moderate, stable facial activity and predictable changes in facial expressions in response to external 



Bulletin of Electr Eng & Inf  ISSN: 2302-9285  

 

Autism detection using facial and motor analysis using machine learning (Aizat Amirbay) 

3989 

stimuli. Most of the points are concentrated in the low or medium range, indicating the absence of chaotic 

bursts. The child’s emotional reactions are well-regulated and synchronized with the context without being 

interrupted by sharp jumps. In general, the dynamics of facial expressions are consistent with the process of 

perception, supporting a natural reaction to surrounding events. 

 

 

 
 

Figure 2. FME for a TD child 

 

 

In Figure 3, the child with ASD shows a wider value range (up to 0.03–0.05) and frequent sharp 

fluctuations, indicating sudden, less predictable facial changes. These chaotic bursts and fragmented 

expressions suggest difficulties in regulating nonverbal signals, aligning with typical ASD traits. 

 

 

 
 

Figure 3. FME for children with ASD 

 

 

In Figure 4, “Pose movement energy” of a TD child remains within a narrow range (up to 0.02) with 

smooth fluctuations, indicating calm, consistent motor skills and gradual posture changes in response to 

stimuli. 
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Figure 4. Energy of movement postures for TD children 

 

 

In Figure 5, PME of a child with ASD shows a scattered distribution of values and frequent peaks 

above 0.02. The oscillations are chaotic, with sharp jumps indicating sudden or stereotyped movements. This 

may indicate difficulties in maintaining a stable posture and insufficient motor coordination. In contrast to the 

smooth distribution in TD children, children with ASD show a high variability of movements and problems 

with their purposefulness. Such features confirm difficulties in regulating motor skills and maintaining stable 

poses when interacting with the environment. 

  

 

 
 

Figure 5. Energy of movement postures for children with ASD 

 

 

In Figure 6, “left hand movement energy,” a child's values with typical development usually do not 

exceed 0.05, and most of the points are concentrated near zero. This indicates calm motor skills of the left 

hand without abrupt movements when the child maintains attention on the screen. Splashes are rare and do 

not reach extreme values, indicating control of movements and the absence of stereotypical gestures. Such 

dynamics are characteristic of predictable interaction with the environment when hand movements occur in 
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response to specific stimuli. Together with the data on facial expressions and posture, this confirms the 

child’s ability to maintain stable motor skills and smoothly switch between movements. 

 

 

 
 

Figure 6. Energy of left hand movements for TD children 

 

 

In Figure 7, the LME in an ASD child has high spikes, ranging from 0.3–0.8. Abrupt fluctuations 

represent sudden or stereotyped movement, i.e., flailing or twitching, which is characteristic of motor control 

problems. While the majority of points are concentrated around zero, recurrent spikes are much stronger 

compared to neurotypical children and point to unstable motor control. Although most points are clustered 

around zero, periodic spikes are significantly more potent than in neurotypical children, indicating unstable 

motor control. In contrast to the smooth distribution seen in normal development, children with ASD show 

chaotic peaks, indicating discontinuous and poorly coordinated motor responses. 

 

 

 
 

Figure 7. LME for children with ASD 
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In Figure 8, "Right hand movement energy," values for a TD child rarely exceed 0.01–0.02 and 

cluster near zero, indicating calm, controlled movements and stable posture. Occasional smooth bursts reflect 

purposeful actions, such as adjusting hand position, with quick returns to neutral. 

 

 

 
 

Figure 8. Energy of right hand movements for TD children 

 

 

In Figure 9, “right hand movement energy,” values for a child with ASD reach 0.1–0.2 with a wider 

spread. Frequent sharp fluctuations suggest sudden or stereotyped movements, unstable hand positioning, and 

unsynchronized motor skills, with chaotic bursts prevailing over purposeful actions. 

 

 

 
 

Figure 9. Energy of right hand movements for children with ASD 

 

 

In Figure 10, the first image (a child with typical development) is dominated by dark purple tones, 

indicating a low level of movement, with only occasional narrow areas of lighter colors indicating short-term 

increases in activity. The overall picture appears orderly, without frequent bands of intense color. The x-axis 

of both heat maps displays the time scale (in seconds), and the y-axis lists the four-movement channels: right 

hand, left hand, pose, and facial. The color scale on the right reflects the value of the “heatmap of movement 

energy” from purple (close to 0) to yellow higher values. 
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Figure 10. Heat map of movement energy for TD children 

 

 

In Figure 11, associated with a child with ASD, white or bright yellow vertical stripes are more 

frequent and may occupy a large portion of the time, especially in the hand and posture channels. Such areas 

indicate sudden bursts of movement and repeated stereotypical or unstable patterns. There is a more 

contrasting alternation of purple (minimal activity) and bright stripes (high activity), indicating an unstable 

pattern of behavior when periods of almost no movement are interrupted by intense, not always socially 

conditioned gestures. 

 

 

 
 

Figure 11. Heat map of movement energy for children with ASD 

 

 

In Figure 12, which is typical for a child with a standard type of behavior, a relatively low amplitude 

is noticeable for all movement energies (especially for the face, pose, and hands). At the same time, MAR 

(lip ratio) is located at a higher level. The data indicate that the child moves calmly, actively displays facial 

expressions within the normal range, and shows rare bursts in the area of the hands or pose. The Ox-axis in 

both bar graphs lists the key features (facial_movement_energy,pose_movement_energy, 

left_hand_movement_energy, right_hand_movement_energy, and MAR), and the Oy-axis shows their 

maximum recorded values. 
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Figure 12. Key parameters for TD children 

 

 

In Figure 13, for a child with ASD, left and right hand movement peaks are higher, with a noticeable 

MAR increase. This pattern suggests prolonged or sudden motor activity, possible stereotyped movements, 

and unstable posture. 

 

 

 
 

Figure 13. Key parameters for children with ASD 

 

 

TD children show low to moderate motor energy with stable, socially driven movements, while 

children with ASD display higher values with sharp peaks, stereotyped actions, and irregular facial 

expressions, evident in heat maps and extended graph tails. Figure 14 illustrates the process of training the 
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hybrid CNN+LSTM model, where the blue line (train accuracy) represents accuracy on the training dataset, 

and the orange one (validation accuracy) on the validation dataset. At early epochs, both of them are in  

0.55–0.60, but from epoch 20–30th, there is a sharp increase: the training accuracy exceeds 0.7 and the 

validation is 0.8. By the 70–80th epochs, the difference between the curves narrows to 0.05–0.1, indicating 

the model has good generalization ability. Such dynamics confirm that the hybrid architecture effectively 

processes spatial and temporal features, achieving an accuracy 0.9 on the training and validation sets. 

 

 

 
 

Figure 14. Comparison of training and validation accuracy for hybrid CNN+LSTM model 

 

 

Figure 15 illustrates the loss function decay of the hybrid CNN+LSTM model on the validation 

(orange line) and training (blue line) sets, where the starting values of 1.2–1.3 for validation and about 1.1 for 

training progressively decline to 0.1–0.2 by the 100th epoch. The validation line remains slightly above the 

training line, indicating a natural lag on “unknown” data. However, the absence of a sharp divergence 

indicates the model's ability to generalize. The smooth decline of both curves confirms the effectiveness of 

the combination of CNN and LSTM layers in analyzing time series. 

 

 

 
 

Figure 15. Comparison of the loss function on training and validation sets for the CNN+LSTM model 

 

 

Figure 16 illustrates the trend of the precision metric for the hybrid CNN+LSTM model on the 

training (blue line) and validation (orange line) sets, with the starting values around 0.5 with minimal 

fluctuation within the first 20 epochs. After the 30th epoch, precision begins to increase gradually, up to  

0.9–0.95 for training and 0.85–0.9 for validation by the 70th epoch. In the final epochs (80–100), both curves 

show stabilization with minimal fluctuation, indicating the strength of the model and its ability to maintain 

predictive accuracy on new data. 
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Figure 16. Comparison of precision metric on training and validation sets for CNN+LSTM model 

 

 

Figure 17 shows the recall curves of the hybrid CNN+LSTM model on the training (blue line) and 

validation (orange line) sets, where the starting points are at 0.5, with a consistent increase by the 20th–30th 

epoch. From this point on, the recall of the training set increases more rapidly, reaching 0.9 by the 60th 

epoch, while for the validation set, it remains stable at 0.85–0.9, towards the 80th–100th epochs. The 

discrepancy between the curves is minimal, showing the model's capability to recall positive samples in both 

the training and new datasets. The dynamics facilitate the effective extraction of both the temporal and spatial 

patterns, allowing for high recall rates without overfitting to a large extent. 

 

 

 
 

Figure 17. Comparison of recall metrics on training and validation sets for CNN+LSTM model 

 

 

Analysis of the hybrid CNN+LSTM model showed its high efficiency in processing temporal and 

spatial data, confirmed by a stable increase in the accuracy, recall, and precision metrics during the training 

process. The validation curves follow the training ones, which points to the lack of overfitting and the 

capacity of the model to generalize patterns. The value of AUC is greater than 0.9042, and precision levels 

off at 0.9042–0.9524 by the 100th epoch, which proves to be high prediction accuracy. The small difference 

(0.0534–0.1543) between the training and validation samples proves the model's resistance to new data. 

Therefore, the hybrid CNN+LSTM architecture is a promising instrument for processing intricate temporal 

sequences, making it suitable for use in medical diagnostics and behavioral analysis tasks. All reported 

performance differences were statistically significant, with p<0.05 under paired t-tests across the 5-fold 

cross-validation results. The 95% confidence intervals for accuracy, precision, recall, and F1-score were 

within ±1.5%, indicating the stability and reliability of the proposed model’s performance estimates. 
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Compared to baseline models reported in recent studies, the proposed CNN+LSTM architecture 

demonstrates competitive or superior performance. For example, Chen et al. [10] investigated the use of 

medical claims data for early ASD detection and reported an AUROC of 0.834 with a specificity of 96.4% 

and a sensitivity of 40% for the random forest model at 24 months of age. Similarly, Awaji et al. [15] 

reported 85.2% accuracy with an LSTM-based facial behavior recognition model. In contrast, our model 

achieved an accuracy of 90%, recall of 0.95, and AUC exceeding 0.90, indicating improved capability in 

capturing both spatial and temporal patterns. These results suggest that integrating convolutional and 

recurrent layers enables more effective feature learning than using either architecture alone. 

 

 

4. CONCLUSION 

During the study, a method for automated ASD detection based on analyzing facial and motor 

features using machine learning methods was developed and tested. The suggested hybrid CNN+LSTM 

model achieved good classification accuracy, with 90% on the training dataset and 85–90% on the validation 

dataset, and the AUC measure was more than 0.9042, showing its stability and generalization capacity. The 

heat map analysis and movement energy graph analysis showed that there were substantial differences in 

motor skills and facial expressions between TD children and children with ASD, proving the effectiveness of 

the suggested approach. The importance of using key parameters such as facial, postural, hand point 

coordinates, MAR, and movement energy lies in their ability to reflect the characteristic features of behavior 

objectively. Combining convolutional layers for spatial analysis and recurrent layers for temporal analysis 

improved the detection of behavioral patterns and minimized the likelihood of false classifications. 

The obtained results confirm the prospects of using the developed method for automated diagnostics 

of ASD in clinical practice and educational institutions. The absence of a significant gap between the training 

and validation curves indicates the robustness of the model in the face of new data, thus making it fit for real-

world application. 

Future work will involve scaling the dataset to a larger and more diverse population, investigating 

state-of-the-art architectures like Transformer-based models to further improve spatiotemporal learning, and 

incorporating explainable artificial intelligence (AI) methods (e.g., attention maps and SHAP) for 

interpretable decision support. Optimization of computational efficiency towards real-time, privacy-

preserving ASD screening in both clinical and school environments will also be targeted. 
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