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 Skin cancer is one of the most prevalent types of cancer worldwide, with 

early detection playing a critical role in improving patient outcomes. In this 

study, we propose a deep learning model based on LeNet-7 combined with 

adaptive boosting (AdaBoost) to classify skin lesions as either benign or 

malignant using the International Skin Imaging Collaboration (ISIC) dataset. 

We evaluate the proposed model alongside other well-established deep 

learning architectures, such as residual network (ResNet), VGGNet, and the 

traditional LeNet model, through various performance metrics including 

precision, recall, F1-score, specificity, Matthew’s correlation coefficient 

(MCC), area under the receiver operating characteristic curve (AUC-ROC), 

and testing accuracy. Our results demonstrate that the proposed model 

(LeNet-7+AdaBoost) significantly outperforms the other models, achieving 

a testing accuracy of 91.3%, precision of 0.92, recall of 0.91, and AUC-ROC 

of 0.93. The model successfully addresses issues of overfitting and 

generalization, providing a robust solution for skin cancer classification. 

However, some misclassifications of visually similar benign and malignant 

lesions highlight areas for future improvement. The proposed model shows 

promise in real-world medical applications and paves the way for further 

research into optimizing deep learning models for skin cancer detection. 
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1. INTRODUCTION 

Skin cancer is one of the most common types of cancer worldwide, with the number of cases 

continuing to rise each year [1]. Early detection of skin cancer is crucial for improving patient survival rates, 

as earlier medical intervention can prevent the progression of cancer to more dangerous stages [2], [3]. 

However, conventional diagnosis of skin cancer still faces several challenges, including reliance on the 

expertise of dermatologists, subjectivity in assessments, and limited access to adequate healthcare services in 

some regions [1], [4]. Therefore, the development of artificial intelligence (AI)-based systems has emerged 

as a potential solution to enhance the efficiency and accuracy of skin cancer diagnosis [5], [6]. With 

advancements in deep learning [7]-[9], convolutional neural network (CNN) models have demonstrated 

excellent performance in medical image classification tasks, including skin cancer detection [10], [11]. One 

https://creativecommons.org/licenses/by-sa/4.0/
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widely used dataset in related research is the International Skin Imaging Collaboration (ISIC), which contains 

thousands of skin lesion images labeled by dermatology experts [12]-[14]. However, a major challenge in 

using CNNs for skin cancer classification is the need for a large amount of data and the complexity of 

training models to achieve high accuracy. 

In medical image classification, including skin cancer detection, various CNN architectures have 

been developed to improve model accuracy and efficiency. Popular architectures such as VGG16 and 

VGG19 [8], [15], feature deep network structures with stacked convolutional layers designed to capture 

complex features from medical images. Additionally, residual network (ResNet) [16], [17], including variants 

like ResNet50 and ResNet101, offers an innovative approach with skip connections that allow deeper 

networks to be trained without suffering from the vanishing gradient problem [18]. InceptionV3 and 

InceptionResNetV2 are also widely used due to their ability to capture features across different scales 

through Inception modules [19], [20]. Meanwhile, models such as [21], [22], which optimize the scale of the 

network automatically, have proven to be more efficient in medical image classification, achieving high 

accuracy with fewer parameters. By leveraging these architectures, CNN models can classify skin cancer 

images more accurately, contributing to better early detection and diagnosis. As described by [23], this article 

has several notable strengths and weaknesses. A major strength of this study is the use of transfer learning 

with the EfficientNet V2 architecture, which achieved a high accuracy of 84%, outperforming other models 

such as Inception V3 (82%) and generic CNNs (81%). Additionally, this study emphasizes the importance of 

model interpretability, which provides insights into key features influencing predictions, thus increasing trust 

in the model's recommendations. However, a limitation of this study is its reliance on a limited dataset, 

consisting of 3,297 images from the ISIC archive, which may not encompass all variations of skin lesions 

found in real-world scenarios, potentially affecting the model's generalizability. This aligns with the findings 

of [24], where the study highlighted several strengths and weaknesses. The primary strength of the study was 

the use of a modified GoogleNet model with transfer learning, which achieved high classification accuracy of 

94.92% for eight classes of skin lesions, including melanoma and squamous cell carcinoma, demonstrating 

great potential for early skin cancer diagnosis. Additionally, the study addressed the issue of class imbalance 

in the dataset by applying image augmentation techniques, which improved the model’s sensitivity and 

precision. However, a drawback of this study was that, despite promising results, the initially low sensitivity 

and precision (53.3% and 62.5%, respectively) indicated that the model could still be improved, particularly 

in handling classes with very few images. 

Based on the research objectives and references outlined, the primary challenge in this study is how 

to improve the accuracy of skin cancer classification using the ISIC dataset through an optimal deep learning 

approach [25]. Although CNNs have proven effective in medical image classification, challenges still exist, 

such as the limitation of adequate training data, the risk of overfitting, and the optimization of the model 

architecture to capture key features of skin lesions more accurately [26], [27]. Moreover, conventional 

methods are often not robust enough to handle the complex variations in color, texture, and shape of skin 

lesions [28]. Therefore, this research focuses on the application of transfer learning and boosting techniques 

as strategies to enhance the performance of CNN models in detecting skin cancer [21], [29]. By combining 

these two approaches, it is hoped that a more reliable, efficient model can be developed, capable of providing 

more accurate classification results to support early skin cancer detection and more precise medical decision-

making [30], [31]. In recent years, transfer learning and ensemble learning techniques have emerged as 

promising approaches to improve the performance of CNN models [32], [33]. Transfer learning enables the 

use of pre-trained models on large datasets, speeding up the training process and improving the model’s 

generalization to new data. Meanwhile, boosting, as an ensemble learning technique, aims to combine several 

weak models into one strong model to improve classification accuracy. The combination of these two 

approaches has the potential to produce a more accurate and efficient model for detecting skin cancer from 

medical images. 

This study aims to enhance the accuracy of skin cancer classification using the ISIC dataset through 

deep learning techniques, specifically transfer learning and boosting [28], [34]. By applying the appropriate 

optimization strategies, this research aims to develop a more reliable model to support early skin cancer 

diagnosis, ultimately assisting healthcare professionals in making more accurate and timely decisions. 

 

 

2. METHOD 

This study employs a quantitative experimental approach to develop and compare the performance 

of ISIC classification models using various deep learning architectures. The primary focus of the research is 

to compare the proposed LeNet-7+adaptive boosting (AdaBoost) model with individual models such as 

LeNet-7, ResNet, and VGG16. The experiments were conducted using the ISIC image dataset, which 

underwent preprocessing to ensure the quality of the input data [12], [30]. This chapter provides a detailed 

explanation of the methods used in the research, including the dataset employed, the proposed models, and 
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the research design, which outlines the stages involved in the experimental process. The goal of this study is 

to improve the accuracy of skin cancer classification by implementing various CNN architectures, along with 

transfer learning and boosting techniques, using the ISIC dataset [11], [35]. 

 

2.1.  Research dataset 

The dataset used in this study is the ISIC dataset, which is a standard dataset in medical image 

research for skin cancer detection. ISIC has become a primary resource in various competitions and scientific 

studies related to the automated diagnosis of skin cancer using AI. Typically, this dataset is pre-labeled to 

indicate the type of lesion (benign or malignant), which facilitates the training and evaluation process of 

classification models. 

The data source is from the kaggle.com website (https://www.kaggle.com/competitions/isic-2024-

challenge/data). The dataset consists of diagnostic labeled images with additional metadata. The images are 

in JPEG format. The associated .csv file contains binary diagnostic labels (target), potential input variables 

(e.g., age_approx, sex, and anatom_site_general), and additional attributes (e.g., image source and exact 

diagnosis). The SLICE-3D dataset-skin lesion image slices extracted from 3D total body photography (TBP) 

for skin cancer detection. To mimic non-dermoscopic images, the competition uses standard cropped lesion 

images of lesions from 3D TBP. The data is divided into 2 parts, namely, 80% training data and 20% test 

data. 

The dataset consists of thousands of skin lesion images that have been classified by dermatology 

experts into several main categories, including: Figure 1 presents the ISIC dataset used in this study, which 

focuses on skin cancer classification using deep learning and transfer learning techniques to enhance 

detection accuracy. The dataset consists of images of skin lesions categorized as benign or malignant, with 

variations in color, texture, and lighting conditions that reflect the challenges in medical diagnosis. The 

sample images in the dataset are divided into a training dataset for model training and a testing dataset for 

evaluating classification performance. Deep learning techniques using CNN architectures are employed to 

extract features from the images, while transfer learning utilizes pre-trained models such as ResNet, VGG, or 

Inception to improve classification performance. The primary challenges in this dataset include class 

imbalance, variations in image quality, and differences in lighting and image angles, which can impact the 

model's generalization. With the appropriate approach, this study aims to enhance the accuracy of skin cancer 

detection, contributing to more effective and accurate early diagnosis. 

Figure 1 presents representative samples from the ISIC dataset employed in this study, which 

consists of dermoscopic images of skin lesions categorized into two main classes: benign and malignant. The 

dataset is divided into two subsets, with the training set used for model development and the testing set 

reserved for performance evaluation on previously unseen data. The ISIC dataset is widely recognized as a 

benchmark in skin cancer research due to its high variability in color, texture, size, and illumination, 

reflecting the real-world challenges faced in clinical diagnosis. This variability provides valuable 

opportunities for CNNs to learn more robust and discriminative feature representations. However, it also 

introduces the risk of overfitting, particularly when models are not carefully optimized. As illustrated in 

Figures 1(a) and (b), the dataset offers a diverse and representative collection of lesion images, making it 

well-suited for evaluating deep learning approaches in skin cancer classification. In this research, the ISIC 

dataset serves as the foundation for assessing the proposed LeNet-7 architecture combined with AdaBoost, 

aiming to improve classification accuracy and enhance the generalization of the model in distinguishing 

between benign and malignant lesions. 

 

2.2.  Proposed models 

In this study, four models are proposed for skin cancer classification: LeNet-7, ResNet50, VGG16, 

and LeNet-7+AdaBoost. Each model has its own strengths and weaknesses in recognizing patterns from skin 

lesion images. In Table 1, the comparison presents four deep learning models—LeNet-7, ResNet50, VGG16, 

and LeNet-7 with boosting—based on their methods, main objectives, and potential uses. LeNet-7, which 

uses a CNN architecture, is designed for simple image classification with high efficiency on small datasets. 

ResNet50, applying residual learning, aims to address the vanishing gradient problem and extract complex 

features, making it optimal for large-scale medical datasets. VGG16, with its deep-layer CNN architecture, 

has a deeper feature extraction capability, resulting in high accuracy but requiring significant computational 

power. Meanwhile, LeNet-7 with boosting combines CNN with boosting techniques to improve accuracy 

through the combination of multiple models, offering a lighter alternative compared to more complex 

models. This comparison highlights that each model has its own strengths and limitations, meaning that the 

choice of model should be tailored to the dataset's needs and available computational resources. Figure 2, 

summarizing the standard LeNet-7 model and the LeNet-7 model enhanced with boosting. 
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(a) (b) 

 

Figure 1. ISIC research dataset; (a) training dataset sample images and (b) testing dataset sample images 

 

 

Table 1. Comparison of models 
Model Method Main objective Potential use 

LeNet-7 CNN Simple and fast image classification Efficient for tasks with small datasets 

ResNet50 Residual learning Overcoming vanishing gradient and 

complex feature extraction 

Optimal for large medical datasets 

VGG16 Deep layer CNN Detailed feature extraction with a deep 

architecture 

High accuracy but requires significant 

computational power 

LeNet-7+boosting CNN+boosting Improving accuracy through a combination 

of multiple models 

A lighter alternative compared to more 

complex models 

 

 

Figure 2 illustrates the architectures of LeNet-7 and LeNet-7+AdaBoost, which are two CNN-based 

models used for image classification. LeNet-7 serves as the baseline model, while LeNet-7+AdaBoost is an 

enhanced version incorporating boosting techniques. LeNet-7 Figure 2(a) consists of two convolutional 

layers, each followed by a max-pooling layer. The first convolutional layer has 456 parameters, and the 

second one has 2,416 parameters, both designed to extract spatial features from the images. After feature 

extraction, the data is flattened and passed through three dense layers with 129, 84, and 2 neurons, 

respectively, leading to a total of 10,164 parameters before the output layer. 

Meanwhile, LeNet-7+AdaBoost Figure 2(b) maintains the basic structure of LeNet-7 but with 

several modifications to improve classification performance. The area circled with a red dashed line 

represents the optimization applied to the LeNet-7 architecture. This model has a higher number of 

parameters in each layer, with the first convolutional layer containing 896 parameters and the second 

convolutional layer containing 3,168 parameters, indicating more complex feature extraction. Additionally, 

the model includes a dropout layer to reduce overfitting and two extra dense layers with 128 neurons before 

reaching the output layer. A significant improvement in LeNet-7+AdaBoost is the incorporation of AdaBoost 

classifier, which serves as a decision enhancer by combining several weak models to increase classification 

accuracy. As a result, LeNet-7+AdaBoost performs better in handling dataset complexity, particularly in 

improving the model's generalization ability for more diverse images. 

 

2.3.  Research design 

The research framework in this study is essential as it provides a systematic guide for each stage of 

the research, from data processing to result evaluation. In this study, the framework helps organize the 

comparison process of various CNN model architectures, such as LeNet, ResNet, VGGNet, and the proposed 

model (ResNet+Bagging). With a clear framework, researchers can perform comparisons transparently and 

accurately, allowing for a better understanding of each phase of the research. Additionally, this framework 

minimizes errors and ensures a comprehensive evaluation using various performance metrics, making the 

research results more valid and accountable. The research framework is shown in Figure 3. 
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(a) (b) 

 

Figure 2. The illustrates architectures; (a) LeNet-7 and (b) LeNet-7+AdaBoost 
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Figure 3. Research framework 

 

 

The research framework, as depicted in Figure 3, outlines a workflow that begins with a skin CT 

scan dataset, which consists of two classes: benign and malignant. The stages of the research are as follows: 

First, data preprocessing is conducted, where the image data undergoes augmentation techniques to increase 

the variety within the training data. The augmentation methods applied include flipping, rotating, shearing, 

and rescaling. This step is aimed at enriching the dataset to improve the model’s ability to recognize a wider 

range of patterns. Next, the dataset is divided into three parts: training data, which comprises 80% of the total 

data and is used for model training; testing data, which makes up the remaining 20% and is used to assess the 

final performance of the model after training; and data visualization, which allows for checking the 
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distribution of data across each class. The third stage involves model training and classification, where the 

processed data is used to train various model architectures, such as LeNet-7, ResNet, VGGNet, and the 

modified proposed model (LeNet-7+Adaboost). All models were trained with the same dataset to develop a 

skin cancer classification model. Following the training, the fourth stage involves model comparison, where 

the performance of the LeNet-7, ResNet, and VGGNet models is compared to the proposed model. This 

comparison aims to evaluate how modifications in architecture and hyperparameter tuning have improved the 

accuracy of the proposed model. Finally, in the evaluation and analysis stage, the classification results from 

each model are evaluated and analyzed using performance metrics such as accuracy, precision, recall,  

F1-score, Matthew’s correlation coefficient (MCC), and area under the receiver operating characteristic curve 

(AUC-ROC). The results are then visualized for easier interpretation and further analysis. 

 

accuracy =
TP+TN

TP+TN+FP+FN
 (1) 

 

precision =
TP

TP+FP
 (2) 

 

recall =
TP

TP+FN
 (3) 

 

F1 − score =
2×precision×recall

precision+recall
 (4) 

 

MCC =
TPxTN−FPxFN

√(𝑇𝑃+𝐹𝑃)(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃)𝑇𝑁+𝐹𝑁)
 (5) 

 

AUC − ROC (TPR) =
TP

TP+FN
 (6) 

 

AUC − ROC (FRP) =
FP

FP+TN
 (7) 

 

 

3. RESULTS AND DISCUSSION 

3.1.  Data preprocessing and data augmentation 

In the preprocessing stage, the images from the ISIC undergo several data enhancement processes 

aimed at improving the quality and diversity of the dataset. These processes include flipping, where the 

image is mirrored either horizontally or vertically to create variations in orientation. Additionally, rotation is 

applied by rotating the image at specific angles, which helps to increase the diversity within the dataset. 

Another technique, shearing, involves applying a shear transformation that creates slight distortions in the 

image, further enriching the dataset. Lastly, rescaling normalizes the pixel values to a range of [0, 1], which 

aids the model in better recognizing patterns within the data. The results of these augmentations are shown in 

Figure 4. 

 

 

 
 

Figure 4. Sample ISIC scan dataset images after augmentation 
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Figure 4 displays the results of the data augmentation process on the ISIC scan images, which 

significantly enriches the dataset by introducing various variations. Augmentation techniques such as 

flipping, rotating, and rescaling effectively enhance the model's ability to generalize. The purpose of this 

augmentation is to ensure that the model does not become overly dependent on specific patterns and can 

adapt better to diverse test data. In this study, the experimental results are derived from the classification of 

brain scan images into two categories: hemorrhage and non-hemorrhage. The dataset undergoes 

preprocessing, including data augmentation using techniques like flipping, rotating, shearing, and rescaling. 

After preprocessing, the dataset is divided into training data (80%), validation data (10%), and testing data 

(10%). This process ensures that the model is evaluated on data it has never seen before, providing objective 

and realistic results. 

 

3.2.  Model training classification 

Several CNN models, such as LeNet, ResNet, VGGNet, and the proposed model, were tested and 

showed varying performance in ISIC classification. Figure 5 illustrates the training accuracy curves. Upon 

analyzing the training and validation accuracy curves of the models presented (Figure 5), we can observe 

significant differences in their performance. The LeNet model (Figure 5(a)) shows fluctuating training 

accuracy throughout the epochs, with no clear, consistent upward trend. The validation accuracy follows a 

similar pattern, often lagging behind the training accuracy. This suggests that LeNet may struggle to 

generalize well to unseen data, potentially due to overfitting, as the model's performance is inconsistent both 

during training and validation. The ResNet model (Figure 5(b)) demonstrates a gradual improvement in 

training accuracy, although it still exhibits fluctuations. Validation accuracy also shows some inconsistency, 

with occasional spikes and drops. While ResNet has some improvement over LeNet, its instability in 

validation accuracy points to difficulties in optimization and generalization to new data. The model shows 

moderate improvement but does not reach a stable or high level of performance. The VGGNet model  

(Figure 5(c)) shows a more stable increase in training accuracy compared to the previous two models. 

However, validation accuracy continues to lag behind, indicating some level of overfitting. Despite its 

smooth progress, the gap between the training and validation accuracies implies that VGGNet may be 

overfitting to the training data, as it struggles to generalize well to unseen data. In contrast, the proposed 

model (LeNet-7+Adaboost) (Figure 5(d)) outperforms all other models. It shows a steady and consistent 

increase in both training and validation accuracy, with minimal fluctuations across the epochs. The validation 

accuracy closely follows the training accuracy, indicating that the model is not only learning effectively but 

also generalizing well to new data. This model, combining LeNet-7 with Adaboost, exhibits the best 

performance in both training stability and generalization capability. 
 

 

 
(a) 

 

 
(b) 

 

 
(c) 

 
(d) 

 

Figure 5. Training accuracy curves; (a) LeNet, (b) ResNet, (c) VGGNet, and (d) the proposed model 
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Upon analyzing the training and validation loss curves for each model (Figure 6), several key 

differences in performance can be observed. The LeNet model (Figure 6(a)) shows a gradual decrease in 

training loss, although it fluctuates somewhat throughout the epochs. The validation loss follows a similar 

trend but decreases at a slower rate and with more noticeable fluctuations. This indicates that while LeNet is 

improving during training, it struggles to generalize effectively to unseen data, as seen in the higher and more 

variable validation loss, suggesting potential overfitting. The ResNet model (Figure 6(b)) also exhibits a 

decreasing training loss, but the curve is more erratic, with several spikes indicating difficulties during the 

training process. The validation loss fluctuates significantly, failing to show a consistent downward trend. 

This variability suggests that ResNet, while showing some improvement, does not generalize well and 

struggles to handle the complexity of the dataset in a stable manner. The VGGNet model (Figure 6(c)) 

demonstrates a smoother decline in training loss, with fewer fluctuations compared to LeNet and ResNet. 

The validation loss also shows a steady decline, but the gap between training and validation loss remains 

visible, indicating that VGGNet may be prone to overfitting, as it is not able to generalize well to unseen data 

despite its strong performance during training. In contrast, the proposed model (LeNet-7+Adaboost)  

(Figure 6(d)) stands out as the best performer. Both the training and validation loss decrease smoothly and 

consistently throughout the epochs. The minimal fluctuation in both loss curves indicates that this model is 

learning effectively and generalizing well to unseen data. The validation loss follows the same smooth 

downward trend as the training loss, suggesting that the proposed model is not overfitting and can handle the 

dataset's complexity with superior generalization. 

 

 

 
(a) 

 

 
(b) 

 

 
(c) 

 
(d) 

 

Figure 6. Training loss curves; (a) LeNet, (b) ResNet, (c) VGGNet, and (d) the proposed model 

 

 

Upon analyzing the receiver operating characteristic (ROC) curves for the four models (Figure 7), 

we can observe notable differences in their performances, as indicated by the area under the curve (AUC) 

values and the shapes of their respective curves. The LeNet-7 model (Figure 7(a)) demonstrates strong 

performance, with an AUC of 0.89, reflecting its ability to correctly classify data points with high accuracy. 

The ROC curve for LeNet-7 shows a steady increase, indicating that the model effectively distinguishes 

between positive and negative classes. The curve is well above the diagonal line (representing a random 

classifier), and while it is not perfect, it indicates that the model performs significantly better than random 

guessing. The AUC of 0.89 places this model in the upper range of performance, but there is still some room 

for improvement, especially when compared to the proposed model. The ResNet model (Figure 7(b)), with an 

AUC of 0.50, presents a stark contrast to LeNet-7. The ROC curve is nearly a straight diagonal line, 

indicating that the model's performance is close to random guessing. An AUC of 0.50 is equivalent to a 

classifier that has no discriminative power between the two classes. This suggests that ResNet is either poorly 
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trained or not suited for this particular classification task, as its performance does not exceed the level of 

chance. Similarly, the VGGNet model (Figure 7(c)) shows a poor performance, with an AUC of 0.48, which 

is slightly worse than ResNet. The ROC curve for VGGNet is almost identical to that of ResNet, showing 

that the model struggles to differentiate between positive and negative classes. This AUC value indicates a 

weak classifier, which misclassifies nearly as often as it classifies correctly. The model's slight deviation 

below the diagonal line suggests that it is slightly worse than random guessing, which indicates a need for 

either retraining or adjustment in the architecture for improved performance. In contrast to the other models, 

the proposed model (LeNet-7+Adaboost) (Figure 7(d)) achieves an exceptional performance, as reflected in 

its AUC of 0.93. The ROC curve for this model is steep and remains well above the diagonal, indicating that 

the model effectively distinguishes between the two classes with very few misclassifications. This near-

perfect curve suggests that the model is highly effective, able to identify true positives while minimizing 

false positives and false negatives. With an AUC of 0.93, the proposed model demonstrates superior 

performance, making it the most reliable model in this analysis. 

 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 

Figure 7. ROC curves; (a) LeNet, (b) ResNet, (c) VGGNet, and (d) the proposed model 

 

 

3.3.  Discussion 

The results of training and testing revealed the confusion matrix for each model, demonstrating the 

classification capabilities across three categories: benign, malignant, and normal. The confusion matrix for 

each model can be seen in Figure 8. Upon analyzing the confusion matrices for each model, the LeNet model 

Figure 8(a) shows a moderate performance with 129 benign images and 130 malignant images correctly 

classified. However, it also exhibits considerable misclassification, with 22 benign images incorrectly 

predicted as malignant and 35 malignant images incorrectly classified as benign. This suggests that while 

LeNet is effective to some extent, it struggles with generalization, particularly in distinguishing between the 

two categories. The ResNet model (Figure 8(b)) performs better than LeNet, correctly predicting 92 benign 

images and 147 malignant images. However, it still misclassifies 59 benign images as malignant and 18 

malignant images as benign. The high number of false positives suggests that the model may be overly 

sensitive in predicting malignant cases, leading to a higher rate of misclassifying benign images. The 

VGGNet model (Figure 8(c)) exhibits the poorest performance, with only 32 benign images correctly 

classified and 121 malignant images correctly predicted. It shows a high rate of misclassification, particularly 

in benign cases, where 119 benign images are misclassified as malignant. Additionally, 44 malignant images 

are incorrectly predicted as benign, indicating that VGGNet struggles significantly with distinguishing 

between the categories, making it prone to both false positives and false negatives. The last, the proposed 

model (LeNet-7+Adaboost) (Figure 8(d)) performs significantly better than the others in terms of both true 

positives and true negatives. This model correctly identifies 142 malignant images and 138 benign images, 

with only 13 benign images misclassified as malignant and 23 malignant images misclassified as benign. 

These low numbers of misclassifications demonstrate that the proposed model is highly effective at 

distinguishing between benign and malignant cases, minimizing both false positives and false negatives, and 

showcasing a strong ability to generalize to new, unseen data. 

In Table 2, the LeNet-7 model demonstrates strong performance across various metrics, achieving a 

precision of 0.87, recall of 0.85, and an F1-score of 0.86. It also has a high specificity of 0.88 and an AUC-

ROC of 0.89, which indicates its capability to classify both benign and malignant cases effectively. The 

testing accuracy of 86.5% further supports its reliable performance. On the other hand, ResNet performs 

significantly lower, with a precision of 0.52, recall of 0.50, and an F1-score of 0.51. The specificity is low 

(0.49), and its MCC (0.02) indicates a very weak model that is struggling with both types of errors. 

Additionally, the testing accuracy of 50.2% confirms that this model is far less effective in comparison. 
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Similarly, VGGNet shows poor performance with a precision of 0.48, recall of 0.46, and F1-score of 0.47. Its 

specificity (0.45) and AUC-ROC (0.48) are also quite low, which reflects its inability to accurately 

distinguish between benign and malignant categories. With a testing accuracy of only 48.7%, this model is 

not suitable for reliable skin cancer detection. The proposed model (LeNet-7+AdaBoost) outperforms all 

other models by a large margin, achieving a precision of 0.92, recall of 0.91, and an F1-score of 0.91. The 

specificity (0.94) and AUC-ROC (0.93) are the highest among the models, indicating its excellent ability to 

classify both benign and malignant cases with minimal misclassifications. With a testing accuracy of 91.3%, 

this model is the most accurate and reliable for skin cancer detection among the ones tested. The proposed 

model (LeNet-7+AdaBoost) is the best-performing model in terms of all metrics, including precision, recall, 

F1-score, specificity, and AUC-ROC. It significantly outperforms LeNet-7, ResNet, and VGGNet, making it 

the most suitable model for accurate and reliable skin cancer classification. Below are some images generated 

by the proposed model, showing the classification results, as seen in Figure 9. 

 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 

Figure 8. Confusion matrix; (a) LeNet, (b) ResNet, (c) VGGNet, and (d) the proposed model 

 

 

Table 2. Testing results of the compared models 
Model Precision Recall F1-score Specificity MCC AUC-ROC Testing accuracy (%) 

LeNet-7 0.87 0.85 0.86 0.88 0.78 0.89 86.5 

ResNet 0.52 0.50 0.51 0.49 0.02 0.50 50.2 

VGGNet 0.48 0.46 0.47 0.45 -0.01 0.48 48.7 
LeNet-7+AdaBoost 0.92 0.91 0.91 0.94 0.85 0.93 91.3 

 

 

 
 

Figure 9. The classification results 

 

 

Upon analyzing the classification results shown in Figure 9, it is evident that the proposed model 

(LeNet-7+AdaBoost) performs well in classifying skin lesions, but there are some areas that could be 

improved. In the top-left quadrant, the model correctly classifies benign lesions as benign, with labels 
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indicating "True: benign, Pred: benign," which demonstrates its ability to accurately identify benign lesions. 

Similarly, in the top-right quadrant, the model continues to make correct predictions for benign lesions, 

showcasing its strength in handling variations in benign lesions. However, in the middle-left quadrant, a 

misclassification occurs where the model predicts "benign" for a malignant lesion, indicating that there are 

instances where the model struggles to distinguish between benign and malignant cases, especially when the 

lesions appear visually similar. This issue is further highlighted in the bottom-left quadrant, where another 

benign lesion is incorrectly classified as malignant. These errors suggest that while the model is highly 

effective, it still faces challenges in differentiating between certain benign and malignant lesions, particularly 

when the images share similar visual characteristics. On the other hand, the middle-right and bottom-right 

quadrants show successful classifications where benign lesions are accurately predicted as benign, 

reinforcing the model's overall ability to classify images with distinct features correctly. 

 

 

4. CONCLUSION 

This study presents an in-depth evaluation of several deep learning models for skin cancer 

classification using the ISIC dataset, focusing on the effectiveness of the proposed model (LeNet-

7+AdaBoost). The results demonstrate that the proposed model significantly outperforms traditional models, 

including LeNet-7, ResNet, and VGGNet, in terms of classification accuracy, precision, recall and F1-score, 

specificity, MCC and AUC-ROC. The proposed model (LeNet-7+AdaBoost) achieved superior results, with 

a testing accuracy of 91.3%, precision of 0.92, recall of 0.91, and an AUC-ROC of 0.93. These results 

suggest that the model not only excels at distinguishing malignant from benign lesions but also demonstrates 

high generalization capabilities across different data distributions. The model's strong performance is 

attributed to the integration of the AdaBoost algorithm with LeNet-7, which effectively reduces overfitting 

and improves model robustness, particularly in dealing with the inherent challenges in skin cancer detection, 

such as dataset imbalance and feature variations. Despite the overall success, there are areas for 

improvement. Some misclassifications occurred, particularly when distinguishing between benign and 

malignant lesions that appear visually similar. These misclassifications highlight the need for further 

refinement in the model's decision-making process, such as enhancing feature extraction capabilities or 

incorporating more diverse data to address edge cases. In comparison, ResNet and VGGNet performed 

inadequately, with lower accuracy and more significant misclassification rates. These models struggled with 

overfitting and failed to generalize well, particularly when predicting benign lesions, leading to higher false 

positive rates. In conclusion, the proposed model (LeNet-7+AdaBoost) provides a highly reliable and 

efficient approach to skin cancer classification, showing excellent promise for real-world applications in 

medical diagnostics. Future work will focus on optimizing the model further, exploring hybrid architectures, 

and incorporating larger, more diverse datasets to enhance its generalization power, ultimately contributing to 

more accurate and effective skin cancer detection systems. 
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