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 This paper presents a hybrid deep learning (DL) framework that combines 

model-level and data-level enhancements to improve classification 

performance without compromising clinical relevance. The proposed 

framework consisted of an EfficientNetB0 model with a hybrid attention 

module, which focused attention both spatially and channel-wise, and a 

VGG-16 model that was trained on training data augmented using a fuzzy-

logic-based contrast and brightness enhancement. The attention module 

focused the model by recalibrating the features in an adaptive manner. The 

fuzzy-logic augmentation increased data diversity while maintaining the 

anatomical fidelity of the medical image domain. In addition, an uncertainty-

aware ensemble approach was utilized to combine both models' predictions, 

which considered model confidence and entropy of the predictions, to 

enhance the reliability of the predictions. The proposed framework achieves 

a classification accuracy of 99.6%, outperforming several existing 

approaches. 
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1. INTRODUCTION 

The COVID-19 pandemic has increased the demand for rapid, reliable and scalable diagnostic tools 

[1]. Although immediate reverse transcription polymerase chain reaction (RT-PCR) still remains the standard 

for COVID-19 testing [2], it has limitations such as low sensitivity, slow speed and dependence on 

specialized laboratory infrastructure [3]. Chest X-ray (CXR) imaging provides a widely accessible and 

affordable option for early screening and monitoring, especially in low-resource settings [4]. The recent 

advancements in deep learning (DL), have opened up new prospects for reaching reliable and automated 

CXR interpretation [5], [6]. However, it is challenging to meet the requirements of the real-world deployment 

due to various issues such as: i) most publicly available COVID-19 CXR datasets are small and imbalanced 

for models to generalize [7]; ii) expression of disease varied and thus compromised consistency of feature 

extraction [8]; iii) some form of preprocessing can negate diagnostic certainty by transforming clinical 

markers [9]; and iv) most non-confirming considerations were determinants. In the literature, there is a wide 

adoption of convolutional neural networks (CNNs) towards detecting COVID-19 from CXR images, due to 

their effectiveness in automatic feature extraction and effective disease classification [10], [11]. There are 

also many studies towards implementing transfer learning using pre-trained architectures such as ResNet, 

VGG, EfficientNet, and DenseNet has become a common strategy [12]. Ismael and Şengür [13] used pre-
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trained ResNet-50 and VGG-16 for deep feature extraction and then used a support vector machine (SVM) 

classifier, achieving an accuracy of 94.7%. Similarly, Heidari et al. [14] tried to enhance the VGG-16 feature 

learning by using histogram equalization and bilateral filtering on the input CXRs, and achieved 94.5% 

multi-class accuracy. The work of Monshi et al. [15] focuses on improving the performance of VGG-19 and 

ResNet-50 using data augmentation and hyperparameter tuning. Rao et al. [16] presented a combined 

approach of a custom CNN with a quantum classifier and achieved 98.1% accuracy, and  

Hilali-Jaghdam et al. [17], who combined median filtering with a parent optimization algorithm for DenseNet 

feature extraction and autoencoder-based classification. Although many schemes have been introduced, but 

most CNN-based methods are often affected by spatial irregular features as reported by Kiziloluk et al. [18], 

such as ground-glass opacity due to fixed convolutional filters and uniform sampling. To address this issue, 

optimization approach by Gülmez [19] and attention-based methods have been explored by Cheng et al. [20], 

where the authors have proposed a self-attention network for noisy image conditions. Similarly,  

Roy et al. [21] developed a squeeze and excitation (SE) network with both spatial and channel attention (CA) 

mechanisms. There is also work towards applying a transformer-based model by Oltu et al. [22], where a 

visual transformer is combined with DenseNet201 to capture long-range dependencies and local features. In 

the same direction, Bayoudh et al. [23] applied enhanced histogram equalization on self-features whereas 

Schaffta et al. [24] used texture rectified cross-attention to improve classification performance. In the work 

of Sayeed et al. [25], the authors have introduced a dual-path framework that combines a residual U-Net for 

segmentation with two attention-based ensemble classifiers. From the reviewed literature, it is clear that 

transfer learning based on pre-trained CNN models remains the primary method for COVID-19 detection. 

Although pre-processing and data augmentation strategies have been applied to improve performance, overly 

complex or invasive pre-processing can distort important clinical image details. Attention mechanisms have 

also been studied, but in most cases, attention maps cannot be dynamically adjusted during training, resulting 

in sub-optimal localization of important disease regions. The significant research gaps are identified as 

presented here: 

– Many existing studies are much dependent on the direct adoption of the pre-trained CNNs model without 

architecture customization, or pre-processing, enhancement, or parameter tuning. 

– In the literature, the attention mechanism is used but not dynamically adjusted, which can lead to the loss 

of spatial channel focus and often increases model complexity. 

– Most models lack uncertainty estimates and produce deterministic predictions without confidence 

measures, which can be risky for clinical applications where reliability is crucial. 

This paper introduces a hybrid learning system for COVID-19 detection using CXR images, where a 

lightweight attention-enhanced EfficientNet model is combined with a VGG-16 model trained using fuzzy-

based data augmentation. The novelty of the proposed methodology is that it addresses the suboptimal feature 

localization so that the model preserves clinical relevance and improves sensitivity to complex lung patterns. 

The uncertainty-aware ensemble adds a layer of reliability, making the system more suitable for real-world 

clinical applications. The novel contribution of this paper is highlighted as follows: 

– This study develops a custom channel–spatial attention (SA) module that dynamically adapts during 

training to enhance the localization of disease-specific lung abnormalities. 

– A context-aware enhancement technique is proposed using fuzzy logic as a data augmentation that 

improves both local (region-wise) and global image quality in the training set. 

– An uncertainty-aware ensemble strategy is proposed that integrates model confidence and entropy-based 

uncertainty into the weighting process to improve prediction reliability and reduce risk in high-stakes 

clinical decisions. 

 

 

2. METHOD 

The primary aim of this work is to develop a reliable and effective predictive model for the 

detection of COVID-19 from CXR images. The proposed system introduces a hybrid learning framework 

that integrates attention-enhanced and data-augmented CNNs to improve both feature representation and 

generalisation capability of the classification models, thereby preserving the diagnostic integrity of the input 

data. The entire modelling of the proposed system adopts analytical research methodology, which can be 

divided into four phases, viz.: i) preprocessing, ii) EfficientNetB0 with a hybrid attention module,  

iii) VGG-16, trained on a fuzzy-augmented version of the training set, and iv) uncertainty-based ensemble 

learning. Figure 1 outlines the design and workflow process of the proposed system aimed to balance 

predictive accuracy, generalisation, and clinical relevance in the context of COVID-19 and other chest 

infection detection using CXR images. 

This study aims to analyse three most common viral CXR conditions, such as COVID-19, viral 

pneumonia, and normal conditions, using the benchmarked dataset, i.e., COVID-19 radiology database [26], 
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which contains approximately 15,000 CXR images. The study considered a preprocessing module where all 

the images in the dataset were resized to 224×224 pixels to meet the input requirements of EfficientNetB0 

and VGG-16. The proposed study then divided the dataset based on a stratified 80:10:10 ratio to accomplish 

proportional representation of classes along training, validation, and test sets, and prevented data leakage by 

ensuring that images are assigned to only one subset. 
 

 

 
 

Figure 1. Architecture of the proposed framework for COVID-19 classification 

 

 

2.1.  EfficientNet with hybrid attention 

The first core module of the proposed system is the convolutional operation using EfficientNetB0 

CNN architecture, which is selected for its parameter efficiency and ability to extract high-quality features 

from medical images. This model takes the input image 𝐼 ∈  ℝ𝑊×𝐻 , which after standard convolutional 

processing, produces a feature map 𝐹 ∈  ℝ𝑊×𝐻×𝐶, where W, 𝐻, and 𝐶 represent the width, height, and 

number of feature channels (depth), respectively. In order to improve the network’s ability to focus on 

disease-relevant regions such as ground-glass opacities and lung consolidations, a hybrid attention module 

(H-Atten) is developed and integrated into EfficientNetB0 architecture, which consists of two consecutive 

sub-modules, namely CA and SA, applied sequentially to recalibrate the feature map. 

In H-Attention, the feature map 𝐹 obtained from the last convolutional layer is first processed via a 

mean pooling operation (1), considering its spatial dimensions to generate a compressed vector 𝐹𝑐
′ that 

capture the global context of each channel. In order to perform selective focus on important channels a 

bottleneck transformation is considered, where 1×1 convolutional layer is applied over 𝐹𝑐
′ to reduce channel 

dimensionality 𝐹𝑟𝑒𝑑 using a reduction ratio 𝑟 followed by a rectified linear unit (ReLU) activation. The vector 

𝐹𝑟𝑒𝑑 that represent the activation (importance), which means the channel with higher activations will have 

stronger feature representation of the input data. Afterwards, the original channel dimension is restored by 

applying second 1×1 convolution layer over 𝐹𝑟𝑒𝑠 (2), so that the full range of information from the initial 

input is used in the final feature recalibration process. The next operation is carried towards obtaining CA 

weights using the SoftMax function over an input vector 𝐹𝑟𝑒𝑠 (3). The reason behind using SoftMax is that 

we need to compute a probability distribution that shows the relative importance of each channel in 𝐹𝑟𝑒𝑠 and 

accordingly assigns a higher weight to channels with strong activations. These weights are applied to the 

original feature map via element-wise multiplication to get the final CA map (4). 
 

𝐹𝑐
′ =

1

𝑊×𝐻
 ∑ ∑  𝐹(𝑖, 𝑗, 𝑐),𝐻

𝑗=1
𝑊
𝑖=1  ∀ 𝑐 ∈ [1, 𝐶] (1) 

 

𝐹𝑟𝑒𝑑 = 𝑅𝑒𝐿𝑢( 𝑊1𝐹′ + 𝑏1), and 𝐹𝑟𝑒𝑠 = 𝑊2𝐹𝑟𝑒𝑑 + 𝑏2, where 𝑊1 ∈ ℝ𝐶×
𝐶

𝑟; 𝑊2 ∈ ℝ
𝐶

𝑟
 ×𝐶

 (2) 
 

𝐴𝑐(𝑐) =
𝑒𝑥𝑝(𝐹𝑟𝑒𝑠(𝑐))

∑ 𝑒𝑥𝑝(𝐹𝑟𝑒𝑠(𝑘))𝐶
𝑘=1

, ∀ 𝑐 ∈ [1, 𝐶] (3) 
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𝐹𝐶𝐴(𝑖, 𝑗, 𝑐) = 𝐹(𝑖, 𝑗, 𝑐) ∙ 𝐴𝑐(𝑐) (4) 

 

In order to capture spatial saliency map, the proposed study aggregate across all channels at each 

spatial location (5). Then, a sigmoid activation is applied to generate SA weights (6). These weights are 

broadcasted across all channels and applied to the channel-attended map, which generates a final output, i.e., 

recalibrated feature map 𝐹′′ (7), which further passed to the dense layer for the classification. The detailed 

network architecture with parameter specifications is provided in Table 1, followed by the internal layers and 

parameters of the proposed H-Attention module illustrated in Figure 2. 

 

F𝑠𝑢𝑚(𝑖, 𝑗) = ∑ 𝐹𝐶𝐴(i, j, c) 𝐶
𝑐=1  (5) 

 

As(𝑖, 𝑗) = 𝜎(F𝑠𝑢𝑚(𝑖, 𝑗)) =
1

1+𝑒
−𝐹𝑠𝑢𝑚(𝑖,𝑗)

 (6) 

 

𝐹′′ = 𝐹(𝑖, 𝑗, 𝑐) ⊗ AW(𝑖, 𝑗) (7) 

 

 

Table 1. Illustrates network architecture and parameter specifications 
Component Output shape Param # Description 

Input layer (None, 224, 224, 3) 0 Input RGB image 
EfficientNetB0 (None, 7, 7, 1280) 4,049,571 Pretrained backbone (without top), used for feature extraction 

H-Atten model (None, 7, 7, 1280) 206,160 Custom channel–SA block with:– GAP– 1×1 Conv (↓channels)– 

ReLU– 1×1 Conv (↑channels)– SoftMax + Sigmoid 
Global avg pooling (None, 1280) 0 Reduces spatial dimensions to a vector per channel 

Batch normalization (None, 1280) 5,120 Normalizes activations after pooling 

Dense (fully connected) (None, 256) 327,936 Activation: ReLU; L1/L2 regularization 
Dropout (None, 256) 0 Dropout with rate=0.45 for regularization 

Output layer (None, 3) 771 Final classification layer with SoftMax 

 

 

 
 

Figure 2. Architecture of the proposed H-Atten model for enhanced feature map representation 

 

 

The proposed H-Atten module enhances EfficientNetB0 by sequentially applying channel and 

spatial recalibration, allowing the network to focus on clinically relevant lung regions more effectively. The 

adopted approach of selective channel focus in the attention mechanism improves the detection of hidden or 

understated COVID-19-related patterns, such as ground-glass opacity, and eliminates irrelevant background 
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noise. The proposed H-Atten model offers better feature representation to the CNN model towards achieving 

higher classification performance without significantly increasing the computational complexity. 

 

2.2.  VGG-16 with fuzzy-based image augmentation 

The second module in the proposed framework is based on VGG-16 CNN architecture, which is 

trained specifically on a high-level training dataset. To improve the diversity, contrast quality, and 

generalisation of this model, we apply a fuzzy logic-based image enhancement technique that adaptively 

adjusts the brightness and contrast of each region to enhance important diagnostic details, such as hiding 

shadows or low-contrast lesions, while preserving the semantic structure of the image. The enhancement 

process considers dividing each input grayscale CXR image 𝐼 ∈  ℝ𝑊×𝐻  into overlapping blocks of size  
𝑏 × 𝑏, where 𝑏 = 32 and and the overlap is 50%. For each block 𝐵𝑘 three statistical features are computed 

such as mean brightness 𝜇𝑘, and local contrast 𝜎𝑘 using (8). Then it computes edge details 𝜖𝑘 using the mean 

Sobel gradient using (9), where ∇𝐵𝑘 is the Sobel response at location (𝑖, 𝑗). 

 

𝜇𝑘 =
1

𝑏2  ∑ ∑ 𝐵𝑘(𝑖, 𝑗)𝑏
𝑗=1

𝑏
𝑖=1  and 𝜎𝑘 = √

1

𝑏2  ∑ ∑ (𝐵𝑘(𝑖, 𝑗) − 𝜇𝑘)2𝑏
𝑗=1

𝑏
𝑖=1  (8) 

 

𝜖𝑘 =
1

𝑏2  ∑ ∑ |∇𝐵𝑘(𝑖, 𝑗)|𝑏
𝑗=1

𝑏
𝑖=1  (9) 

 

2.2.1. Fuzzification and membership functions 

The obtained features 𝜇𝑘, 𝜎𝑘, and 𝜖𝑘 further serve as inputs to a Mamdani-type fuzzy inference 

system, where each input is represented by linguistic variables (e.g., low, optimal, high for brightness, and 

contrast; low, medium, and high for edge detail) modelled with trapezoidal or triangular membership 

functions. The system produces output decisions, viz.: i) brightness adjustment Δ𝜇𝑘
∈ [−50, 50] and  

ii) contrast adjustment 𝛼𝑘𝜖 [0.5, 1.5]. This fuzzification process ensures that the enhancement decisions are 

compatible with local image statistics and clinically relevant texture information. Table 2 highlights the 

fuzzification parameters and membership functions used in this study. 

 

 

Table 2. Fuzzification parameters and membership functions 
Input/output Linguistic term Membership function type Parameter range 

Brightness Low Trapezoidal [0, 0, 110, 120]  
Optimal Triangular [110, 120, 135]  
High Trapezoidal [130, 140, 255, 255] 

Contrast Low Trapezoidal [0, 0, 50, 55]  
Optimal Triangular [50, 60, 65]  
High Trapezoidal [60, 70, 127, 127] 

Edge detail Low Trapezoidal [0, 0, 0.02, 0.04]  
Medium Triangular [0.02, 0.04, 0.1]  
High Trapezoidal [0.04, 0.1, 1, 1] 

Brightness adjustment Decrease Triangular [-50, -25, 0]  
No change Triangular [-10, 0, 10]  
Increase Triangular [0, 25, 50] 

Contrast adjustment Decrease Triangular [0.5, 0.75, 1.0]  
No change Triangular [0.9, 1.0, 1.1]  
Increase Triangular [1.0, 1.25, 1.5] 

 

 

2.2.2. Rule base and inference method 

The fuzzy rule base consists of 27 rules (3 brightness×3 contrast×3 edge detail combinations) to 

map specific input conditions to brightness and contrast adjustments. This concise but comprehensive design 

covers all possible combinations of local image statistics. The estimation is done using the Mamdani min-

max method, and the output is defuzzified using the centroid technique to obtain smooth and interpretable 

enhancement values. The following are representative sample examples of the rule set used: 

– Rule 1: IF brightness is low AND contrast is low THEN increase brightness AND increase contrast. 

– Rule 14: IF brightness is optimal AND contrast is optimal THEN no change. 

– Rule 27: IF brightness is high AND contrast is high THEN decrease brightness AND decrease contrast. 

 

2.2.3. Parameter tuning and reconstruction 

In the proposed work, the thresholds considered for membership functions were determined 

empirically by analysing the histogram statistics of 500 randomly sampled CXR images from the training set. 

Basically, the edge detail thresholds were tuned to detect minute ground-glass opacities without amplifying 



                ISSN: 2302-9285 

Bulletin of Electr Eng & Inf, Vol. 14, No. 5, October 2025: 4025-4035 

4030 

noise. The resulting outputs 𝜇𝑘 and 𝛼𝑘 are then used to generate the enhanced block 𝐵𝑘
′  and to ensure smooth 

transitions between blocks, a Hanning window operation 𝐻𝑘 is applied to each 𝐵𝑘
′  and all processed blocks 

are accumulated using a weighted sliding window approach to the final enhanced image 𝐼′ ∈  ℝ𝑊×𝐻  

using (10). 

 

𝐵𝑘
′ = 𝛼𝑘 ∙ (𝐵𝑘 − 𝜇𝑘) + (𝜇𝑘 − Δ𝜇𝑘

) and 𝐼′(𝑥, 𝑦) =
∑ 𝐻𝑘(𝑥,𝑦)∙𝐵𝑘

′ (𝑥,𝑦)𝑘

∑ 𝐻𝑘(𝑥,𝑦)𝑘
 (10) 

 

It is also to be noted that the proposed fuzzy-based augmentation is applied only to the training set 

to preserve the clinical authenticity of the validation and test images. Figure 3 presents the visual analysis of 

the proposed fuzzy-based image enhancements. The use of fuzzy logic enables context-aware enhancement, 

where image regions with poor contrast or brightness are selectively enhanced without globally altering the 

image. Apart from this, the proposed augmentation scheme considers two additional operations, such as 

random rotation and horizontal flipping of images in the training set. 
 

 

 
 

Figure 3. The visual outcome of the proposed fuzzy-based image enhancements 

 

 

2.3.  Uncertanity aware ensemble learning 

In order to achieve enhanced predictive outcomes and minimise misclassification rate, the proposed 

study introduces an uncertainty-aware ensemble learning scheme that incorporates confidence and prediction 

uncertainty of both models and fuses their predictions towards offering a practical balance between accuracy, 

trust, and transparency. The proposed methodology considers an input image 𝑥𝑖 and and the prediction output 

from model 𝑗 ∈ {1,2} be represented as a probability vector 𝑃𝑗(𝑥𝑖) = [𝑝𝑗1, 𝑝𝑗2 ⋯ 𝑝𝑗𝐾], where 𝐾 is the number 

of classes, and for each model prediction, the maximum class probability is extracted to define model 

confidence 𝑐𝑗𝑖 ← max (𝑃𝑗(𝑥𝑖)). In order to compute stability and ranking behaviour, the confidence score of 

the models is passed through a composite ranking function 𝑅𝑗𝑖, which reflects both the strength and reliability 

of the model’s prediction for the image 𝑥𝑖. The uncertainty of each prediction is then estimated using 

Shannon entropy over the predicted probability distribution using (11): 

 

𝛼𝑖 = − ∑ 𝑝𝑘 log(𝑝𝑘) ,𝐾
𝑘=1  where 𝑝𝑘 = 𝑃𝑗(𝑥𝑖)𝑘 (11) 

 

where, a higher entropy 𝛼𝑖 represents more uncertainty in the model’s decision. To penalise such uncertain 

predictions, a penalty factor is introduced that down-weights predictions with higher entropy. Additionally, a 

weight 𝑤 ∈ [0 1] is assigned to each model based on its validation accuracy on a held-out dataset to ensure 

that more reliable models contribute more to the final decision. The final fused prediction score for class 𝑘 is 

computed by combining model-specific weights, confidence scores, and uncertainty penalties such that: 

𝐹𝑗𝑘 = 𝑤𝑗 ∙ 𝑅𝑗𝑖 ∙ (1 − 𝛼𝑖) ∙ 𝑃𝑗(𝑥𝑖)𝑘. Finally, the ensemble outputs from all models are aggregated, and the class 

label corresponding to the highest combined score is selected as the final predicted label such that:  

𝑦̂𝑖 = arg max
𝑘

∑ 𝐹𝑗𝑘
𝑀
𝑗=1 , where 𝑀 = 2, i.e., is the number of models in the ensemble. 

The proposed scheme not only allows the system to aggregate predictions but also adaptively 

weights them based on the confidence and reliability of the inputs. As a result, the system is less sensitive to 

errors in a single model and better able to meet clinical reliability requirements. From an optimisation 

perspective, the proposed uncertainty-aware ensemble mechanisms act as a built-in loss regularizer by 

penalising high-entropy (low-reliability) predictions, thereby reducing their influence on the final decision. 

Similar to confidence-weighted cross-entropy, it also enhances the reliability and stability in the prediction 
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even in highly uncertain scenarios, which is critical for clinical COVID-19 testing, as overconfidence errors 

can be detrimental. The proposed schemes ensure that the system maintains a balance between accuracy, 

reliability, and interpretability. 

 

 

3. RESULTS AND DISCUSSION 

The implementation of the proposed system is carried out using the Python programming language 

on a Windows 11 64-bit system with an NVIDIA GTX 1650 GPU and 16 GB of RAM. The proposed 

framework is trained and evaluated on the benchmark dataset, namely the COVID-19 radiology database 

[26], which consists of approximately 15,000 CXR images with four classes (COVID-19, viral pneumonia, 

and normal). The training hyperparameters are selected based on the grid search technique on the validation 

set, where the batch size is selected as 32, as it offers a balance between convergence stability and GPU 

memory, and Adamax as an optimizer due to its robustness to sparse gradients and convergence stability. The 

results are evaluated using standard classification parameters such as accuracy, precision, recall, F1-score, 

and AUC. Table 3 shows the numerical outcomes for performance comparison with various baseline models. 
 

 

Table 3. Comparative analysis with baseline CNNs 
Model Accuracy (%) Precision (%) Recall (%) F1-score (%) 

ResNet50 92 93 90 91 

MobileNet 74 85 66 58 

DenseNet 93 93 93 93 
EfficientNetB0 96 92 96 94 

VGG-16 94 94 93 93 

EfficientNetB0 + H-Atten 98.3 97.9 98.5 98.2 
VGG-16 + fuzzy augmentation 97.6 97.1 97.8 97.4 

Proposed ensemble model 99.6 100 99 99 

 
 

Table 3 presents a comparative assessment of the proposed learning models against various baseline 

CNN models widely adopted in the literature. It can be seen that the proposed ensemble model outperformed 

other CNN models with achieving a classification accuracy of 99.6% and an F1-score of 99%. Furthermore, 

EfficientNetB0 with the proposed H-Attention and VGG-16 with the proposed fuzzy data augmentation also 

outperform existing CNN models, thereby achieving a balanced and robust classification capability. In order 

to demonstrate the effectiveness of the proposed ensemble learning, Figures 4 and 5 demonstrate the 

confusion matrix and ROC curve analysis, respectively. 
 

 

  
 

Figure 4. Confusion matrix 
 

Figure 5. ROC curve analysis 
 
 

Figure 4 illustrates the confusion matrix of the proposed ensemble model, which shows that only six 

data samples are misclassified out of a total of 1,514 test instances. The COVID-19 detection achieved a 

sensitivity of 99.72% and specificity of 99.91%, the normal cases achieved 99.90% sensitivity and 98.99% 

specificity, and pneumonia cases achieved 97.01% sensitivity and 100% specificity. The analysis shows 

lower false positive rate than the previous methods [27]-[30], along with balanced performance in terms of 

precision and recall than the similar existing works such as [31] (precision 96% and recall 95%), [32] 

(precision 94% and recall 97%), and [33] (precision and recall 97.48%). This analysis indicates that the 

proposed uncertainty-aware ensemble offers effective reliability in a multi-class classification task, which 

can also be seen in the analysis shown class-wise ROC curve in Figure 5. It can be seen that the proposed 

system is quite better at distinguishing all the classes, thereby achieving an AUC of 1.00, which highlights 

the model’s excellent discrimination ability. 
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3.1.  Discussion 

Table 4 presents a comparative analysis with recent state-of-the-art (SOTA) methods in COVID-19 

CXR classification, where a variety of techniques are applied by the researchers towards achieving higher 

performance in the classification task. However, none of the work has focused on optimizing the procedure 

or customizing the model for architectural engineering viewpoints. Very few works [34]-[36] have shown 

different work, but most of them are subjected to a common approach of model adoption where DL pipeline 

either by changing the base architecture or adding some known preprocessing, are considered which are 

already there in the literature. Hence, most existing approaches lack novelty and as a result, underperformed, 

whereas the proposed system, by fusing an H-Atten-driven model and a fuzzy-augmented trained model, 

outperformed all existing approaches with higher true positive and lower false positive rates. 

 

 

Table 4. Comparative analysis with existing works 
Ref Dataset abbreviation Classes Techniques Accuracy (%) 

[27] Public CXR-7000 COVID-19, pneumonia, 
tuberculosis, normal 

DL+explainable artificial 
intelligence (XAI) 

94 

[28] COVID-19 Rad-DB COVID-19, normal, pneumonia DL+transfer learning 91 

[29] COVID-19 Rad-DB COVID-19, normal, pneumonia DeTraC DNN 93 
[30] COVID-19 Rad-DB COVID-19, normal, pneumonia Attention guided ensemble 97.3 

[31] COVID-19 CXR COVID-19, pneumonia, normal Deep ensemble strategy 97 

[32] COVID + pneumonia CXR COVID-19, pneumonia, normal AI-driven knowledge distillation 96.34 
[33] Chest PA + Rad-DB COVID-19, normal, pneumonia CNN 97.48 

[34] COVID-19 Rad-DB COVID-19, normal SVM 93.4 

[35] COVID-19 Rad-DB COVID-19, normal Hist. Eq.+VGG19 95 
[36] Custom CXR COVID-19, healthy, pneumonia CNN-Attn+multi-level fusion 96.75 

Proposed COVID-19 Rad-DB COVID-19, normal, pneumonia EfficientNetB0+H-Atten 98.3 

Proposed COVID-19 Rad-DB COVID-19, normal, pneumonia VGG-16+fuzzy aug. 97.6 
Proposed COVID-19 Rad-DB COVID-19, normal, pneumonia Uncertainty aware ensemble 99.6 

 

 

The existing works also achieved strong results, but also exhibit a few limitations. The DL and XAI 

framework introduced in [27] improved the interpretability but lacks the targeted preprocessing operation for 

better feature representation, whereas the COVID-ensemble in [28] boosts accuracy via transfer learning, but 

needs more optimization in feature learning and the generalization process. The model DeTraC in [29] 

addresses class imbalance but lacks attention for fine-grained localization, and the attention-guided 

ensembles introduced in [30] and deep ensembles in [31] enhance the robustness, but they adopted fixed 

fusion and ignored the vulnerability of overconfident errors. The knowledge distillation in [32] reduces the 

computational complexity but does not incorporate hybrid attention or advanced augmentation. The CNN in 

[33] is computationally efficient but limited by its single-backbone design, and similarly, the adoption of 

classical ML models in [34] is lightweight but cannot extract hierarchical features. The preprocessing-

focused VGG19 [35] and CNN-attention fusion [36] improve performance but still lack adaptive, 

uncertainty-driven fusion. Our method addresses these gaps by introducing hybrid attention for region-

focused features, fuzzy-based augmentation for local contrast and edge detail, and uncertainty-aware 

weighting for stable predictions, which showed an accuracy of 99.6% and outperformed the 91–97.48% 

range of prior works. 

 

3.2.  Limitations and clinical considerations 

The proposed framework performs well in classifying multiple viral chest infections from input 

images, but it also has limitations. It is trained on a single publicly available CXR dataset, and the fuzzy logic 

augmentation is tuned to this dataset, which means that the thresholds used during inference need to be 

adjusted to avoid dataset-specific biases. The proposed model is also designed specifically for the CXR 

modality, but it can also be applied to other imaging modalities with slight modifications. Also, the hybrid 

attention mechanism and fuzzy augmentation approach introduce an increased training time, which we will 

optimize in future work. In terms of deployment, the framework is intended as a decision support tool, not a 

replacement for radiologists. The adoption of the proposed framework can help to optimize hospital 

workflows, it can priorities urgent cases, and improve resource allocation. However, the ethical and data 

privacy considerations are crucial for practical application. Though the dataset used in this work is publicly 

available, clinical deployment requires compliance with institutional review board (IRB) guidelines 

according to the health insurance portability and accountability act (HIPAA)/general data protection 

regulation (GDPR) to ensure secure handling of patient data. 
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4. CONCLUSION 

This paper has proposed a novel hybrid DL framework for COVID-19 detection from CXR images 

based on the integration of a lightweight EfficientNetB0 model enhanced with a hybrid attention mechanism 

and a VGG-16 model trained on fuzzy logic-based augmented data. The integration of the outputs of both 

models was conducted with an uncertainty-aware ensemble strategy, which included model confidence, 

entropy-based uncertainty estimation, and validation-based dynamic weighting. The extensive experiments 

carried out on benchmark datasets showed that the proposed framework significantly outperformed baseline 

and SOTA models, and achieved 99.6% classification accuracy as well as excellent sensitivity and 

specificity. The experimental outcomes demonstrated the effectiveness of the proposed contributions, viz.:  

i) a hybrid attention mechanism to enhance region-specific features, ii) fuzzy enhancement to improve lesion 

visibility, and iii) uncertainty-aware fusion for robust decision making. The proposed system is designed to 

serve as a clinical decision support tool towards assisting radiologists in optimising case prioritisation and 

resource allocation. The future work will extend the current scope of the proposed work to multimodal 

datasets, including more disease classes, and make it more lightweight to enable broader clinical application. 
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