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 Accurate and early diagnosis of brain tumors using multi-modal magnetic 

resonance imaging (MRI) remains a critical challenge due to tumor 

heterogeneity and complex spatial representation. This study proposes a 

novel hybrid deep learning framework that integrates a 3D convolutional 

neural network (3D CNN) with swin transformer blocks and an attention-

based feature fusion module (ABFFM). The model leverages multi-modal 

MRI inputs—T1, T1Gd, T2, and fluid-attenuated inversion recovery 

(FLAIR)—and features a dual-branch classification head for binary tumor 

detection and multi-label tumor sub-region classification: enhancing tumor 

(ET), tumor core (TC), and whole tumor (WT). Experiments conducted on 

the BraTS2023-GLI dataset demonstrate that the proposed model achieves a 

superior classification accuracy of 96.51%, with precision of 97.98%, recall 

of 97.04%, and F1-score of 97.61%, outperforming state-of-the-art methods. 

Furthermore, intrinsic attention weights offer interpretability by highlighting 

modality-specific contributions. The proposed model establishes a clinically 

promising approach for brain tumor analysis, with strong implications for 

early diagnosis and treatment planning. 
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1. INTRODUCTION 

Brain tumors are among the most severe and life-threatening neurological disorders, posing 

significant challenges to timely diagnosis and treatment due to their heterogeneous nature and complex 

presentation in radiological imaging [1], [2]. Early detection and accurate classification of brain tumors play 

a pivotal role in determining treatment strategies and improving patient prognosis [3]. However, the 

variability in tumor morphology, location, and tissue contrast—especially in multi-modal magnetic resonance 

imaging (MRI)—often complicates manual diagnosis [4]. Radiologists face the arduous task of interpreting 

large volumes of 3D MRI data, which can be subjective, time-intensive, and prone to inter-observer 

inconsistencies [5], [6]. An overview of the high-level pipeline for automated brain tumor analysis using 

deep learning is illustrated in Figure 1. 

Traditional machine learning approaches for brain tumor classification often rely on manual feature 

extraction [7], which demands domain expertise and limits the model’s ability to generalize across diverse 

imaging datasets. In contrast, deep learning—particularly convolutional neural networks (CNNs)—has 

shown remarkable performance in automating feature extraction and learning complex data representations 

directly from images [8]. Numerous recent studies have explored a range of deep learning and hybrid 

approaches for brain tumor detection and classification using MRI data. For instance, Anantharajan et al. [9] 

https://creativecommons.org/licenses/by-sa/4.0/
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proposed a hybrid model integrating traditional preprocessing and machine learning techniques, wherein 

MRI scans were enhanced using adaptive contrast enhancement algorithm (ACEA), segmented using fuzzy 

c-means clustering, and classified using an ensemble deep neural support vector machine (EDN-SVM). This 

method achieved a notable accuracy of 97.93%, demonstrating the benefits of combining handcrafted 

features with deep ensemble classifiers. Similarly, Mahmud et al. [10] developed a CNN-based architecture 

for early tumor detection, evaluating its performance against ResNet-50, VGG16, and InceptionV3. The 

proposed model outperformed the baselines, achieving 93.3% accuracy and 98.43% area under the curve 

(AUC), confirming its effectiveness for clinical-grade tumor detection. In another study, Qureshi et al. [11] 

presents an ultra-light deep learning model integrating CNN and gray-level co-occurrence matrix (GLCM)-

based features for multi-class brain tumor classification using the CE-MRI dataset. Achieving 99.24% 

accuracy, the model offers real-time performance with minimal hardware. Limitations include class 

imbalance and lack of spatial localization. Research by Khan and Park [12] proposes a CNN-based 

convolutional block architecture for multiclass brain tumor classification using three public MRI datasets. 

The model achieved an average accuracy of 97.85%, outperforming state-of-the-art models. Despite high 

precision and adaptability, limitations include dataset bias and lack of explainability. Ahmmed et al. [13] 

developed a segmentation-aided classification pipeline based on 2D slices and transfer learning, reaching 

93.3% accuracy. Saeedi et al. [14] introduced a dual-path architecture for multimodal fusion but lacked 

interpretability mechanisms, achieving 93.44% accuracy. Tehsin et al. [15] incorporated Grad-CAM for 

explainability and used partial modality fusion to reach 92.5% accuracy. Research by Ahmed et al. [16] 

proposes a ViT-GRU hybrid deep learning model for brain tumor classification using primary MRI data from 

Bangladesh and the brain tumor Kaggle dataset. Achieving 81.6% accuracy, the model integrates XAI 

(LIME, SHAP, and attention maps). Limitations include data imbalance, complex preprocessing, and 

restricted dataset diversity. In contrast, the proposed model in the current study employs a 3D CNN backbone 

enhanced with swin transformer blocks and an attention-based feature fusion module (ABFFM), enabling full 

multi-modal integration and improving both accuracy and interpretability. The dual-branch classification 

head—comprising a binary tumor presence detector and a multi-label tumor subregion classifier—aligns well 

with the objectives of the BraTS GLI challenge. The model achieves a superior accuracy of 96.51%, with 

learnable attention weights providing insight into modality importance. This comprehensive review reveals a 

consistent trend toward integrating multimodal MRI data, using transfer learning, and incorporating 

explainability mechanisms to improve performance and clinical relevance. While many existing models rely 

on 2D inputs or lack interpretability, the proposed framework addresses both limitations through volumetric 

learning and attention-based fusion, setting a new benchmark for tumor detection and classification. The rest 

of the manuscript is organized as follows: section 2 describes the methods, section 3 presents and discusses 

the results, and section 4 concludes with key contributions and future directions. 

 

 

 
 

Figure 1. Deep learning workflow for brain tumor classification from MRI scans 

 

 

2. METHOD 

The proposed hybrid deep learning framework leverages volumetric MRI data for early tumor 

detection and multi-label classification. As illustrated in Figure 2, the architecture integrates 3D CNNs, swin 

transformer blocks, and an ABFFM to effectively capture both local anatomical details and global contextual 

information from multi-modal MRI inputs. Specifically, the model processes four MRI modalities—T1, 

T1Gd, T2, and fluid-attenuated inversion recovery (FLAIR)—to exploit their complementary diagnostic 

features. The 3D CNN backbone extracts hierarchical spatial features from volumetric inputs, while swin 

transformer blocks model long-range dependencies across slices. The ABFFM then fuses modality-specific 

features by applying attention mechanisms to emphasize the most informative representations. 

The classification head is divided into two primary branches aligned with the objectives of the 

BraTS GLI challenge. Branch 1 performs binary classification to detect the presence or absence of the whole 

tumor (WT) region, using sigmoid activation and binary cross entropy loss. Branch 2 simultaneously 

classifies tumor sub-regions—enhancing tumor (ET), tumor core (TC), and WT—using a multi-label 

approach with sigmoid activation and binary cross entropy loss for each target. This design enables both 
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coarse-level tumor detection and fine-grained sub-region classification. The model is trained and validated 

using the BraTS 2023 GLI dataset, which provide clinically annotated ground truth for glioma segmentation 

tasks. By combining transformer-based global reasoning, convolutional spatial encoding, and modality-aware 

fusion, the proposed framework enhances both the accuracy and interpretability of tumor classification from 

3D brain MRIs. 

 

 

 
 

Figure 2. Proposed hybrid 3D CNN–transformer architecture 

 

 

2.1.  BraTS2023-GLI dataset description 

The details of the benchmark dataset used in this study, namely BraTS2023-GLI [17], [18] is 

summarized in Table 1. This dataset includes varying tumor subregion annotations and normal cases, offering 

a challenging and realistic environment for brain tumor prediction and classification tasks. 
 

 

Table 1. Details of BraTS2023-GLI dataset 
Dataset Total cases MRI modalities ET cases TC cases WT cases Cases with missing labels 

BraTS2023-GLI 1,251 T1, T1Gd, T2, and FLAIR 1,208 1,250 1,218 71 

 

 

2.2.  Preprocessing and data augmentation 

Given the heterogeneity in MRI scans due to different acquisition protocols and scanners, a robust 

preprocessing pipeline is essential for model performance. Initially, all volumes are resampled to a uniform 

voxel spacing using trilinear interpolation to standardize resolution across cases. Next, Z-score normalization 

is applied individually to each modality, ensuring zero mean and unit variance intensity distributions as  

in (1): 

 

𝐼𝑛𝑜𝑟𝑚 =  
𝐼−𝜇

𝜎
 (1) 

 

where I denotes the raw intensity, μ the mean, and σ the standard deviation of the voxel intensities for a given 

modality. To manage memory constraints and facilitate batch-wise training, 3D patches of size 128×128×128 

are extracted from the full volume. This not only enables efficient GPU usage but also enhances spatial 

localization by focusing on smaller brain regions. To prevent overfitting and improve generalization, 

extensive data augmentation is applied during training. Augmentation strategies include random axis flips, 

90° rotations, intensity jittering, Gaussian noise addition, and elastic deformations. These transformations 

introduce anatomical variability and simulate different acquisition conditions, thereby enhancing the model’s 

robustness to real-world clinical scenarios [19]. 

 

2.3.  Hybrid deep architecture 

2.3.1. 3D convolutional neural network feature extractor 

The initial backbone of the architecture is a modified 3D ResNet [20], tailored to process 3D 

volumetric inputs. The concatenated four-modality MRI volume serves as the input tensor of shape 

4×128×128×128. The 3D CNN processes this input through successive convolutional, batch normalization, 

and rectified linear units (ReLU) layers is illustrated in Figure 3. Early layers extract low-level volumetric 

patterns such as tissue density and edge gradients, while deeper layers capture more complex features 

corresponding to tumor boundaries and textural irregularities. Residual connections are retained to preserve 

feature integrity across layers and mitigate gradient vanishing problems during training. Each residual block 

is defined as in (2): 
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𝑦 = 𝑓(𝑥, {𝑊𝑖}) + 𝑥 (2) 

 

where 𝑓 is a residual function and x is the input to the block. 

 

 

 
 

Figure 3. 3D CNN feature extractor for volumetric MRI input 

 

 

2.3.2. Swin transformer integration 

To capture global contextual relationships that are often missed by localized 3D convolutions, swin 

transformer blocks are integrated into the architecture after specific convolutional stages (Figure 4). Unlike 

standard vision transformers, swin transformers adopt a hierarchical structure and compute self-attention 

within non-overlapping local windows, which are then shifted in subsequent layers [21], [22]. This design 

significantly improves computational efficiency while preserving the model’s ability to capture long-range 

dependencies, especially important in high-dimensional medical imaging such as 3D MRIs. 

 

 

 
 

Figure 4. Swin transformer block with W-MSA and SW-MSA for hierarchical feature learning 

 

 

The swin transformer was selected over the standard ViT due to its hierarchical architecture and 

shifted window mechanism, which significantly reduces computational complexity while maintaining high 

spatial context capture. Compared to CNN-based attention blocks, swin transformers have shown superior 

performance in modeling long-range dependencies in 3D medical imaging with fewer parameters and 

improved scalability [2]. Each swin transformer block includes a window-based multi-head self-attention 

(W-MSA) layer followed by a shifted window multi-head self-attention (SW-MSA) layer. The attention is 

computed as in (3): 

 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 = (𝑄, 𝐾, 𝑉) = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑
𝑉) (3) 

 

where Q,K,V∈Rn×d represent the query, key, and value matrices respectively, where n is the number of tokens 

and d the feature dimension. This attention mechanism enables the model to dynamically focus on 

informative regions across the 3D volume, which is critical for detecting glioma sub-regions (ET, TC, and 

WT) with varying locations and shapes. By combining both local and global feature extraction, the swin 

transformer enhances the model's robustness and accuracy in brain tumor classification. 
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2.3.3. Multi-modal feature fusion 

A key innovation in the proposed architecture is the ABFFM, which integrates features from 

different modalities and resolutions. The ABFFM first projects features from each modality into a common 

embedding space. Then, it computes attention weights αi for each modality i using a learnable soft-attention 

mechanism as in (4), as illustrated in Figure 5: 

 

𝛼𝑖 =
exp (𝑤𝑇 tanh(𝑊𝑖f𝑖+𝑏𝑖))

∑ exp (𝑤𝑇 tanh(𝑊𝑖f𝑖+𝑏𝑖))𝑗
 (4) 

 

here, fi is the feature from modality i, and αi reflects the importance of that modality for the current region. 

The fused feature F is then given by as in (5). 

 

F =  ∑ 𝜎𝑖 ∗  f𝑖𝑖  (5) 

 

This strategy effectively suppresses irrelevant noise and emphasizes tumor-discriminative features, 

enhancing the quality of downstream classification. 

 

 

 
 

Figure 5. Overview of the ABFFM 

 

 

2.4.  Multi-modal feature fusion 

The final fused feature representation, capturing both spatial and contextual characteristics, is 

flattened and passed through a fully connected dense layer, followed by batch normalization and a dropout 

layer with a rate of 0.5 for regularization. The classification head is bifurcated into two branches to address 

distinct prediction tasks. The first branch performs tumor detection through binary classification, predicting 

the presence or absence of the WT region. It uses a sigmoid activation function to output a probability as  

in (6): 
 

𝑃(𝑦 = 1|𝑥) =  
1

1+exp (−𝑧)
 (6) 

 

where z is the logit corresponding to the WT class. This branch is trained using binary cross-entropy (BCE) 

loss as in (7). 
 

𝐿𝐵𝐶𝐸 =  −[𝑦 log(𝑦̂) + (1 − 𝑦)log (1 − 𝑦)]̂ (7) 
 

The second branch performs multi-label tumor sub-region classification, simultaneously predicting 

the presence of ET, TC, and WT. Each sub-region output is passed through a sigmoid activation function, 

producing independent probabilities for each class. This multi-label task is also trained using BCE loss, 

summed over all sub-region classes as in (8): 
 

𝐿𝑚𝑢𝑙𝑡𝑖_𝐵𝐶𝐸 =  − ∑  [𝑦𝑐 log(𝑦𝑐̂) + (1 − 𝑦𝑐)log (1 −𝐶
𝑐=1 𝑦𝑐̂)] (8) 

 

where C=3 for the ET, TC, and WT regions. The model is optimized using the AdamW optimizer, which 

decouples weight decay from gradient updates for improved generalization. To ensure smooth convergence, a 

cosine annealing learning rate schedule with warm restarts is employed. 

 

 

3. RESULTS AND DISCUSSION 

This section presents the evaluation of the proposed hybrid deep learning-based system for early 

detection and multi-class classification of brain tumors using multi-modal radiological MRI data. The 

performance of different CNN backbones, the impact of modality fusion strategies, and the effectiveness of 
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the attention-based fusion model are thoroughly examined. The results are reported using standard metrics, 

and the findings are interpreted in light of the research objective of achieving accurate and reliable brain 

tumor classification. 

 

3.1.  Experimental setup 

The experimental study utilizes the BraTS2023-GLI dataset, containing multimodal MRI scans (T1, 

T1c, T2, and FLAIR) of glioma patients. The dataset includes annotations for ET, TC, and WT regions. The 

data was split into 70:10:20 for training, validation, and testing. All models were implemented in TensorFlow 

and trained on an NVIDIA RTX 3090 GPU. The training configuration is summarized in Table 2. 
 

 

Table 2. Hyperparameter configuration 

Component Batch size Epochs Optimizer 
Activation 
function 

Learning rate Scheduler 
Loss 

function 
Dropout rate 

Value 16 80 AdamW Sigmoid 0.0001 Cosine annealing BCE 0.5 

 

 

3.2.  Baseline performance with single modality 

To establish a baseline, individual CNN models were trained using the ResNet50 backbone on each 

MRI modality separately. Table 3 summarizes the performance metrics across T1, T2, FLAIR, and T1c 

modalities reported as mean ± standard deviation (σ) over five independent training runs. Among all 

modalities, T1c achieved the highest performance, which can be attributed to its enhanced contrast properties 

that delineate tumor boundaries more clearly. Despite its superiority, the classification accuracy plateaued at 

approximately 90%, indicating the inherent limitations of relying solely on a single modality. This 

observation underscores the importance of multi-modal fusion for comprehensive tumor representation and 

improved diagnostic accuracy. 

 
 

Table 3. Performance of baseline models using single MRI modality 
Modality Accuracy (%) Precision (%) Recall (%) F1-score (%) 

T1 87.31±0.14 85.61±0.16 86.28±0.15 86.26±0.15 

T2 88.17±0.13 86.43±0.15 87.51±0.14 86.90±0.14 
FLAIR 89.60±0.12 88.13±0.14 89.27±0.13 88.51±0.13 

T1c 90.41±0.11 89.18±0.13 90.21±0.12 89.62±0.12 

 

 

3.3.  Performance of multi-modal fusion without attention 

We next evaluated a basic multi-modal fusion strategy by concatenating features extracted from all 

four MRI modalities and passing them through a dense classification layer. This approach was tested using 

two different backbone architectures: EfficientNet-B0 [23] and ResNet50. Results, expressed as mean ± σ 

across five runs, are summarized in Table 4. The multi-modal fusion approach significantly outperformed the 

single-modality baselines, achieving a 3–4% increase in accuracy and other metrics. Among the two 

backbones, ResNet50 delivered superior results compared to EfficientNet-B0. 
 

 

Table 4. Classification performance of multi-modal MRI fusion 
Backbone Accuracy (%) Precision (%) Recall (%) F1-score (%) 

EfficientNet-B0 92.80±0.12 91.50±0.13 92.00±0.12 91.70±0.13 

ResNet50 94.10±0.11 93.30±0.12 93.80±0.11 93.50±0.12 

 

 

This improvement is likely due to ResNet50's deeper architecture and its ability to capture more 

complex hierarchical features when trained on fused multi-modal data. The results affirm the effectiveness of 

integrating multiple imaging modalities to enhance the representation and classification of tumor 

characteristics. 

 

3.4.  Performance of attention-based modality fusion 

To improve modality-specific feature integration, we applied an attention-based fusion mechanism 

wherein features from each MRI modality are weighted adaptively based on learned attention scores. This 

enables the model to emphasize more informative modalities per scan. Table 5 presents the results as  

mean ± σ across five runs. This approach outperformed both single-modality and naive fusion baselines, 

confirming the benefit of dynamic modality weighting. 
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Table 5. Performance of the proposed attention-based modality fusion model 
Model Accuracy (%) Precision (%) Recall (%) F1-score (%) 

Proposed (ResNet50+attention fusion) 96.51±0.09 97.98±0.10 97.04±0.11 97.61±0.09 

 

 

The proposed attention-based fusion model achieved the highest performance among all tested 

configurations, with an accuracy of 96.51%, precision of 97.98%, recall of 97.04%, and an F1-score of 

97.61%. The learnable attention weights αi enabled adaptive weighting of modalities, improving the model’s 

generalization capability. For instance, the observed attention distribution is shown in the Table 6. 
 

 

Table 6. MRI modality input attention weights 
Attention weight T1 T2 FLAIR T1c 

α 0.18 0.21 0.26 0.35 

 

 

This distribution highlights that the T1c and FLAIR modalities were assigned higher weights, 

consistent with their superior individual performance observed in earlier experiments. The results confirm 

that attention-based fusion not only improves overall accuracy but also introduces robustness by dynamically 

leveraging modality-specific relevance per scan. 

 

3.5.  Ablation study 

To quantify the individual contributions of the swin transformer and the ABFFM, we performed an 

ablation study. Three configurations were evaluated: i) 3D CNN only, ii) 3D CNN+ win transformer (no 

ABFFM), and iii) 3D CNN+ABFFM (no swin transformer). As shown in Table 7, adding the swin 

transformer improved accuracy by 2.4% over CNN-only, while ABFFM alone improved accuracy by 1.9%. 

Combining both yielded the best accuracy (96.51%), confirming their complementary roles. 
 

 

Table 7. Ablation study results 
Configuration Accuracy (%) Precision (%) Recall (%) F1-score (%) 

3D CNN only 92.84±0.12 93.10±0.15 92.70±0.18 92.89±0.14 
3D CNN+swin transformer 95.24±0.10 96.01±0.12 95.10±0.14 95.55±0.13 

3D CNN+ABFFM 94.78±0.11 95.34±0.13 94.70±0.16 95.02±0.12 

Proposed (CNN+Swin+ABFFM) 96.51±0.09 97.98±0.10 97.04±0.11 97.61±0.09 

 

 

3.6.  Confusion matrix analysis 

To better understand the model’s performance, we analyzed confusion matrices for both 

classification branches. For the binary classification task (Branch 1), which determines the presence or 

absence of a tumor (WT), the confusion matrix is shown in Figure 6. The model achieved a high true positive 

rate for tumor detection, with very few false negatives, indicating strong sensitivity. A small number of false 

positives occurred, which could be attributed to ambiguous anatomical variations or residual artifacts in the 

MRI volumes. For the multi-label sub-region classification (Branch 2), evaluation is performed per class 

using per-label confusion metrics. Figure 7 and Table 8 shows per-class statistics by binarizing predictions 

for each sub-region using a threshold of 0.5. All results are reported as mean ± σ across five independent 

training runs. 
 

 

  
 

Figure 6. Confusion matrix of the tumor detection model 

in a binary classification setting 

 

Figure 7. Confusion matrix of multi-class 

classification setting 
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Table 8. Confusion matrix summary – tumor sub-region classification 
Sub-region Precision (%) Recall (%) F1-score (%) Accuracy (%) 

ET 95.53±0.08 95.45±0.09 95.49±0.08 95.53±0.08 
TC 94.23±0.10 94.40±0.09 94.11±0.10 94.23±0.10 

WT 93.61±0.09 93.84±0.10 93.73±0.09 93.61±0.09 

 

 

The model demonstrates consistently strong and balanced performance across all three tumor sub-

regions, with precision and recall values exceeding 93% in each case. The ET region shows the highest 

precision (95.53%) and recall (95.45%), indicating the model's effectiveness in detecting well-defined 

enhancing areas. Slightly lower performance for the WT class may stem from overlapping tissue intensities 

and diffuse tumor boundaries. These results highlight the model's capability to accurately classify 

heterogeneous glioma sub-regions, closely aligning with the multi-label annotations provided in the BraTS-

GLI ground truth. 

 

3.7.  Receiver operating characteristic and area under the curve 

Receiver operating characteristic (ROC) analysis was conducted to evaluate the model’s 

discriminative performance for both binary and multi-label tasks, as shown in Figure 8. Results are averaged 

over five independent training runs, with AUC values reported as mean ± σ. Across these runs, binary tumor 

detection achieved an AUC of 0.923±0.005, indicating strong separation between tumor-present and tumor-

absent cases. 

For the multi-class setting, Figure 8(a) shows the ROC curve for ET, with a mean AUC of  

0.9060±0.006. The slightly lower score reflects the challenge of identifying ET regions that vary in intensity 

and spatial extent. Figure 8(b) presents the ROC curve for TC, achieving a mean AUC of 0.9074±0.007, 

demonstrating consistent sensitivity and specificity in delineating this sub-region. Figure 8(c) depicts the 

ROC curve for WT, with the highest mean AUC at 0.9081±0.006, highlighting the model’s strong ability to 

capture the complete tumor extent despite boundary variability. 

 

 

  
(a) (b) 

 
(c) 

 

Figure 8. ROC curves for multi-class classification showing; (a) ET, (b) TC, and (c) WT 
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These results confirm the model’s high discriminative power across all tumor sub-regions and 

reinforce its robustness and reproducibility across multiple runs. 

 

3.8.  Explainability and clinical insight 

To enhance interpretability beyond intrinsic attention weights, we applied Grad-CAM to generate 

voxel-level heatmaps that explain the model’s classification decisions spatially. Figure 9 illustrates 

representative cases: Figure 9(a) correctly classified examples show focused activations precisely localized 

on tumor regions across multi-modal MRI inputs, demonstrating effective feature learning; and Figure 9(b) 

misclassified cases exhibit diffuse or spatially misaligned attention maps, reflecting challenges such as 

ambiguous tumor boundaries or imaging artifacts. This qualitative analysis at the voxel level provides deeper 

insight into the model’s decision process, aiding clinical validation and guiding future improvements to 

address classification errors. 

 

 

      

      
(a) (b) 

 

Figure 9. Grad-CAM voxel-level heatmaps showing regions influencing the model’s brain tumor 

classification; (a) correctly classified cases and (b) misclassified cases 

 

 

3.9.  Computational complexity and inference time 

The proposed CNN + swin transformer + ABFFM model comprises approximately 34.2 million 

trainable parameters and requires 72.4 GFLOPs to process a volumetric MRI input of size 128×128×128. 

Experiments were conducted on an NVIDIA RTX 3090 GPU (24 GB VRAM), yielding an average inference 

time of 0.84 seconds per case. 

 

3.10.  Comparison with existing studies 

To validate the effectiveness of our approach, we conducted a comparative analysis against recent 

state-of-the-art tumor classification models, as summarized in Table 9. The proposed model achieves the 

highest classification accuracy (96.5%), outperforming all baseline methods by a margin of 1.9% to 5.3%. 

Most existing studies either rely on single-modality input or employ limited fusion strategies, which restrict 

their ability to capture complementary tumor information across modalities. 

 

 

Table 9. Comparison of proposed model with existing methods 
Study Accuracy (%) Explainability Multi-modal fusion 

Ahmed et al. [16] 81.66 Shap No 
Tehsin et al. [15] 92.52 Grad-cam Partial 

Saeedi et al. [14] 93.44 Not reported Not reported 

Mahmud et al. [10] 93.31 Grad-cam No 
Topannavar et al. [24] 93.58 Not reported Partial 

Sivakumar et al. [25] 94.56 Grad-cam No 

Proposed model (ours) 96.51±0.09 Attention weights Full 

 

 

In contrast, our model integrates a full multi-modal fusion pipeline enhanced by attention 

mechanisms, enabling it to selectively emphasize discriminative features from each modality. Furthermore, 

while explainability in previous models is often limited to post-hoc methods such as Grad-CAM, our 

approach inherently incorporates attention weights, offering built-in interpretability tied directly to the 

decision process. This not only strengthens clinical relevance but also enhances trust in model predictions. 
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3.11.  Discussion 

The proposed hybrid 3D CNN–swin transformer architecture with an ABFFM represents a 

substantial advancement in multi-modal brain tumor classification. Compared to single-modality baselines, 

the attention-based fusion mechanism dynamically prioritizes high-value modalities such as T1c and FLAIR, 

which improves both binary tumor detection and multi-label sub-region classification. By combining 

convolutional feature extraction for local spatial encoding with swin transformer blocks for global contextual 

modeling, the model effectively addresses the limitations of architectures that rely solely on CNNs or 

standard Vision Transformers. When benchmarked against recent state-of-the-art approaches (Table 9), the 

proposed model outperforms Ahmed et al. [16], Tehsin et al. [15], Saeedi et al. [14], Mahmud et al. [10], 

Topannavar et al. [24], and Sivakumar et al. [25] by margins ranging from 1.9% to 14.85% in accuracy. 

Notably, while some prior works, such as Mahmud et al. [10] and Tehsin et al. [15] incorporate Grad-CAM 

for explainability, they lack modality-level interpretability. Others, including Ahmed et al. [16] and 

Topannavar et al. [24], employ either no fusion or partial fusion strategies, which limits their ability to 

capture complementary tumor information across modalities. Beyond these six studies, our findings align 

with broader literature trends emphasizing multi-modal integration. For instance, Chen et al. [6] 

demonstrated that attention-based fusion improves generalization, while Li et al. [19] highlighted the 

advantages of transformer architectures for long-range dependency modeling in medical imaging. Similarly, 

Abdusalomov et al. [7], Martínez-Del-Río-Ortega et al. [8], and Anantharajan et al. [9] have reported gains 

from hierarchical attention mechanisms. Our model combines these strengths while embedding 

interpretability directly into the decision process through ABFFM attention weights, which are inherently 

linked to the diagnostic significance of each modality. This integrated explainability offers practical benefits 

in clinical contexts where trust and transparency are essential. 

Despite its promising performance, the study has certain limitations. First, evaluation was limited to 

the BraTS2023-GLI dataset, and the model’s robustness to domain shifts remains to be validated. While 

BraTS provides a well-curated benchmark, real-world hospital MRI scans may differ in acquisition 

parameters, resolution, and noise characteristics. This could potentially affect performance, underscoring the 

importance of transfer learning or fine-tuning with institution-specific data for clinical deployment. Second, 

although the swin transformer significantly reduces computational complexity compared to standard Vision 

Transformers, the model’s parameter count and GFLOPs may still pose challenges for deployment in low-

resource healthcare settings. Finally, future work should explore uncertainty quantification and integration of 

additional modalities, such as diffusion-weighted imaging (DWI), to further enhance diagnostic reliability. 

 

 

4. CONCLUSION 

This study set out to determine whether a hybrid deep learning framework combining 3D CNNs, 

swin transformers, and an ABFFM could improve multi-modal MRI brain tumor classification in both 

accuracy and interpretability. The key contribution is a dual-branch architecture that jointly performs tumor 

presence detection and glioma sub-region classification (ET, TC, and WT) with built-in modality-level 

attention weighting. This approach integrates spatial and contextual information while maintaining 

computational efficiency suitable for near real-time clinical inference. Beyond achieving a new performance 

benchmark on the BraTS2023-GLI dataset, the framework offers intrinsic explainability via attention 

weights, addressing a critical trust gap in medical artificial intelligence. Future work will focus on validating 

the model across multi-center datasets to assess robustness to domain shift, integrating uncertainty 

quantification for clinical decision support, and optimizing deployment pipelines for resource-constrained 

environments. 
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