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 Artificial intelligence (AI) and machine learning (ML) have influenced every 

part of our day-to-day activities in this era of technological advancement, 

making a living more comfortable on the earth. Among the several AI and ML 

algorithms, the support vector machine (SVM) has become one of the most 

generally used algorithms for data mining, prediction and other (AI and ML) 

activities in several domains. The SVM’s performance is significantly centred 

on the kernel function (KF); nonetheless, there is no universal accepted 

ground for selecting an optimal KF for a specific domain. In this paper, we 

investigate empirically different KFs on the SVM performance in various 

fields. We illustrated the performance of the SVM based on different KF 

through extensive experimental results. Our empirical results show that no 

single KF is always suitable for achieving high accuracy and generalisation in 

all domains. However, the gaussian radial basis function (RBF) kernel is often 

the default choice. Also, if the KF parameters of the RBF and exponential 

RBF are optimised, they outperform the linear and sigmoid KF based SVM 

method in terms of accuracy. Besides, the linear KF is more suitable for the 

linearly separable dataset. 
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1. INTRODUCTION  

In the 21st century, artificial intelligence (AI)  and its sub-disciplines such as machine learning (ML), 

data mining, deep learning and expert systems have experienced a rebirth following parallel developments in 

computer power, theoretical understanding and vast amounts of data. These techniques have taken centre 

stage in the technology industry, assisting in solving several thought-provoking computing, software 

engineering, and operations research issues [1], [2]. They have impacted demand forecasting, financial 

analysis, supply chain planning, computer vision, big data analytics, customer engagement, business domain 

knowledge, education and many more domains. Several ML algorithms like decision trees (DTs), neural 

networks (NN), K-nearest neighbour (KNN), naïve base (NB), random forest (RF) and support vector 

machine (SVM) have achieved real-world application success [3]. Among these algorithms, the SVM has 

been widely used recently. To mention a few, finance [4], [5], engineering [6], healthcare [7]-[9]. 

The SVM is one of the most robust supervised ML algorithms based on statistical learning theory 

(STL) developed by Vapnik [10]. The SVM employs the risk minimisation theory to establish the best 

separation hyperplane in multi-dimensional space to classify a bipartite outcome [11]. Initially, the SVM was 

designed for binary classification [12]; however, of late, the SVM is applicable for both classification and 

https://creativecommons.org/licenses/by-sa/4.0/
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regression ML tasks. The performance of the SVM has been compared with other ML algorithms, such as 

Bayesian logistic regression, and decision tree [13], [14], random forest [15], [16], neural network [17], [18] 

and k-nearest neighbours [19], [20]. Notwithstanding variations in the experimental outcomes, the SVM is 

equated to more traditional models in many of these studies. In contrast, other studies [13], [14], [16], [19] 

reported that the SVM grippingly outperformed several conventional models.  

When training an SVM model, there is a need to choose a KF and its associated parameters, and this is 

one of the biggest challenges to users of the SVM [5], [11], [21]. The KF permits the SVM (a linear machine) to 

transform the feature space and act as a non-linear model. The KF parameters regulate the shape of the 

separating margin used to classify a set of features. An accurate selection of these parameters can significantly 

improve the prediction accuracy of the SVM [4], [22]. However, the availability of numerous KFs makes it 

challenging to select the appropriate one for a specific domain. Unfortunately, several researchers (especially 

beginners) adopt default SVM without worrying about the parameters it uses (e.g., KF). 

Nonetheless, selecting all these parameters is necessary before using the SVM in a specific task since 

they are task-dependent. Besides, there is no universal accepted technique for choosing the appropriate KF and 

its parameters in a particular domain to attain high generalisation [12]. Additionally, the optimal regularisation 

parameter (C) is pivotal to obtain accurate outcomes [4], [17]. Hence, the current study presents a 

comprehensive comparative analysis of several KF on SVM performance for heart disease detection, exchange 

rate, and weather prediction. Furthermore, we aim to make the KF generalised for a specific domain. 

Based on the above discussions, this study seeks to answer the question; which KF and its 

parameters are suitable for achieving higher generalisation of the SVM under a given dataset? We 

hypothesised that no single KF and its associated parameters are suitable for all domain applications. The rest 

of this paper is organised as shown in. First, section 2 presents the basic overview of the SVM, the various 

types of KF and the study framework. Then, we present the empirical results and discussions in section 3, 

followed by the study conclusions and future works in section 4. 

 

 

2. RESEARCH METHOD 

2.1.  Machine learning 

ML is a subfield of AI centred on creating computer algorithms capable of analysing and learning 

data with intrinsic patterns and improving their accuracy rate with time without independently. According to 

[23], ML can be defined graphically, as shown in Figure 1. Given some class of tasks (T), to a computer 

program, the program is said to learn from experience (E) and performance measure (P), if its performance at 

(T), as measured by P, improves with (E). Typically, ML is divided into four areas [24], i.e., 1) supervised 

learning (SL), 2) unsupervised learning (UL), 3) evolutionary learning (EL) and 4) reinforcement learning 

(RL). Among these four techniques, studies [3], [25], [26] shows that SL is the most commonly used by 

researchers and professionals due to the already labelled dataset’s availability and SL lesser computational 

time than UL, RL and EL. 
 

 

Task (T)
Computer program learning 

algorithm

Experience (E) 

Performance (P)

 
 

Figure 1. ML definition 
 

 

Several SL algorithms exist, e.g., KNN, linear regression, RF, logistical regression, gradient boosted 

trees (GBT), NN, SVM, DT and NB. However, since the current study centres on the SVM, we briefly 

present its overview in the subsequent section. 

 

2.2.  Support vector machine 

The SVM algorithm was developed at AT&T Bell laboratories [10] to accurately classify binary 

dependent features using a unique hyperplane (H). The SVM maps input features (v) to a higher dimensional 

space where the best separating hyperplane is created. The hyperplane serves as a borderline sandwiched 

between two classes, created by maximising the margin between support vectors of both classes [19]. 

Typically, the hyperplane differs in value for different feature dimensions, e.g., for 1-dimension, H would be 

a point; for 2-dimension, H would be a straight-line. Whiles for dimensions greater than two, H would be a 

plane. Figure 2 shows a simple SVM [27]. The H with the most significant margin between the classes is 
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considered the best. Margin stands for the slice’s greatest width parallel to the H that has no inner data points. 

The data points, which are neighbouring to the separating H, are called support vectors (see Figure 2). 

 

 

 
 

Figure 2. A sketch of the SVM [27] 

 

 

Typically, the optimal H for p-dimensional features, from observations (x),𝑤ℎ𝑒𝑟𝑒 𝑥 =
{𝑥1, 𝑥2, … , 𝑥𝑛} with class labels (𝑦𝑖), {𝑖 = 1,2,3, ⋯ , 𝑛 ∈ [1, −1]} is estimated as defined in (1) using a weight 

vector (𝑤𝑡) of the feature and a scalar of intercept (𝛽0). Based on this H, the decision boundary between two 

class labels is computed using (2) and (3) as defined in [12], [19]. 

 

𝑓(𝑥) = {𝑊𝑡𝑥𝑖 + 𝛽𝑜} (1) 

 

𝑦𝑖(𝑊𝑡𝑥𝑖 + 𝛽0 ≥ +1 𝑖𝑓 𝑦𝑖 = 1) (2) 

 

𝑦𝑖(𝑊𝑡𝑥𝑖 + 𝛽0 ≤ −1 𝑖𝑓 𝑦𝑖 = −1)    ∀𝑖= 1,2, … , 𝑛 (3) 
 

where Wt is a weight vector and 𝛽0 is called the bias value 

The SVM employs a practical mathematical function known as kernel trick to map the classification 

data and a dot-product for mapping a higher dimension. Usually, KFs are grouped into two classes, namely 

(i) rotation invariant kernel and (ii) translation invariant kernel. Table 1: shows the kernel functions for 

setting up an SVM model as defined [12]. 
 
 

Table 1. Types of KS for setting up an SVM model [12] 
Kernels Definition 

1.  Linear 𝐾(𝑥𝑖 , 𝑥𝑗) = 1 + 𝑥𝑖
𝑇𝑥𝑗 

2.  Polynomial 𝐾(𝑥𝑖 , 𝑥𝑗) = exp(1 + 𝑥𝑖
𝑇𝑥𝑗)𝑝 

3.  Radial Basis Function (RBF) 𝐾(𝑥𝑖 , 𝑥𝑗) = exp(−𝛾 ∥ 𝑥𝑖 − 𝑥𝑗 ∥2) 

4.  Gaussian RBF  
𝐾(𝑥𝑖 , 𝑥𝑗) = exp (

−∥ 𝑥𝑖 − 𝑥𝑗 ∥2

2𝜎2
) 

5.  Exponential RBF 
𝐾(𝑥𝑖 , 𝑥𝑗) = exp (

−∥ 𝑥𝑖 − 𝑥𝑗 ∥

2𝜎2
) 

6.  Sigmoid  𝐾(𝑥𝑖 , 𝑥𝑗) = tanh (𝑘𝑥𝑖
𝑇𝑥𝑗 − 𝛿) 

7.  Spline 
𝑘𝑠𝑝𝑙𝑖𝑛𝑒(𝑢, 𝑣) = 1 + 𝑢𝑣 + ∫ (𝑢 − 𝑡)+(𝑣 − 𝑡)+

1

0

𝑑𝑡 

8.  Anova Spline  𝐾(𝑢, 𝑣) = 1 + 𝑘(𝑢1, 𝑣1) + 𝑘(𝑢2, 𝑣2) + 𝑘(𝑢1, 𝑣1)𝑘(𝑢2, 𝑣2) 

9.  Additive 𝐾(𝑢, 𝑣) = ∑ 𝐾(𝑢, 𝑣)

𝑖

 

10.  Tensor product 
𝐾(𝑢, 𝑣) = ∏ 𝐾𝑚(𝑢𝑚, 𝑣𝑚)

𝑛

𝑚−1

 

 

 

Lately, the SVM has gain popularity among SL algorithms for solving real-world problems, like 

handwriting analysis, facial analysis and more, specifically for pattern classification, outlier detection and 

regression-based applications [28], [29]. However, one critical challenge faced by SVM users is choosing the 

appropriate KF and its associated parameters, such as penalty parameter (C), KF parameters like the gamma 

(𝛾) for the RBF kernel. Studies [4], [17], [28] affirms that is the vital step in managing a learning task with 

the SVM since it has a substantial effect on its accuracy. Thus, the primary problems accompanying setting 

up the SVM model are how to select the KF and its allied parameter values for a specific domain application 

[4], [17], [28], and this paper attempts to find the best expression for these SVM parameters in three different 
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domain. Specifically, we examine how the SVM efficiency in predicting diabetes, fake banknote, flower 

species and wheat species is affected by different KF and other parameters. Thus, we aim to make the KFs 

generalised for a specific domain. It is anticipated that this study outcome will serve as a ground base for 

several researchers (precisely beginners) to adopt the appropriate SVM parameter for a particular domain 

application without worrying. 

 

2.3.  Study framework 

Figure 3 shows the experimental framework of this study. In (5) different data sets were downloaded 

from various sources for this study; see Table 2 for details.  
 

 

WSD

IFD

PIDD

Data 

Preprocessing SVM

Kernels

Evaluation

Train Data (80%)

Test

Data (20%)
Datasets

• Linear

• Polynomial

• RBF

• Exponential RBF

• Sigmoid

BKN

WD
 

 

Figure 3. Study framework 
 

 

Table 2. Used datasets details 

Dataset 
Size 

(n x m) 
Description Source 

Wheat seeds dataset 
(WSD) 

210 8 The WDS contains measures of different wheat species. The aim is to predict a 
seed species of a given seed feature.  

A 

Iris flowers dataset (IFD) 150 5 The IFD contains the measured features of the iris, and the aim is to predict a 

flower species based on measured characteristics. 

A 

Pima indians diabetes 

dataset (PIDD) 

768 9 The PIDD is meant for predicting the inception of diabetes within 5-years. B 

Banknotes (BKN) 1372 5 The BKN aim at predicting the authenticity of a given banknote based on 
extracted features 

A 

Weather data (WD) 14668 5 The weather data aims at predicting the maximum temperature using some 

weather parameters 

C 

A=https://archive.ics.uci.edu; B=https://raw.githubusercontent.com; C=https://power.larc.nasa.gov; n=number of records; m=number of 
features 

 

 

Firstly, we preprocessed each dataset separately to free the datasets from missing values, outliers 

and data inconsistency. We then normalised each dataset using the max-min function (see (4)) within the 

range [0, 1].  

 

𝒙′ =
𝒙−𝒙𝒎𝒊𝒏

𝒙𝒎𝒊𝒏𝒎𝒂𝒙
 (4) 

 

where x’ is the normalisation value; x=the value to be normalised, 𝑥𝑚𝑖𝑛  𝑎𝑛𝑑 𝑥𝑚𝑎𝑥  are the minima and 

maxima value of the dataset. 

Each normalised dataset is divided into a training set (80%) and a testing set (20%). From the 

different Kernels discussed in Table 1, we adopted five (5) most commonly used, namely: (i) linear, (ii) 

polynomial, (iii) radial basis function (RBF), (iv) exponential RBF and (v) sigmoid. Based on these six 

kernels. We set up an SVM model using different parameters (see Table 3). The aim is to make the kernels 

generalised for every dataset. 10-fold cross-validation was used for generalisation. We evaluate the 

performance of the SVM based on (i) confusion matrix, (ii) accuracy for classification analysis and  

root-mean-square-error (RMSE) for regression analysis. The Scikit-learn library was used to implement the 

SVM model. The experiment was conducted on Google colab [30], a free online platform for modelling ML 

models on powerful hardware options like GPU and TPU. Table 3 shows the details of the parameter used in 

modelling the SVM. 

https://power.larc.nasa.gov/
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Table 3. Used parameters 
Parameter Description 

Kernel Represent the kernel type for algorithm 
Penalty parameter (C) The Regularisation parameter, its strength is inversely proportional to C.  

Degree (d) Degree of the polynomial kernel function (‘poly’). All other kernels ignore it. 

Gamma (γ) Kernel coefficient for 'radial basis function', 'polynomial' and 'sigmoid'. 

 

 

3. EXPERIMENTAL RESULTS AND DISCUSSION  

Table 4 shows the experimental results of different KF with several datasets. The results show that 

one single KF is not suitable for all domains, which confirms arguments by literature [4], [17], [28] that 

selecting the correct KF is a vital step in setting up an SVM model. An incorrect choice of the KF will lead to 

abysmal results by the model. Hence, the random selection of KF is not always optimal for achieving a high 

SVM generalisation. From the outcome, it suggests that the linear kernel is more suitable for a small dataset. 

Also, SVM is not a parametric model, so complexity increases as the training dataset’s size increases. 

Table 4 shows that the optimal kernels effectively enhance the SVM prediction performance and 

generalizability by optimising the result. Likewise, the same kernel function on different datasets gave 

different results (see Table 4); this suggests that a given dataset’s statistical property can effectively inform 

the choice of a KF and its parameters. 

Figures 4-9 shows the confusion matrix plot for each KF and its parameters on the different datasets; 

the results affirm Table 4. From Table 4 and Figures 4-9, it can be inferred that the choice of an SVM KF 

highly depends on the problem at hand, i.e., what one is attempting to model. Therefore, the motivation 

behind selecting a specific KF is very intuitive and upfront based on what kind of information one is intended 

to extract about the dataset. The outcome (see Table 4) affirms that correct tuning of the KF parameter in the 

RBF, Sigmond and exponential RBF KFs increases SVM accuracy compared with the linear kernel. 

 

 

Table 4. Comparing different kernels on datasets 

Kernel Function (Associated Parameters) 

Machine Learning Task 

Classification Regression 

Accuracy (%) RMSE 

IFD PIDD WSD BKN WD 

Linear 
C=5 80 76.6 95 99 0.22 

C=100000 80 75 95 99 0.22 

Polynomial 
C=5, d=2 76.7 64.9 68 75 1.02 

C=100000, d=3 66.7 68 57 87 1.01 

RBF 
C=5, γ=5 70 70.8 92 100 0.19 
C=100000, γ=2 73.3 70 88 100 0.16 

Sigmoid C=5, k=0.5, δ=0 43.3 70.2 90 75 1668.3 

 C=100000, k=2, δ=4 43.3 70 88 75 1700.1 

Exponential RBF 
C=5, σ=2 76.7 77.4 93 99.6 0.2 

C=100000, σ=5 73.3 77.38 93 99.62 0.19 

 

 

 

 
 

Figure 4. Confusion matrix of SVM with different kernels on IFD dataset 

(E) (D) 

(C) (B) (A) 



                ISSN: 2302-9285 

Bulletin of Electr Eng & Inf, Vol. 10, No. 6, December 2021 :  3403 – 3411 

3408 

 

 
 

Figure 5. Confusion matrix of SVM with different kernels on PIDD dataset 
 

 

 

 
 

Figure 6. Confusion matrix of SVM with different kernels on PIDD dataset 

 

 

 
 

Figure 7. Confusion Matrix of SVM with different kernels on PIDD dataset 
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Figure 8. Confusion matrix of SVM with different kernels on BKN dataset 
 

 

 

 
 

Figure 9. Confusion matrix of SVM with different kernels on BKN dataset 

 

 

4. CONCLUSION 

SVM is one of the machine learning algorithms that has received much attention from the research 

committee and professionals. Its success has been seen in every sector of our day-to-day activities. On the other 

hand, one primary concern with its implementation is selecting the most appropriate kernel function and fine-

tuning its associated parameters. Several KF can be used for different applications, but the most suitable 

depends on the problem at hand (domain area). This paper reviewed and examined the effect of the linear, 

polynomial, RBF, sigmoid, and exponential RBF Kernel functions on the SVM algorithm’s performance. We 

assessed these KF performances on the SVM using the confusion matrix and accuracy for classification and the 

RMSE for regression tasks. It is observed that no single KF is suitable for all classification problems or 

regression problems. Also, an SVM with optimised kernel parameters for RBF and exponential RBF KFs are 

more likely to outperform the linear and sigmoid kernel base SVM methods in terms of accuracy. Since the KFs 

performance varies with the problem at hand, this study suggests a fused kernel method as a way forward. 

Hence, a systematic method and optimisation technique such as genetic algorithm (GA) and particle swarm 

optimisations (PSO) can be used to build a unified kernel. Therefore, the challenge of selecting the correct 

kernels and the best logical method of merging these kernels is a future direction.  
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