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of signal processing. We focus on performance of the secondary network containing
NOMA users which have some impacts from normal user and primary nodes. We refer
to enhancement of the fairness and spectrum utilization by enabling spectrum sharing.
In particular, the NOMA power allocation factors are assigned to provide different
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1. INTRODUCTION

To enhance the spectrum efficiency, CR is a promising technique to allocate the secondary users to
access the licensed spectrum dynamically [[1]-[3]. The strategies of underlay and/or overlay spectrum sharing
are widely deployed to benefit CR scheme to emerging networks. To avoid collision with the primary network
(PN) in the overlay strategy, the secondary users detect the underutilized licensed spectrum to access the PN
[4]-[6]. In case of the underlay strategy, the licensed spectrum can be shared with the secondary network by
managing the interfere to the primary receivers under a threshold [7]—[9l].

Besides CR technique, NOMA technique can further improve the spectrum efficiency [10]-[15]. In
the context of NOMA [16]-[21]], the transmitters allocate different transmit power levels to multiple users to
access on the same frequency. The receiver employing successive interference cancellation (SIC) to distinguish
the different signals [22]. Thanks to benefits of both the CR and NOMA techniques, the CR-NOMA networks
will not only increase the number of serving users and enhance the spectrum efficiency as well, which is a
promising system for the Sth generation wireless networks [23]]. Li et al. the authors [24] designed the relaying
scheme employed in the secondary network of the considered CR-NOMA. In such, a relay is allowed to wireless
power transfer to far users in the secondary network. Mu et al. in [25]], by combining NOMA and CR network,
such system provides to users a new era of reliable, seamless, and massive connectivity. In particular, this
work studied the relay selection in CR-NOMA networks to achieve advantage of the spectrum sharing model.
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The missing analysis in recent results in [24], [25] has motivated to consider ergodic capacity of CR-NOMA
system.

The remaining parts of this article is summarized is being as. We describe scheme of CR-NOMA for
signal processing at secondary users in section 2. We compute expressions of signal to interference plus noise
ratio (SINR). The closed-form formula of ergodic capacity is presented in section 3 and then main simulation
results are verified in section 4. In section 5, we provide some key findings to conclude the article.

2. SYSTEM MODEL

A CR-aided NOMA system is more important to examine its performance at secondary network (SN)
in a downlink, as shown in Figure 1. Such SN includes of a secondary source (for example access point (AP)),
two destination users (U1, U2), other cellular user equipment (CUE) as well as a primary destination (PD).
The wireless channels in such CR-NOMA are adopted quasi-static independent but not identically distributed
(i.i.n.d) Rayleigh fading. The links AP — PD, AP — Uy, AP — Uy, CUE — U; and CUE — U,
experience with coefficients as hgp ~ CN (0, A\sp), hay, ~ CN (0, Aav,), hav, ~ CN (0, Aav,), hou, ~
CN (0, Acu,) and hey, ~ CN (0, Acu, ), respectively.

= = == = Secondary link

& —- - Primary link
/ PD ------- > Interference link

(@/—.40%

Figure 1. A sketch of of CR-aided NOMA system

In the considered system, the cognitive transmitter intends to send signals to the secondary destina-
tions. To guarantee operation of primary network, the secondary source AP keeps the transmit power as the
following constraint [[26]:

PAP:min PAP7L2 y (l)
|hspl

in which the secondary transmitter has P,p as the maximum power. Of course, the transmit system is con-
strained by the interference at the primary receiver which is associated with threshold power of .

We call z1, x3 and xcUE as the signals for Uy, Us; and CUE, respectively. In NOMA, power
allocation factors are a1, as, and a; < as, a; + as = 1. The received signals at the two users are given by:

+ VrPcughcu,xzcue +nu, i€ {1,2}, )

2
yu, = hav, [Z VajPapz;
i=1

where x, 0 < x < 1 represents for scaling factor related to interference, ny, is additive white Gaussian noise
with mean power Ny, P4p and Py g are the normalized transmission powers at the AP and CUE, respectively.
hcu, is interference channel from the CUE to the users U; and .

To further evaluate system performance, the SINR at user U; needs be computed. SINR at user Uy
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treats signal from U, as noise, we have:

papas|hav, | 3)

VU, U, = )
TN apaplhav, )P + kpcuelhou, |+ 1

where pap = %: and poyp = & fV‘éE are the transmit SNR at the AP and the CUE respectively.

By enabling SIC, we compute the SINR at U; by:

. arpaplhav, |”
Yu, = 2 . (4)
kpcuelhcu,|” +1

To detect its own signal zo2, SINR at U, is given by:
2
N Apaz|hau
TUu, = P 2 2| 2‘ 2 . (5)
arpaplhav,|” + kpcuE|hou,|” + 1

3. COMPUTATION OF ERGODIC CAPACITY
3.1. Ergodic capacity of U,
By definition, we achieve ergodic capacity for user U; as:

1 -
Cu, =5 F {log (1+0,))

1 arpaplhav, |’
=—FE<log |1+ 3
2 kpcve|hou,|” +1 (6)
X
_ 1 / 1— FX (:L') da.
2In2 14z

0

It is noted that F'x () is written by:

x
P () =1 2o (Jhaws* > 2 (wpcuslion * +1) hsel” < 22
a1pAP PAP

X
—Pr (|hAU1|2 > — (KPCUEthU1|2|hSP|2 + |hSP|2) |hsp|? > Lo >
a1pg pAP

°Q
PAP oo

- | ~ z(kpoupz +1)
=1 — 0/ f‘hSPF (y)0/f|hCU1|z (Z) |:1 F|]LAU1‘2 ( aipap >:| dydz

_ / flhsp‘z(y)/f‘hC%'z(z) {1FhAU1|2 (x(KPCUEZy+y)>] dyd=
PQ 0

a1pQ
PAP (7)

—__—z T
_  Q e nPAP —Z( 1 +'WC:7UE‘L)
=1-— (1 —e ﬁAPASP> e Acuy AP ) d.

Act,

o0

1 / e—y(A;P-ﬁ-n,’fQ)

AspAcu,
rQ

,Z< 1 KPCUEYE
e

>‘CU1 nrQ )dydz

PAP

1 (1 ~aris ) npape AP nPQ /OO efy(ﬁﬂiﬂz)
=1 — —e PASP — ,
(npap +vx) Asprx mf—f + y]
Lo

PAP
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where 7 = Aay, a1 and v = Aoy, KpCUE-
We using [[27]], (3.352.2)] F'x (x) is given as:

npape A
0 + vz
[npAP ] (8)

L) e’ff(kslpn,,Q)EZ( ( L )(PQ _'_77:062)).
Aspve Asp  Mpg pap VT

Substituting (§) into (6), Cy, is given as:

__fQ
Fx (z)=1-— (1 —e ﬁAPXSP>

a
ay

¥)

1 1
Cy, = - ]
U 21112/1_'_1,( X(l‘)) "
0
_ 1 /L (1—675,4427?517)@ N
21n20 o (npap +vz)

nPQ T
e (i) (_ (1 . w) (_pQ N W@))] dz.
Aspra Asp ' WpQ/ \Pap VS

Lett = 2 arctan (z) — 1 = tan (”(Tl)) =z = Tsec? (% (t+ 1)) dt = dx, Cy, is given by:

S

_ )

1
o =gy [FEECD [ ity mane
' 8In2 : 1+£(t) (npap + vL(t))

Q& (sh+42) < ( IR )) < rQ | NPQ >>]
—— ¢ </ Ei — + dt.
Aspvl (t) Asp npq) \pap  VE(t)

where £ (t) = tan (%)

(10)

Unfortunately, deriving a closed-form expression for (I0) is difficult task, we can obtain accurate
approximation. We have new result using Gaussian-Chebyshev quadrature [[28]] (25.4.38)].

_ _ Llet)
Oy Z V1—¢f - ) npape "7ar
V8T ln 2 (

T __re
T D) (1 - e 7ar3
1+4(p sec (4 (e )) ( oo npap + ve(pr))

(11
o e, ((oL o tlo0) (s o))
Asprl (pr) Asp  1MpQ pap  vl(p:)
where ¢, = cos (2=1T).
3.2. Ergodic capacity of U,
Similarly as computation for U1, the ergodic capacity for Us is formulated by:
a2
1 1 1 - T
Cy, == FE {log (1+7 = — [ —F —)d (12)
Uz 2 {Og( +’7U2)} 21n2/1+$ |hAU2|2 <a2a1x> )
0

in which F|h JJ? 2 (x) =1-— F|hAU2

E 2 () which s similar as .

2 () denotes the complementary CDF of |h 4y 2. We continue to have
| p y 2

|}LAU2
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— €z
__ P A XNavu,Paplag—aia]
F|hAU ‘2 (x) = (1 —e %spﬁAp) AU, € 2
2

/\AU2 + /\CUQK PCUEZ )

paplaz—aix]

pQlaz—aiz]X gy, 1
pq laz — a1 ] )\AUQ YT

AspAcu, HPCUEx
in(— (1 + ’ )(_'OQ +pQ[a2_“1xM“‘U2>)].
Asp  poAau, laz —arx] ) \ pap Acu, KpCUET

Substituting (13)) into (12)), Cy, is calculated as:

>‘SP+PQ)‘AU21["‘2—"'1TE]) (13)

+

_bap(®)

C / (1 e‘xsfi%) Au,e A2
U, = - 5
o2 ) Tt (Mav, + Acvarpcuedap ()

9 (2) 0 (5t

9 ey 1 b)) [ re
Nor )i (‘ (M s ) (pAP *’9“)) o

(14)

ﬁAP[G«z*alm]’ o () = PQ[az arz]

and ¥ (z) = Aav,

Whereg ) = —_— .
AP( ) AcvykpcuEdIQ(T)

Although, achieving a closed-form expression for (I4) is tough task, an accurate approximation could

be considered by employing Gaussian-Chebyshev quadrature [[27] (25.4.38)], Cy, is given by:

K ,i(%)
o~ pies 2 g | () G e
2 2Kln2 (

1 —e *sprar
2a1 + as (¢pr, + 1) A v, + Acv,kpcued (6r))

_iﬁ’;)ew”“)( e(m)Ei <_ (/\;P N (ii?:)) <ﬁpfp +19(¢k)>>] ;

_ k— _ as(t+1 _ az(t+1 - A
where ¢, = cos (Z17), A (z) = m, O(z) = m and 9 (z) = m'

15)

4. SIMULATION RESULTS AND DISCUSSION

To verify closed-form expressions, we set power factor as = 0.9. The wireless channels are charac-
terized as Asp = dy”, Mav, = d;°, Aav, = 1= U1) 7", Aow, = dep, and Acy, = dgy, . along with
distances are dy = 0.1, d; = 0.3, deoy, = 0.3 and dey, = 0.7, path-loss exponent is 5 = 2. Although
depending on service required, data rates should be R; = 1 and Ry = 0.5. We set SNR of interference from
primary network pg = 30dB. To obtain a close approximation, the Gauss-Chebyshev parameter could be
T =K =20.

Figures 2-4 exhibit ergodic capacity for considered CR-NOMA. We can see the trend of curves in
term of ergodic capacity with different values of x for Figure 2. Especially in Figure 3, at fixed value of pg,
the ergodic capacity only increase at lower range of p, after the point pg = 35, the ergodic capacity keeps
unchanged.

In Figure 3, higher power of interference from the CUE is main reason to make ergodic capacity of
two users reduce. It can be seen ergodic capacity of two users are low at high region of x. Figure 5 confirms
that CR system relying NOMA outperforms than that using OMA scheme.
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Figure 2. Ergodic capacity versus transmit SNR at the Figure 3. Ergodic capacity versus transmit SNR at the
RSU primary node, with K = 0.1
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Figure 4. Ergodic capacity versus x, with prsy = 30 Figure 5. Comparison between CR scheme with OMA
[dB] and with NOMA, with £ = 0.1 and pg = 30 [dB]

5. CONCLUSION

In this paper, we have evaluated performance of underlay CR-NOMA network by introducing the
closed-form expressions of ergodic capacity under Rayleigh fading. We can confirm exactness of the derived
closed-form expressions by numerical results, and the ergodic capacity of CR-NOMA and CR-OMA were
compared. The proposed CR-NOMA can improve ergodic capacity at high region of transmit SNR at the
secondary source. Moreover, the numerical results showed that the different power allocation factors lead to
performance gap among two users and the performance fairness is achieved for both users.
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