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 The main concern of this study is due to certain cartoon content consisting of 

explicit scenes such as kissing, sex, violence. That are somehow not suitable 

for kids and may contradict to some religions and cultures. There are some 

reasons the film industry does not expel the kissing scene in a cartoon 

movie. It is categorized as a romance sequence and love scene. These could 

be a double-edged weapon that will ruin an individual’s childhood through 

excessive exposure to explicit content. This paper proposes a deep learning-

based classifier to detect the kissing scene in the cartoon by using Darknet-

19 for frame-level feature extraction, while the feature aggregation in the 

temporal domain is using convolutional long short-term memory (conv-

LSTM). This paper also has discussed a few steps related to evaluation and 

analysis regarding the performance of the models. Extensive experiments 

prove that the proposed system provides excellent results of 96.43% 

accuracy to detect the kissing scene in the cartoon. Due to high accuracy 

performance, the model is suitable to be a kissing scene filter feature in a 

digital video player that may able to decrease the excessive exposure to 

explicit content for kids. 
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1. INTRODUCTION  

The internet has transformed unnecessary materials consumption for children. The internet has 

changed the fundamental relationship between the individual and the ‘things’ on the internet, allowing access 

to an endless supply of free and diverse material. Online materials such as videos, songs, and books are 

available 24/7 and accessible from virtually anywhere with an internet connection. With remote learning 

moving into the long term, experts say the mental and emotional impacts of that shift are likely to be 

challenging especially for preschool students and parents.  

Nowadays, one of the common sources for distance learning for children is cartoon video. However, 

the cartoon is one of the influential factors that have a significant impact on a person's childhood [1]. The 

average of children with the facility of television at his home watches approximately 18,000 hours from 

kindergarten to high school [2]. Furthermore, the environment in which children grew up has a massive 

impact on their way of thinking. More worrisome is certain cartoons’ content consists of explicit scenes 

including kissing parts that are somehow difficult to expel for some reason. These could be a double-edged 

weapon that will ruin an individual’s childhood through excessive exposure to explicit content. 

As reported by the Malaysia communications and multimedia commission [3], the term "indecent 

content" refers to material that is offensive, morally inappropriate, or violates the accepted behavior 
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standards such as nudity and sex. They advise a special consideration must be given to the content created for 

children. Thus, they are providing a practical and commercially feasible guideline for the provision of 

content through self-regulation by the filmmakers. Currently, the filtering method for an explicit scene is to 

manually screen throughout the movie. Moreover, the film industry does not expel the kissing part include 

cartoon movies because kissing is just a romance sequence that has been symbolized for love and categorized 

as ‘U’ (unrestricted) category [4], which the content may be suited for children view. 

Influence of cartoon towards children’s behaviour. Every child's life is incomplete without the 

presence of cartoons. Several generations of children have grown up watching animated films since the 

invention of cartoon films over the past century. Statistics have shown that 2-5 years old children watched 

cartoons for 32 hours a week, while 6-7 years old children watched cartoons 28 hours a week [2]. According 

to the study, 71% of 8-18-year-old children had a television in their room, 53% of 7-12-year-old children had 

no parental monitoring, and 51% of homes television was turned on most of the time. 

There are three factors in child brain development. First, thinking and imagination affect the 

functionality of the brain until the age of 12. Second, the surrounding experience influences the brain 

function, and lastly, early mind setting where the children pattern of future action could be predicted. Habib 

and Soliman [2] stated that the cartoon itself contained violence and sexual content. As a result, it may have 

an impact on children's brain development or, in the worst-case scenario, negatively impact children's 

behavior. 

Machine learning and performance evaluation. There are a lot of methods to detect action and behavior 

using machine vision and artificial intelligence. Sudhakaran and Lanz [5] said that the best method to detect and 

identify the behavior of humans is by using the convolutional neural network (CNN). It extracts the frame-level 

features from a video and then aggregates them using a variant of the short-term long memory model. The 

convolutional long short-term memory (conv-LSTM) can capture the localized spatial-temporal features that 

enable the analysis of local motion taking place in the violent video. Núñez et al. [6] proposed a deep learning-

based approach for temporal 3D pose recognition problems based on the combination of both algorithms. 

Instead of image data, multiple analog features extracted from tri-axial accelerometer and gyroscope sensors 

were used to differentiate five activities of daily living by using LSTM [7]. 

Another study in [8] suggested a scene detector specifically on the kissing scene in a movie. Ziai [8] 

proposed a prediction system that consists of two phases. The first phase consists of a binary classifier that 

predicts a binary label, i.e. kissing or non-kissing scenes and the second phase is to aggregate the binary 

labels for contiguous non-overlapping segments into a set of kissing scenes. The project was experimented 

with a variety of 2D and 3D convolutional architectures such as ResNet, DenseNet, and VGG to develop a 

highly accurate kissing detector. The performance of the conv-LSTM model generated 97% accuracy, while 

the standalone CNN model can perform 95% of accuracy. The other high-performance pre-trained CNN 

models such as densnet, alexnet, resnet, VGG, squeezenet, googlenet were proposed by previous researchers 

to solve various problem domains [9]-[12]. 

From a previous study in [13], the multi-task CNN model for attribute prediction was used and the 

study used two categories of the dataset: the clothing attributes dataset and the AwA dataset. The clothing 

attributes dataset consists of 1856 images with 23 binary attributes that have been annotated; while the AwA 

dataset is the animal with attributes dataset consisting of 30475 images of 50 animal classes. The annotation 

was made by the animal’s class level and provided 85 binary attributes for each class. The dataset has nine 

groups. Another research on violence detection shows that the dataset’s specification used consists of 50 

frames (720x536 pixels) and it was manually labeled as fight or non-fight scenes [14]. Then, the research 

about online deep learning for action recognition also seems to use a lot of datasets consisting of 720x480 

pixels of resolution with 10 frames per second. Somehow, the dataset also undergoing downgrading due to fit 

the frame patches [15]. However, the higher resolution and a greater number of samples will give better 

performance of the trained model. Nevertheless, a high-performance computing system should be considered. 

There are a lot of evaluation methods that have been used in machine learning such as confusion matrix and 

confidence interval receiver operating characteristic (ROC). A study of anomaly detection in surveillance 

video used the ROC for evaluating model performance [16], [17]. However, the confusion matrix method is 

the most commonly used in analyzing the classifier performance [12], [18], [19]. 

This study aims to build a machine learning-based classifier for kissing scene detection in a video 

image sequence. The specific objectives of this project are to develop a machine learning-based classifier that 

can detect human-cartoon kissing scenes in the video frame and evaluate the classification performance in 

terms of detection accuracy. The proposed model employs the convolutional neural network for frame-level 

feature extraction, while the long short-term memory (LSTM) is used for feature aggregation in the temporal 

domain. The rest of this paper is organized as: section 2 describes the proposed methodology in detail. While 

the results and discussion are presented in section 3. Finally, section 4 presents the conclusion and future 

work of this paper. 
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2. RESEARCH METHOD 

There are three main processes in the development of the explicit kissing scene detector: i) data 

collection and preparation for the kissing dataset, ii) training the kissing scene detection model by using 

CNN, and iii) evaluating detection performances. A detail of these processes is presented in the following 

subsections: 

 

2.1.  Kissing dataset preparation 

Datasets are a crucial part of the machine learning process. It determines the quality of machine 

learning. In this study, the video clip dataset had been collected from various sources such as YouTube and 

movies. It had gone through some clipping and editing processes. The supervised machine learning-based 

conv-LSTM had been trained with 300 cartoon clips with 30 frames/second. The dataset consists of kissing 

and non-kissing scenes with a duration range of three seconds. Two frame sizes are selected: 80x60 pixels 

and 320x240 pixels. Figure 1 shows the clipping process of a kissing scene in a video. 
 
 

 
 

Figure 1. Clipping process using freeware open shot editor [20] 
 

 

From 22 video samples of kissing scenes, 39 cartoon clips had been extracted which required about 

2429.91 MB total of memory size and consist of 1561 seconds total of time duration. The clips must have a 

kissing scene within three seconds. Whereas 13 video samples of non-kissing scenes are used with 241 clips 

had been extracted from diverse types of actions such as cooking, laughing, crying, and swimming. All the 

clips required about 1829.9 MB total of memory size and consist of 1170 seconds total of the time duration. 

The number of clips is set to be balanced amongst the action categories to prevent bias. The dataset consists 

of two video clips: kissing and non-kissing. Then, it will be randomly split into training and testing sets. Part 

of the training set will be divided into validation sets; to understand the behavior of the model and 

generalizability on unseen data and to produce a completely unbiased estimation of model performance. 

Figure 2 shows the dataset distribution for training and evaluation. 
 

 

 
 

Figure 2. Dataset distribution 

 

 

2.2.  Kissing detection model: conv-LSTM 

The suggested study's goal was to create a trainable deep neural network model for classifying the 

kissing and non-kissing scenes in a video frame. The system should be able to identify the locations of the 
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subject/individuals in the video cartoon scene and able to extract the motion (kissing action) features changes 

over time. The CNN promises to generate a good representation of each video frame, while a recurrent neural 

network (RNN) is required to encode the temporal changes. Since we are focusing on the encoding of spatial 

and temporal dimensions; thus, the conv-LSTM will be an appropriate option in this study, which may result 

in a better analysis of video representation. Therefore, for this dedicated video scene detection application, 

the pre-trained Darknet-19 model and the LSTM models were used to represent the CNN and RNN network; 

respectively. 

Darknet-19 is made up of 19 convolutional layers, five max-pooling layers, and a soft-max layer for 

classifying objects. This model is pre-trained on the ImageNet database and is considered as fast execution 

with good classification performance in object detection which is very important for predicting in real-time 

[21]. Several studies demonstrated that the model has higher generalization and performs well in object and 

action recognition [22], [23]. Figure 3 illustrates the conv-LSTM architecture. 

 

 

 
 

Figure 3. The model is made up of layers that alternate between convolutional (blue), normalization (white), 

and pooling (red), the final hidden state of conv-LSTM (yellow) is used for kissing and non-kissing scenes 

classification 

 

 

The model’s network consists of a CNN which comprises a set of convolutional layers followed by 

max-pooling operations in series for collecting discriminant features. Then, the CNN model is cascaded to 

LSTM for encoding the frame-level changes that distinguish kissing and non-kissing scenes in the video. The 

convolutional layers are trained to extract hierarchical information from video frames before it is aggregated 

to the LSTM layer. The convolutional gates of the conv-LSTM have been trained to represent temporal 

changes in a local region. As a result, the whole network can encode the localized spatiotemporal 

characteristics. 

Instead of using the raw video frames only as input, the network uses the distribution of apparent 

velocities of movement of brightness pattern in an image between two consecutive frames as input. As a 

result, the network is forced to represent the changes occurring in a set of consecutive frames. This approach 

had been proposed by Dong et al. [24] of using optical flow features as input to a neural network for action 

detection. 

 

2.3.  Evaluation and analysis method 

There is two evaluation method that has been applied throughout the project which is model fitting 

and confusion matrix. Model fitting is used to analyze the performance of the model is it robust, while the 

confusion matrix is used to see the accuracy and precision of the model to detect the labels. There are three-

level to determine model fitness: underfitting, fitting, and overfitting. However, to get a better result, the 

experiment will just be conducted by taking the model that has a good fit only. To calculate the performance 

of the model, the confusion matrix method has been applied. Figure 4 shows the confusion matrix that has 

been applied in terms of two categories or classes which are kissing (positive label) and non-kissing (negative 

label). True positive (TP) explains that the actual value is a true state, and the prediction is positive [25].  
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Figure 4. Confusion matrix for kissing and non-kissing detection 

 

 

In the case of the kissing, the frame is predicted as a kissing scene, thus, it is TP. True negative (TN) 

explains that the actual value is a true state, and the prediction is negative (non-kissing label). From the case, 

the non-kissing clip has been deployed and the system predicted that is non-kissing, so it means TN. False 

positive (FP) or as type-1 error explains the actual value is a false state and the prediction is positive. From 

the case, the non-kissing clip has been deployed and the system predicted as positive, thus it is FP. False 

negative (FN) or as type-2 error explains the actual value is a false state and the prediction is negative. From 

the case, the kissing clip has been deployed and the system predicted as negative, so it means FN. For the 

accuracy calculation towards binary classifiers, the performance was made by calculating the ratio of true 

prediction (TP and TN) with all the predictions that have been made. 

 

 

3. RESULTS AND DISCUSSION  

This chapter will discuss the result of the experiment that has been carried out. The objectives of the 

experiment are to find out which trained model gives the best performance in terms of accuracy and losses. 

The accuracy is the number of correctly predicted by the model. The accuracy rate was evaluated by using 

the confusion matrix. While the loss rate is cumulative of the mean square loss of the dataset. 

Two sample sizes were selected (320x240 and 80x60) with identical dataset split proportion 

(training: 70%; validation: 10%; test: 20%). Every model will be trained in epochs and three models had been 

built for each sample size category. The best model selection criteria for each model were depending on its 

best-fitting epoch from 1-30 epoch(s). The evaluation performance of each model had been carried out as 

tabulated separately in Tables 1-2 by sample frame size categories. 

 

 

Table 1. Model performance for 320x240 frame size 

Model 

Performance (%) 
Validation Test 

Accuracy 
Validation 

loss 
Accuracy 

Test 

loss 

A.1 92.98 16.47 87.61 35.54 

A.2 87.72 13.76 88.89 17.02 

A.3 98.18 41.6 96.43 10.3 
 

Table 2. Model performance for 80x60 frame size 

Model 

Performance (%) 
Validation Test 

Accuracy 
Validation 

loss 
Accuracy 

Test 

loss 

B.1 83.33 32.49 73.91 50.12 

B.2 92.59 11.56 85.96 18.05 

B.3 98.28 4.84 92.24 11.03 
 

 

 

Based on the performance rate in Table 1 (Model-320x240), Model A.3 has the highest validation 

and test accuracy rate with 98.18 % and 96.43%; respectively. While the performance rates for Model A.1 

and Model A.2 are 92.98%; 87.61% and 87.72%; 88.89%; respectively. Furthermore, Model A.1 also has the 

lowest mean test loss with 10.3%; compared to Model A.1 (17.02%) and A.2 (17.02%). Thus, Model A.3 is 

the best model amongst the Model-320x240 category. Whereas for Model-80x60 (Table 2), the result shows 

that Model B.3 gave the best performance in validation and test accuracy (98.28%; 92.24%) with a mean loss 
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rate of 4.84% and 11.03%; respectively. While Model B.1 and B.2 performed well in an acceptable accuracy 

rate (>73%) and mean loss rate (<50%). 

The fitness value is the difference between train loss and validation loss. Table 3 shows the 

performance of the best two models (A.3 and B.3). The fitness value for Model B.3 (2.29%) is less than 

Model A.3 (2.68%). This means the performance of Model B.3 is better than Model A.3 in terms of 

robustness and fitness. However, the difference in fitness rates for both models (0.39%) was not too 

significant to assume that Model B.3 is performed well than A.3. Moreover, the fitness rate of Model A.3 is 

lower than Model B.3; which justifies the lower the mean loss of the model, the closer the predictions to the 

true labels. Therefore, Model A.3 is considered the best model in terms of high accuracy and fitness 

performance amongst the six models. The deployment of the model is executed to detect the kissing and non-

kissing scenes in video clips. Figure 5 shows the model output result samples. Figure 5(a) shows sample from 

tonari no kaibatsu kun and Figure 5(b) shows sample from shigatsu wa kimi no uso. 
 

 

Table 3. Comparison of best model performance 

Model Frame Size 
Loss rate (%) Fitness 

value (%) Training Validation 

A.3 320x240 1.48 4.16 2.68 
B.3 80x60 2.55 4.84 2.29 

 

 

  
(a) (b) 

  

Figure 5. Samples of A.3 model output results (a) ‘tonari no kaibatsu kun’ video clip and (b) ‘shigatsu 

wa kimi no uso’ video clip 

 

 

To avoid bias, the test video clips were selected from other than the clips in the dataset. The test 

video clip parameters are 320x240 pixels resolution, 30 frames per second, and the duration range of 3-12 

seconds. The deployment shows that the system capable to distinguish the difference between kissing and 

non-kissing scenes. However, the model has misclassified some early frames of the kissing scene, where it 

appears kissing-like behavior features or non-kissing clips that stand close between each other in the visual as 

shown in Figure 5 (a): Frame-4. 

 

 

4. CONCLUSION  

A cartoon can be much more perilous than any other experience for twelve years old children. It 

may contain content that confuses the child which contains directions that may contradict the religion and 

culture. This may lead the children to have a different undesirable point of view of her/his parents, teachers, 

and even his lord. With the state of technology growth, this project could be one of the features in parenting 

software to filter out unnecessary explicit scenes such as kissing. In this study, the combination pre-trained 

model of CNN Darknet-19 and conv-LSTM can perform well in detecting the explicit kissing scene in a 

cartoon video. The model is able to extract the spatial-temporal features that enable the analysis of the local 

motion of the character taking place in the video. The final trained model with 320x240 pixels image was 

able to achieve 96.43% of accuracy. Therefore, this kissing scene detector can be used as a filter for digital 

video player applications. For continuous improvement throughout this project, we are proposing to build 



Bulletin of Electr Eng & Inf  ISSN: 2302-9285  

 

Explicit kissing scene detection in cartoon using … (Muhammad Arif Haikal Muhammad Fadzli) 

219 

more explicit scene filters particularly for a digital video/ photo that may contain pornography, violence, and 

abuse features; which research findings have proven to have a destructive effect on a child. 
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