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 In this paper presents a numerical simulation using the finite element method 

(FEM) to analyze the performance of a photonic crystal fiber (PCF) integrated 

with plasmonic material sensor components. The sensor comprises silica and 

Au layers with a thickness of 45 nm, arranged in a simple geometric structure. 

Our proposed sensor component exhibits ultra-low loss, distinguishing it from 

previous studies that have focused on wavelength-sensitive (WS) and 

amplitude-sensitive (AS) measurement techniques. The refractive index (RI) 

range of the sensor component spans from 1.32 to 1.38 RIU. The maximum 

WS and AS values achieved are 6,000 nm/RIU, -373.4 1/RIU (x-polarization), 

and -385.4 1/RIU (y-polarization), respectively. Moreover, we demonstrate an 

ultra-low loss of 0.00117 dB/cm (x-polarized) and 0.00307 dB/cm (y-

polarized). In terms of sensor resolution, this design achieves a remarkable 

resolution of 1.6×10-7 RIU for both x-and y-polarized measurements. 
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1. INTRODUCTION 

The need for optical sensors continues to increase, this is due to the extraordinary capabilities of 

optical sensors such as high sensitivity wide sensing range, resistance to electromagnetic wave interference, 

and very small size [1], so it can be designed with a portable size and working based on wavelength. Several 

optical sensors have reached the commercialization process while some are still in the development stage, 

various types of optical based sensors including optical fiber, multi-mode fiber, fiber Bragg grating (FBG) [2], 

[3], tapered FBG, and optical fiber based surface plasmon resonance-photonic crystal fiber (SPR-PCF) [4], [5]. 

Also, several sensing techniques have been reported by many researchers, including the Mach Zehnder 

interferometer technique. Optical-based recently, the combination of SPR-PCF has given rise to technologies, 

the component is widely used in many fields, such as temperature sensors, refractive index (RI), strain, 

magnetic field (MF), and biological samples [6]. Not only that, various studies have reported, this component 

can measure more than one physical quantity simultaneously like measuring temperature and RI 

simultaneously, RI and MF simultaneously, and temperature and RI simultaneously [7]–[9]. 

SPR-PCF components have been widely developed by many researchers, some components are 

reported to have ultra-sensitivity, easy to fabricate, simple structure, and multi-function capabilities. 

Researchers also have developed various sensor component geometric structures, such as the SPR-PCF with a 

https://creativecommons.org/licenses/by-sa/4.0/
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D-shaped structure [10], octagonal, and hexagonal [11]. Air holes are also engineered by making circle-shaped 

holes, square-shaped holes, and rectangular-shaped holes. Recently, massive numerical engineering has been 

carried out in integrating sensor building materials, such as engineering dielectric materials using ZEONEX, 

topaz, silica, as well as engineering plasmonic materials to generate surface plasmon resonance (SPR) 

phenomena using gold and silver [12], [13]. 

Low loss is very important in sensor capabilities and this factor is a challenge in fabricating sensor 

components, low loss will provide a low signal loss capability to the component. Mahfuz et al. [14] proposed 

SPR-PCF sensor component capable of sensing in the RI range 1.32 to 1.4 RIU and it was reported that the sensor 

has a minimum low loss of 0.22 dB/cm, while the sensor he proposed is composed of fused silica, TiO2, and gold 

materials layers. Islam et al. [15] reported work for the SPR-PCF component which has dual-polarized 

propagation. The sensor components are fused silica, TiO2, and gold coating [15]. Yang et al. [16] also reported 

their work related to the SPR-PCF component in detecting kerosene concentrations in the concentration range of 

0% to 90%, in their work obtaining a confinement loss (CL) of 5.4 dB/cm. Nuzhat et al. [17] reported  

ultra-sensitivity SPR-PCF sensor components in detecting the analyte RI, the detection ranges from 1.33 to 1.4 

RIU. The sensor component is reported to have the dual-polarized capability with a maximum CL of 10.71 dB/cm 

(x-polarized) and 28.58 dB/cm (y-polarized), the amplitude-sensitive (AS) sensing technique is also introduced 

here and the AS is -1,212 1/RIU (x-polarized) and -2430 1/RIU (y-polarized), the sensor material consists only 

of silica and a layer of gold [17]. Sultana et al. [18] also studied the photonic crystal fiber (PCF) materials used 

were TiO2, gold, and fused silica. Meanwhile AS sensing technique was also introduced and obtained 2,561 1/RIU 

and figure of merit (FOM) 118.75 1/RIU. In this study, we investigation of SPR-PCF with simple geometric 

structure (three types of air hole with different sizes) which has a low-loss propagation and it works on  

dual-polarized. In this structure we build with fused silica and gold materials, the gold layer is chemically stable.  

 

 

2. STRUCTURE DESIGN AND NUMERICAL ANALYSIS 

Figure 1 display the structure geometry of sensor component with twelve large air holes with diameter 

d3=d/4, then 12 medium-sized holes d2=d/2.5, and two small air holes with size d1=d/2 with value of  

d=1.6 µm which is close to the sensor core. The next layer is plasmonic material attached to the sensor, so this 

sensor is included in external sensing with a layer thickness of 45 nm. The hole sizes will be varied to 0.4 µm, 

0.45 µm, and 0.5 µm based on the CL. The thickness of the analyte layer is 0.5 µm which lies after the gold 

layer. The last layer in this numerical simulation is perfectly matched layer (PML) with a thickness of 1 µm. 

the distance between d1 and d2 air holes is 2.1×p, and the distance between d2 and d3 holes is 3×p, where the 

value of p=1.7 µm the RI of the analyte varies from 1.32 to 1.38 RIU, the gold layer being the most sensitive 

layer due to the SPR phenomenon. Investigations carried out using the finite element (FE), we use the element 

mesh is normal, so it can provide high accuracy for each element that is traversed by electromagnetic waves 

[19]–[21]. In sensing, the SPR-PCF sensor has a simple label-free system as shown in Figure 2. The FE method 

applied sensor component is used to investigate the propagation mode of the material using maxwell's 

equations. With 𝜑 represent the MF and electric field (EF), relative permittivity and capability tensor 

represented by [l] and [m] which can be defined by (1) and (2): 
 

[𝑚] = [

𝑚𝑥 0 0
0 𝑚𝑦 0

0 0 𝑚𝑧

] (1) 

 

[𝑙] = [

𝑙𝑥 0 0
0 𝑙𝑦 0

0 0 𝑙𝑧

] (2) 

 

Where 𝑚𝑥 = 𝑚𝑦 = 𝑚𝑧 = 1, 𝑙𝑥 = 𝑛𝑥
2, 𝑙𝑦 = 𝑛𝑦

2 , 𝑙𝑧 = 𝑛𝑧
2 for the EF with 𝜑 = 𝐸 and 𝑙𝑥 = 𝑙𝑦 = 𝑙𝑧 = 1, 

𝑚𝑥 =
1

𝑛𝑥
2, 𝑚𝑦 =

1

𝑛𝑦
2 , 𝑚𝑧 =

1

𝑛𝑧
2 for a MF with 𝜑 = 𝐻 provided that 𝑛𝑥, 𝑛𝑦, 𝑛𝑧 are not a Boundaries, but additional 

layers that absorb radiation. If we assume that PML is a parallel coordinate plane with matrix forms which can 

be defined by (3): 
 

[𝑠] =

[
 
 
 
 
𝑠𝑦𝑠𝑧

𝑠𝑥
0 0

0
𝑠𝑥𝑠𝑧

𝑠𝑦
0

0 0
𝑠𝑦𝑠𝑥

𝑠𝑧 ]
 
 
 
 

 (3) 
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The matrix in (3) can be modified with Maxwell's as in (4): 

 

∇ × ([𝑙][𝑠]−1∇ × φ) − 𝑘0
2[𝑚][𝑠]𝜑 = 0 (4) 

 

Where 𝑠𝑥, 𝑠𝑦 , 𝑠𝑧 are scaling parameters that have complex values. This parameter can have a value of alpha, 

leaky mode analysis can be assumed 𝛼 = 1 − 𝛼𝑗 with value i 𝛼𝑗 can show the scenario of absorption and no 

absorption which can be written by (5): 

 

𝛼𝑗 = 𝛼𝑗𝑚𝑎𝑥 (
𝜌

𝜔
)

2

 (5) 

 

Where 𝜔 represent the thickness of the PML layer and ρ represent of the distance from the start of the PML. 

As shown in Figure 1, this sensor component is composed of SiO2 material in the core, RI distributions depends 

on the wavelength. COMSOL-based FE is used in investigating the performance of sensor components, in 

COMSOL we define fused silica material using the Sellmeier as in (6). Meanwhile, the values for each symbol 

in (6) A1=0.696163, A2=0.4079426, A3=0.897479400, B1=0.0046791486 𝜇𝑚2, B2=0.0135120631 𝜇𝑚2, 

B3=97.9340025 𝜇𝑚2. 

 

𝑛(𝜆) = √1 +
𝐴1𝜆2

𝜆2−𝐵1
+

𝐴2𝜆2

𝜆2−𝐵2
+

𝐴3𝜆2

𝜆2−𝐵3
 (6) 

 

Where n represent the RI of SiO2 depend on wavelength, 𝜆 represent the wavelength, and the value of each 

variable are accordance to [22] while the gold material can be defined by the Drude-Lorents model equation 

which is written in (7) and the value of each variable can be seen in [23]: 

 

𝜀𝑎𝑢 = 𝜀∞ −
𝜔𝐷

2

𝜔(𝜔+𝑗𝛾𝐷)
−

∆𝜀Ω𝐿
2

(𝜔2−Ω𝐿
2)+𝑗Γ𝐿𝜔

 (7) 

 

 

 
 

Figure 1. Sensor geometry structures 

 

 

3. RESULTS AND DISCUSSION 

Electrical distribution result related to CL sensor. In this paper we introduce dual polarization of  

SPR-PCF, each polarization on the x-axis and y-axis on the cross section can be used to detect analytes, that is 

based on 2D component sensor. For electrical distribution x-polarized on the core can be seen in Figure 2(a) 

and for y-polarized in Figure 2(b). The CL of the sensor can be calculated using (8). Where CL represent the 

CL of the PCF, frequency, effective RI, speed of light represents with f, 𝑛𝑒𝑓𝑓, and c. 

 

𝐶𝐿(𝑑𝐵/𝑐𝑚) = (
4𝜋𝑓

𝑐
) 𝐼𝑚(𝑛𝑒𝑓𝑓) × 104 (8) 
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(a) (b) 

 

Figure 2. The EF distribution on the SPR-PCF cross-section; (a) y-polarized and (b) x-polarized 

 

 

3.1.  Dual-polarized sensitivity analysis 

The initial part of the numerical simulation is to engineer the geometric structure of the sensor, after 

structural engineering is carried out, work continues to define the constituent materials of each designed 

geometric structure, such as defining the RI of air holes, defining RI of SiO2 material using (6), and the last is 

to define plasmonic material (gold). After the design and material have been defined in COMSOL multiphysics, 

a mode analysis of the design is performed with the ultimate gold of obtaining the imaginary effective RI for 

each wavelength. Obtain the CL of the design from the imaginary numbers using (8). Therefore, surface 

plasmon waves (SPW) can occur when the frequency of the wavelength around the conductive core is the same 

as the frequency or wavelength of the surface electrons. SPW is very sensitive to surface RI [24].  

The SPR-PCF sensor components which have been previously reported by many researchers, not all 

sensor components have dual-polarized propagation performance, some of which only have consistent 

performance on either x-polarized or y-polarized. Hossain et al. [25] only performed on y-polarized this is 

associated with increased RI mode and high radiation loss when compared to x-polarized, Singh and Prajapati [26] 

with d-shaped SPR-PCF component found two polarized components, and found y-polarized to be the 

fundamental mode due to the very large connection and surface plasmon polariton (SPP) mode compared to  

x-polarized. Several studies also have reported single polarization screening in which one of the polarizations 

is suppressed and the other is well guided. Dou et al. [27] used single-polarized SPR-PCF in describing CL, at 

wavelengths range from 1,310 nm to 1,550 nm, CL were found to be 244.9 dB/cm and 292.8 dB/cm 

respectively. It is found that the y-polarized has a larger CL distribution than the x-polarized, and the CL for 

each x-polarized and y-polarized are 0.019185 dB/cm and 0.048643 dB/cm at a wavelength of 700 nm, for all 

polarized analysis in Table 1. 

 

 

Table 1. Polarized analysis 
RI (RIU) CL (dB/cm) WS (nm/RIU) RW (nm) AS (y) (1/RIU) AS (x) (1/RIU) 

1.32 0.003067 - 590 - - 
1.33 0.004553 1000 600 -105.143 -105.9 
1.34 0.007301 2000 620 -132.22 -133.2 
1.35 0.012359 2000 640 -186.3 -186.6 
1.36 0.023643 2000 660 -258.2 -226.1 
1.37 0.048643 4000 700 -344.9 -294 
1.38 0.124544 6000 760 -385.4 -373.4 

 

 

3.2.  Wavelength-sensitivity 

Wavelength-sensitive (WS) is an important component in characterizing sensor performance. WS can 

be calculated using (9): 

 

𝑆𝜆(𝑛𝑚/𝑅𝐼𝑈) = Δ𝜆𝑝𝑒𝑎𝑘/Δ𝑛𝑎 (9) 

 

Where Δ𝜆𝑝𝑒𝑎𝑘 represent for change in peak wavelength, meanwhile Δ𝑛𝑎 is the shift in RI of the two analytes. 

In the sensor design, the analyte RI from 1.32 to 1.38 RIU. RW range from 590 nm to 760 nm, with variations 

of 1.32, 1.33, 1.34, 1.35, 1.36, 1.37, and 1.38 RIU. Further shift of the CL peak for each change of RI as shown 

in Figure 3(a), for y-polarized. SPR-PCF is based on evanescence wave, in this design we introduce dual 

polarized low loss, the loss on the y-polarized can be seen in Figure 3(b). RI range from 1.32–1.38 RIU, the 

resonant wavelength shifts with every change in the analyte RI. For the smallest RI 1.32 RIU, wavelength 

resonance was found at 590 nm, while the sensor material loss was found of 0.003067 dB/cm. The variation of 
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the analyte RI in this design is 0.01 RIU, so, when the analyte RI is increased to 1.33 RIU, the y-polarized loss 

of material increases by 0.004553 dB/cm and the RW is found at 600 nm, the WS is 1000 nm/RIU. When 

analyte RI at 1.34 RIU, the CL also increases namely 0.007301 dB/cm with the RW at 620 nm, in this range 

of RI it is found that the WS is 2,000 nm/RIU some time, there is an increase in analyte RI always followed by 

a shift in the RW at y-polarized, the largest increase occurred in the range of RI from 1.37 to 1.38 RIU, in the 

design it was found that the increase in CL from 0.048643 dB/cm to 0.124544 dB/cm, then a shift in the RW 

from 700 nm to 7600 nm, so, in this range found that the WS is 6,000 nm/RIU which is also the maximum WS 

of the proposed sensor design. Further related to the analysis on y polarized in Table 1. 

Meanwhile, the RW shift for each index of refraction also occurs in the same way for x-polarized as 

shown in Figure 3(a). The RW ranges from 590 nm to 760 nm, the difference from the previous x-polarized is 

the CL for each index analyte bias. At an analyte RI of 1.32 CL of 0.001174861 dB/cm and a RW of 590 nm. 

In this case the value of CL is smaller than y-polarized, then, when analyte RI is increased to 1.33 RIU, the CL 

of the sensor component is 0.001743885 dB/cm. There is an increase in CL in this RI range. Similarly, the  

y-polarized RW is found at 600 nm. In general, the trend of shifting RW in x-polarized is the same as in  

y-polarized, while there is a difference in CL. If we compare with the proposed sensor components by previous 

researchers, we show a very small CL value. Zuhayer et al. [28] conducted a numerical investigation on the  

d-shaped twin core sensor design obtained minimum CL at x-polarized and y-polarized of 57.87 dB/cm and 

36.54 respectively with an analyte RI of 1.4, meanwhile Shakya et al. [1] reported on the sensor design having 

a minimum CL of 80 dB/cm on x-polarized and y-polarized, Sultana et al. [18] obtained a minimum CL in 

their SPR-PCF sensor design of 0.224 dB/cm for RI 1.27. Nuzhat et al. [17] obtained a minimum CL in their 

sensor design of 0.112 dB/cm for RI 1.33 (x-polarized) and 0.27 dB/cm (y-polarized). Further on the sensor 

design that we propose for x-polarized can be seen in Table 2. The slope of the curve is an important factor in 

the average resolution and sensitivity of the sensor. As long as, the change in the analyte RI from 1.32–1.38 

RIU with the RW in the range from 590 nm to 760 nm. At analyte RI of 1.32, 1.33, 1.34, 1.35, 1.36, 1.37, and 

1.38, resonance wavelengths are found at 590 nm, 600 nm, 620 nm, 640 nm, 660 nm, 700 nm, and 760 nm 

respectively. 

 

 

Table 2. Comparison with other work 

Ref. Min peak loss (dB/cm) 
Max WS 

(nm/RIU) 
Max AS (1/RIU) 

RI Range 

(RIU) 

Resolution 

(RIU) 

[15] 3.73 (x-polarized) 

4.48 (y-polarized) 

16,000 4,596 (x-polarized) 

4,557 (y-polarized) 

1.33–1.41 6.25×10-6 

[14] 0.22 dB/cm (1.32) 
2.87 dB/cm (1.4) 

23,000 - 1.32–1.4 4.34×10-6 

[16] 5.4 dB/cm 7,117 - - 1.4×10-4 

[17] 10.71 (x-polarized) 
28.58 (y-polarized) 

14,000 -1,212 (x-polarized) and 
-2,430 (y-polarized) 

1.33–1.4 7.14×10-6 

[18] 0.224 dB/cm 19,000 2,561 1.27–1.4 5.26×10-6 

[29] 21 8,500 -335 1.34–1.37 1.16×10-5 
[30] 0.79 34,000 1,170 1.32–1.41 2.96×10-5 

[31] 0.00428 7,000 2,821.46 1.33–1.41 5×10-5 

Proposed 
sensor 

0.00117(x-polarized) 
0.00307 (y-polarized) 

6,000 (x-polarized 
and y-polarized) 

-385.4 (y-polarized) 
-373.4 (x-polarized) 

1.32–1.38 1.6×10-7 

 

 

3.3.  Amplitude sensitivity  

AS is a technique that can be used in optical sensing based on the difference from CL, mathematically 

the amplitude can be defined in (10): 

 

𝐴𝑆(1 𝑅𝐼𝑈⁄ ) = −
1

𝛼(𝜆,𝑛𝑎)

𝜕𝛼(𝜆,𝑛𝑎)

𝜕𝑛𝛼
 (10) 

 

AS is a technique that can be used in SPR-PCF based sensing. Max AS shift is accompanied by an 

increase in analyte RI. AS is obtained from (11) by making a difference of two adjacent CL, so that when it is 

varied with wavelength it can be seen in Figure 3(c) for x-polarized and Figure 3(d) for y-polarized. The 

maximum AS found were -385.4 1/RIU (y-polarized) and -373.4 1/RIU (x-polarized) and the RI of the analytes 

is 1.37 RIU. In another design, Nuzhat et al. [17] obtained the maximum AS in their design of  

-1212 (x-polarized) and -2430 (y-polarized). The results were obtained at analytes RI 1.39 RIU, meanwhile 

Islam et al. [15] obtained the maximum AS on the SPR-PCF sensor design of 4596 1/RIU (x-polarized)  

4557 1/RIU (y-polarized) with an analyte RI of 1.4 RIU. Sultana et al. [18] obtained AS in their design  

2561 1/RIU. 
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3.4.  Sensor resolution 

Sensor resolution is one of the most important performance parameters of a sensor, wide sensor 

resolution provides a wide range of wavelengths so that we can determine the appropriate wavelength range, 

sensor resolution can be calculated using (11): 

 

𝑅(𝑅𝐼𝑈) =
∆𝑛𝑎×∆𝜆𝑚𝑖𝑛

∆𝜆𝑝𝑒𝑎𝑘
 (11) 

 

Where ∆𝑛𝑎 represent the change in analyte RI, ∆𝜆𝑚𝑖𝑛 represent the minimum change in wavelength, and 

∆𝜆𝑝𝑒𝑎𝑘 is the change in the peak wavelength of the CL. In this sensor design the sensor resolution is obtained 

by 1.6×10-7 RIU (x-polarized and y-polarized). 

 

 

  
(a) (b) 

  

  
(c) (d) 

 

Figure 3. Performance of sensor; (a) CL at x-polarized, (b) CL at y-polarized, (c) AS at x-polarized,  

and (d) AS at y-polarized 

 

 

3.5.  The difference in confinement loss for each thickness of gold 

In this case, we display the effect of Au thickness on CL (x-polarized and y-polarized). This can be 

seen in Figure 4. The Au thickness range in this section varies from 0.04 µm, 0.045 µm, and 0.05 µm, the RI 

of the specimen is 1.36 RIU, and the hole size in this case is 1.4 µm. The variation in CL is clearly related to 

gold thickness. The thicker the gold layer, the smaller the CL, but the thickness of the gold also affects the RW. 

For a gold thickness of 0.04 µm, the x- and y-polarized wavelengths are 650 nm and the CLs are 9.85 dB/cm 

and 3.9 dB/cm, respectively. The increase in thickness of 0.045 µm gold shows that the RW is at 660 nm with 

the CL of x-polarized and y-polarized respectively 8.4 dB/cm and 3.33 dB/cm. In this case there is a shift in 

wavelength of 10 nm. Furthermore, in the thickness of 0.05 µm thick gold the RW also shifts and is located at 

670 nm with the CL on the x-polarized and y-polarized respectively being 6.62 dB/cm and 2.63 dB/cm. In 

other cases the effect of gold thickness did not show a shift in the RW as previously reported by researchers 

[32]–[35], but also in other designs showed no shift in the length of the resonance waveform along with an 

increase in the thickness of the gold layer [36]. 
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Figure 4. Effect of gold thickness on CL 

 

 

3.6.  Comparison with other sensor components 

In this section we compare our work with previously reported work, the focus of the comparison is  

low-loss on sensor component, meanwhile max WS, max AS, RI range, and sensor resolution also shown as 

in Table 2. The sensor component has better performance than reported previously, our focus was to provide a 

sensor design with very low loss so that it can be applied to fiber optic. This components with a unique structure 

have a very low loss 0.00117 (x-polarized) and 0.00307 (y-polarized) compared to previous work, this is also 

supported by the sensor's ability to sense x-polarized and y-polarized, also the sensor has the ability to detect 

a RI from 1.32 RIU to 1.38 RIU. 

 

 

4. CONCLUSION  

This paper introduces a novel SPR-PCF sensor component designed for ease of fabrication, featuring 

twelve large holes surrounding the cladding, twelve medium-sized holes, and two small holes in close 

proximity to the core. Our numerical findings using FE demonstrate that the proposed sensor design exhibits 

an exceptional ultra-low loss of 0.00117 dB/cm (x-polarized) and 0.00307 dB/cm (y-polarized), surpassing 

previous reported losses. Additionally, the maximum WS and AS values are achieved at 6,000 nm/RIU  

(x-polarized and y-polarized), -385.4 1/RIU (y-polarized), and -373.4 1/RIU (x-polarized), respectively. 

Operating within a RI range of 1.32 to 1.38 RIU, this sensor demonstrates a remarkable resolution of 1.6×10-7 

RIU for both x- and y-polarized measurements. Due to its high sensitivity, ultra-low loss, and dual-polarized 

propagation capabilities, this sensor component holds significant potential for remote detection of biochemical, 

biological, and biomedical analytes. 
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