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1. INTRODUCTION

Agriculture research focuses on upsurging food production and eminence while dropping costs and
increasing profits. In any state’s economic development, fruit trees play a significant role. The citrus plant,
high in vitamin C and commonly utilized in the Indian sub-continent, is one of the most familiar fruit plant
species in the citrus family [1]. Citrus fruits and leaves are used to produce jams, candies, confectionery, and
other agri-products that are beneficial to human health [2]. It was anticipated that Bangladesh would make
1.67 million tons of citrus in 2020 [3].

Black spots, cankers, scabs, and melanoses are just a few diseases that can plague citrus fruits.
Citrus fruit defects cause a significant percentage of quality exports to be rejected each year. This means that
early detection of citrus diseases can reduce losses and expenses while also enhancing the quality of the
finished goods. However, the disease diagnosis process by humans is subjective, error-prone, slow, and
costly. There will also be new diseases where no local specialist is available to deal with them [4]. An
automated system is therefore urgently required. Automatic crop scanning has been made easier by the
introduction of specialized equipment and computer-aided approaches [4]. Conventional machine learning
algorithms have been successful for plant disease detection and diagnosis, but they are confined to sequential
image processing tasks.
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On the other hand, deep learning can automatically learn the hierarchical aspects of diseases,
reducing the need to develop feature extraction and classification manually. More and more farmers and food
producers are getting benefits from advances in deep learning techniques, such as identifying plant diseases
[5]. A convolutional neural network model based on the latest scientific research is being presented to
classify citrus diseases into four distinct groups: black spot, canker, scab, and melanoses. The symptoms of
the diseased leaves and the images of four diseases are given in Table 1 with the content source.

Table 1. The symptoms of citrus leaf diseases

Source Symptoms of the diseases Image of the diseased leaves
Citrus black spot Citrus black spot is a disease caused by
https://www.citrus.com/citrus-tree-care/pests- ~ the fungal infection of guignardia
diseases/ citricarpa.
Citrus melanoses Symptoms of citrus melanosis can be
https://www.gardeningknowhow.com/edible/f ~ seen most clearly on leaves and fruit.
ruits/citrus/citrus-melanose-fungus.htm The leaves develop small red-to-brown

spots.

Citrus greening Huanglongbing (HLB; citrus greening)
https://crec.ifas.ufl.edu/hlb-information/green  is thought to be caused by the bacterium
ing/ candidatus liberibacter asiaticus. The

early symptoms of HLB on leaves are
vein yellowing and asymmetrical
chlorosis referred to as “blotchy mottle”.

Citrus canker Citrus canker lesions on the underside of
https://idtools.org/id/citrus/diseases/factsheet.  a leaf typically range from 2 to 10
php?name=Citrus%20canker millimeters in diameter and have

elevated concentric circles.

The contributions of the study are as:
—  This work presents VGG16 and InceptionV3 deep learning models for classifying diseases, such as
black spot, canker, scab, and melanoses in citrus leaves.
— InceptionV3 gives a better performance than the VGG 16.
—  The proposed method is automated, computationally efficient, and cost-effective to preserve the
ecological and economic relevance of citrus plants and their yields.
The remainder of the research is structured as follows. The review of the literature is described in
section 2. Section 3 explains the materials and methods. Section 4 presents and discusses the findings.
Section 5 brings the research to a conclusion.

2. LITERATURE REVIEW

A brief description of the existing deep learning leaf disease identification approaches along with
their merits and demerits are summarized in Table 2. From this literature review, we observe that there are
scopes for accuracy enhancement and in-depth validation experimentation using extensive datasets. The
present paper works on addressing these issues.
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Table 2. A brief description of the existing state-of-the-art methods

Reference Methods/architecture  Fruit/crop name  Accuracy Limitations of the study
Moyazzoma et al. [6] MobileNetV2 Cucumber 90.38 Give poor performance for unseen data
Singh et al. [7] MCNN Mango 97.13 Anthracnose/the missing report rate of

2.87%
Agarwal et al. [8] EfficientNet Apple, cherry, 99.7 Plant diversity in the dataset is needed
and potato
Joshi et al. [9] CNN Vigna mungo 97.4 The model is not fully adaptable in real-time
experiments
El-Maged et al. [10] VGG16, CNN Apple, cherry, 98.67 Don’t explain the severity
potato
Jasim and Tuwaijari [11] CNN Potato, tomato 98.29 Multiple techniques are not used
pepper
Prakash et al. [12] SVM Citrus leaf - The number of images in the dataset is too
few
Mohanty et al. [13] AlexNet, GoogleNet Strawberry, 99.35 It has an over-fitting problem.
tomato, and Accuracy is different for different crops
potato
Leeetal. [14] VGG16, Cherry, apple, - Diversity is needed in the dataset
InceptionV3, tomato, and
GoogleNet grape
Thangaraj et al. [15] - Tomato 99.18 Severity is not counted in this study
Hasan et al. [16] CNN Different types 99.56 Accuracy decreases in real-time conditions
of crops
Kathiresan et al. [17] - Rice 98.79 The quality of some images in the dataset is
poor
Arafath et al. [18] VGG16, MobileNet, Tomato 91.2 Plant village/small number of images are
InceptionV3 picked from the dataset
Saleem et al. [19] - - 99.81 More time is needed in each epoch
Ireri et al. [20] SVM Tomato - Accuracy decreases as the no. of grading
categories are increased
Ghoury et al. [21] Fastest R-CNN Grape 99 Images in the dataset contain noise gives
poor classification
Ramya and Jeevitha [22] - Plant species - A high-capacity cell phone is needed
Tahir et al. [23] InceptionV3 Apple 97 Diversity in data is less available
Hassan and Maji [24] VGG with Xgboost Corn, potato, 97.36 The model is not good for lightweight
and tomato devices
Saini et al. [1] CNN, deep learning Citrus leaf 95.65 The single dataset is considered, with only
213 images in the dataset
Janarthan et al. [25] - Citrus leaf 95.04 Heavy weight for lightweight devices
Rauf et al. [26] - Citrus leaf - Only a single dataset is used
Xing and Lee [27] VGG19 Citrus leaf 95.01 Too bulky model, ill-suited for small dataset
Xing et al. [28] DenseNet Citrus pest The size of the image is too large
Kukreja and Dhiman [29]  SGD Citrus leaf 89.1 Fewer numbers of images in the dataset
Zheng et al. [30] YoloV4 Citrus leaf 91.55 Manual labelling is needed
Qadri et al. [31] MLP, RF Citrus leaf 98.4 The disease is not detected.
Majid et al. [32] - Blueberry, 99 Plant village/computational time is very
apple, peach high
Chen et al. [33] VGG16, ImageNet Rice, maize 92 The size of the model is heavyweight
Altinbilek and Kizil [34] CNN Rice 95.48 Dataset needs manual labelling
Chen et al. [35] ImageNet Rice 98.63 The model is heavyweight

3. METHODS AND MATERIALS
This section presents the methods and materials used in this research and the collected citrus
diseased leaf images datasets as well as data augmentation.

3.1. Image acquisition

All phases of image analysis research necessitate data from training algorithms to evaluate their
performance. From the citrus dataset [26] and the plant village dataset [36], a total of 1067 images were used.
Images of sick citrus leaves were separated into four groups, each depicting a different disease. The disorders
we researched include black spot, canker, scab greening, and melanosis (shown in Table 1). We used 80% of
the data as training and 20% as testing. The environment used for the experiment is Google CoLab.

3.2. Image augmentation

Data augmentation in data analysis is the technique to increase the amount of data and is closely
related to oversampling in data analysis [37], [38]. We use different augmentation techniques such as
flipping, rotating, zooming, cropping, and colour varies. Table 3 shows the detailed picture of our
investigated citrus disease dataset [27], [36].
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Table 3. Description of the citrus disease dataset
Name of the disease  Number of images  Number of images after augmentation

Black spot 291 1000
Greening 310 1000
Canker 268 1000
Melanose 148 1640
Total 1017 4640

3.3. Proposed approach

The overall framework of the proposed method is given in Figure 1. We investigated two deep
learning models: VGG16 and InceptionV3 using an Adam optimizer with a starting learning rate of 0.0001.
The architecture of these benchmark deep neural models is shown in Table 4.

Citrus Leaf
Image from [—P»
database

Image Pre- Training Testing the
. —> —P
Processing the models maodels

|

Performance
evaluation to
find the
optimum
model

Figure 1. The framework of the proposed system

Table 4. Architectures of VGG16 and InceptionV3
VGG16 InceptionV3

Input size 224%224 227%227
Convolutional layer 13 21
Filter size 3 1,357
Stride 1,2 1,2
Parameter 16817478 23x10°
Fully-connected layer 3 1

4. RESULTS AND DISCUSSION

Accuracy indicates the percentage (%) of total data correctly identified by the classifier. Precision is
the percentage of total anticipated positive data that were positives as determined by the classifier. The recall is
the percentage of all positive data that the classifier correctly identified as positive. F1-score is the harmonic
mean of precision and recall [39]. Mathematical representations of these metrics are shown in (1) to (4):

TP+TN

Accuracy (%) = rrrnaren < 100 1)
. TP
Precision (%) = wpopp < 100 2
Recall (%) = —— x 100 3)
TP+FN
F1 — score (%) = 2 x ZrecisionxRecall 4100 4)
Precision+Recal

where true positive (TP) is the model predicts the correct sample as correct; true negative (TN) is the model
predicts the incorrect sample as incorrect; false positive (FP) is the model predicts the incorrect sample as
correct; and false negative (FN) is the model predicts the correct sample as incorrect. The class-wise TP, TN,
FP, and FN are determined by using (5) to (8):

TP, = ¢y 5)
TN; = Yk=t1 )i 2 j=1,j=i Cik (6)
FP; = Z}l:l,jﬂcji (7
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FN; = Xj_1 2 Cij (8)
where i is the class and n is the total number of fruit classes. Here, Cj« is the component of the confusion
matrix, j and k are the row and column of the confusion matrix [39].

Figures 2 and 3 show the confusion matrices of our investigated VGG16 and InceptionVV3 models.
Table 5 shows the accuracy, precision, recall, and F1-score of VGG16 and InceptionVV3 models for all
disease categories. This table confirms that InceptionV3 outperforms VGG16. In Table 6, we have compared
the accuracy performance of our model with other related methods. Our model shows the best accuracy.

True label  Black Spot 94 1 1 4
Greening 0 97 0 3
Canker 1 0 99 0
Melanose 2 1 1 160
Black Spot Canker Canker Melanose
Predicted label
Figure 2. Confusion matrix of VGG16 model
True label  Black Spot 98 2 0 0
Greening 0 99 1 0
Canker 0 0 100 0
Melanose 0 1 0 163
Black Spot Canker Canker Melanose
Predicted label

Figure 3. Confusion matrix of InceptionVV3 model

Table 5. Comparative result of VGG16 and InceptionVV3 models

Diseases N VGG16 N InceptionV3

Precision  Recall Fl-score Accuracy Precision Recall Fl-score Accuracy
Black spot 0.97 0.94 0.95 0.98 1.00 0.98 0.99 1.00
Greening 0.98 0.97 0.97 0.98 0.97 0.99 0.98 0.99
Canker 0.98 0.99 0.99 0.99 0.99 1.00 1.00 0.99
Melanoses 0.96 0.98 0.97 0.98 1.00 0.99 1.00 0.99

Table 6. Performance comparison with the other methods

Reference Methods Accuracy (%)

Xing et al. [28] CNN, deep learning 95.65
Kukreja and Dhiman [29] CNN 95.04
Zheng et al. [30] Machine learning -

Qadri etal. [31] VGG19 95.01
Majid et al. [32] DenseNet -

Chen et al. [33] SGD 89.1
Altinbilek and Kizil [34]  YoloV4 91.55
Hughes and Salathe [36] MLP, RF 98.4
Our model InceptionV3 99

5. CONCLUSION

This research proposes a method for detecting four common types of citrus leaf diseases using two
deep CNN models VGG16 and InceptionV3 utilizing transfer learning for better accuracy. Extensive
experimentation was performed using two datasets. The VGG16 model exhibits 98% accuracy, whereas the
InceptionV3 model exhibits 99% accuracy. Hence, InceptionV3 outperforms VGG16 in terms of accuracy. A
comparison with the related methods confirms the effectiveness of InceptionVV3 for citrus leaf-disease
detection. In the future, we will work on the implementation of a real-time plant disease detection system in a
mobile framework.
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