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Color transformation glass ceramics were produced of borosilicate matrix
co-doped (SrBaSm)Si2O2N2:(Eu3*Ce3*) blue—green (B-G) (abbreviated as
(SBS)SON:(EuCe) B-G) phosphors using a two-step co-sintering technique.
The shift in illumination characteristics and drift of chromaticity coordinates
(CIE) of (SBS)SON:(EuCe) (B-G) phosphors and hue transformation glass
ceramics were investigated over a 600-800 °C sintering thermal range. With
rising sintering heat, the illuminated strength and inner quantum yield (QY)
of (abbreviated as B-G) phosphors and glass ceramics reduced. Once the
sintering heat was raised above 750 °C, the phosphors and hue
transformation glass ceramics showed nearly no high point among their
luminescence photoluminescence (PL) and photoluminescence excitation
(PLE) bands of color. B-G phosphors have low heating steadiness at more
elevated temperatures, according to the findings. The glass matrix destructed
the phosphors lattice layout and the Ce3* in the phosphors was oxidized to

Ce*, resulting in a reduction in the luminous characteristics of the color
transformation glass ceramics.
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1. INTRODUCTION

During a period when power is becoming rare, diodes emit white illumination white light emitting
diodes (WLEDSs) has sparked intense interest in a variety of areas due to their elevated effectiveness, energy
savings, impact resistance, long lifespan, environmental protection, and quick reaction [1]-[3]. Even so, as
technology advances, WLEDs with just superior efficiency will no longer be able to fulfill consumer needs.
Full-spectrum WLEDs, which have greater color rendering indexes (CRI), greater illumination effectiveness,
and better color reproduction capability than sunlight, have been used to resolve the issue of too much blue
light destruction [4], [5]. In comparison to general WLEDs, full-spectrum WLEDs are typically synthesized
by including phosphors of 490 nm and 660 nm to supplement near-wave blue—green (B-G) illumination and
lengthy-wave red illumination, leading to the spectral wavelength encompasses all visible light [6], [7].
Phosphors with a wavelength of 660 nm are currently being researched thoroughly [8]-[10]. As a result, the
490 nm range of B-G phosphor is a critical matter in the study and setting up of filled-spectrum light emitting
diodes (LEDs). Several B-G phosphors, such as silicate (M;SiOsEu?*, M=Ca, Ba, Sr), sulfide
(M2BS4:Eu?*, M=Ba, Sr, Ca, B=All, Ga, In), and aluminate (MSrAls7:Eu?*, M=Y, La, Gd) are presently being
established [11], [12]. The conventional silicate structure, on the other side, has a limited emission maximum
and poor color rendering traditional sulfide phosphors typically have poor stability, sensitivity to surrounding
humidity and ambiance, aluminate is hard to compound, expensive, and prone to hydrolysis [13]. System of
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oxynitride-based phosphors such as (SBS)SON:(EuCe) B-G phosphor materials have high benefits in study
because they have many benefits such as increased illuminated effectiveness, efficient stimulation using
viewable illumination, elevated performance factor of fluorescent features (broad modification scope),
elevated heating steadiness, and environmental protection. Instead, the processing method of packet-filled
WLEDs bands of color must conquer silicone's easy aging and yellowing [14]. Many color transformation
glass ceramics for WLEDs works are being completed both domestically and overseas. At the moment, the
glass materials utilized in color transformation glass ceramic study are primarily glass matrices of
bismuthate, tellurate, and borosilicate. When there is a comparison between glass matrix materials, the
borosilicate glass matrix material includes two major benefits: i) it has excellent heating stability, precludes
the phosphor from having failed under rising temperature, and high moisture and ii) it is relatively steady,
allowing glass ceramics with many-wavelength phosphor doping to be realized. As a result, the
characteristics of borosilicate matrix B-G color transformation glass ceramics must be investigated [15], [16].

Hue transformation glass ceramics were created by sintered borosilicate glass matrix and B-G
phosphors according to this investigation at a sintering heat 600-800 °C, with a retaining period of
20 minutes. The influence of sintering temperature on the illumination characteristics of B-G hue
transformation glass ceramics with borosilicate matrix was investigated. The shift in photoluminescence (PL)
strength at each sintering temperature allows us to evaluate the luminescence of B-G hue transformation
glass ceramics. Furthermore, x-ray diffraction (XRD) can be utilized to investigate the lattice layout between
phosphors and glass ceramics having different sintering heats, the content and variation of Ce®* and Eu®* can
be assessed using the x-ray photoelectron band of color analyzer to examine the hue transformation glass
ceramics’ characteristics at rising sintering temperatures [17], [18].

2. COMPUTATIONAL SIMULATION

B-G color transformation glass ceramics could be acquired using a two-stage technique in low-heat
cooperatively sintering in this procedure. To begin, the weighed and combined medicine
(H3BOs, SiO2, ZnO, BaCOs3, Na2COs to heat the glass matrix) was sintered at 1,100 °C in a muffle furnace
within one hour. Second, the clear elevated-heat fluid removed from the muffle furnace was chilled at room
temperature on a copper plate. Finally, ground glass-matrix outcomes with a dso of 15 m were added with
3 wt% (SBS)SON:(EuCe) B-G phosphor fine grains with a dso of 15 m and put in a muffle furnace at
600-800 °C within 20 minutes [19], [20]. The prepared specimen's lattice layout can be determined using
XRD for a 20 range of 10° to 80° with Cu K, radiation (k=0.154178 nm) at a scanning ratio of 0.02°/step and
4°/min. The PL, photoluminescence excitation (PLE), and gquantum vyield (QY) of whole specimens
containing B-G phosphors and hue transformation glass ceramics were measured using a spectrofluorometer
and an integrating sphere illuminated by a xenon light. Assessing the ratio of the region taken up by divalent
and trivalent europium ions using x-ray photoelectron spectrum analysis software data can recommend the
illumination characteristics of color transformation glass ceramics. The carbon 1 s line was utilized to verify
each binding energies (C1 s=284.91 eV).

3. RESULTS AND DISCUSSION

In this section, we compare YAG:Ce®" to the six conversion phosphor requirements that we
proposed. The emission spectrum of YAG:Ce®* is really wide, with a typical full width at half maximum
(FWHM) of 100 nm. The blue pumping LED can easily excite YAG:Ce®, with a well enough wide
stimulation range closely 460 nm demonstrating great superimposed on each other with the LED's emitting
bands of color. At low dopant concentrations, YAG:Ce®*" exhibits outstanding heat extinguishing behavior,
retaining exceeding 50% in the normal heat emitting strength at 700 K. It has an elevated quantum efficiency
(90% or higher), which is required for the manufacture of effective LED packages. It has superior chemical
stability and does not degrade beneath the high stimulation fluxes encountered in pcLEDs. Because of the
permitted essence of the emitting transfer in Ce®*, the radiation is rapid.

Clearly, YAG:Ce®* meets all six requirements with flying colors. The biggest limitation of
YAG:Ce® is a shortage in orange-red radiation of the viewable color bands. It limits the LED’s improvement
with elevated hue rendering and/or poor hue heat. The changed YAG:Ce?* phosphors have a reduced heating
extinguishing heat overall. Nevertheless, because of the breadth of the emission spectrum, a significant
portion of the illumination released exceeds 650 nm. Because the eye's sensitiveness is significantly low
within this area of the bands of color, the pcLED general performance is reduced. As a result, including a
second, strait-radiating red phosphor inside the phosphor mixture may have greater effectiveness. For greater
Ce® concentrations, the radiation exhibits a (tiny) red shift, which is caused in part by reabsorption, as well
as a decrease in the thermal quenching temperature. Lower dopant concentrations are thus beneficial for high
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flux gadgets. The reduced absorbing efficiency might be mitigated by using clear ceramic plates for the hue
transformation film, which reduces dispersion losses significantly.

Figure 1 illustrates the reverse change in dosages of green phosphorus (SBS)SON:(EuCe) and
yellow phosphorus YAG:Ce®. There are different concentrations to keep the mean correlated color
temperature (CCT) value at 3,000 K, 4,000 K, and 5,000 K, as in Figures 1(a)-(c), and respectively. This shift
has two meanings: the first one is to retain mean CCTs and the next one is to modify the absorptivity and
scatter of lights in WLEDs dual-phosphor-film model. This ultimately impacts the WLEDs hue standard and
illuminated beam effectiveness. Thus, the hue standard of WLEDs is determined by the dosage of
(SBS)SON:(EuCe). When the (SBS)SON:(EuCe) concentration grew 2-20% Wt, the YAG:Ce®* dosage
reduced to retain the mean CCTs. It is also true about WLEDSs with hue heats ranging 5,600-8,500 K.
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Figure 1. Adjusting the dosage of phosphor to keep the medium CCT; (a) 3,000 K, (b) 4,000 K, and (c) 5,000 K

In Figure 2, the graphs show the impact of (SBS)SON:(EuCe) green phosphorus concentration on
the power of spectral transmission of WLEDs at 3,000 K Figure 2(a), 4,000 K Figure 2(b), and 5,000 K
Figure 2(c). It is possible to make a decision depending on the specs provided by the manufacturer. Lighting
output may be slightly reduced by WLEDs that need high color fidelity. The synthesizing of the spectral
regions is white illumination, especially of the two regions 420-480 nm and 500-640 nm. It is observed that
these two specific spectral areas display increasing intensity with increasing concentration
(SBS)SON: (EuCe). This change in the two-band emitting bands of hues shows that the output illumination
has increased. Furthermore, blue-illumination diffusing in WLEDs is raised, meaning that diffusion in the
phosphor film and in WLEDs is raised, which favors hue homogeneity. When (SBS)SON:(EuCe) is applied,
this is a noteworthy outcome. It is difficult to control the hue homogeneity when applying a
remote-phosphor-layer setup in a WLED package with CCT>5,000 K [21]-[23]. According to this article,
(SBS)SON:(EuCe) shows a high probability in enhancing the chroma quality for WLED lamps at both
minimum and maximum hue heats (5,600 K and 8,500 K).

Consequently, the paper demonstrated the illumination intensity of this distant green-phosphor layer
in WLEDs. The outcomes in Figures 3(a)-(c) reveals the illumination emitted dramatically increases
(3,000 K-4,000 K-5,000 K) as the concentration of (SBS)SON:(EuCe) grows 2% wt-20% wt.
The hue deviation was drastically declined with the phosphor (SBS)SON:(EuCe) dosage in all mean CCTs
(3,000 K-4,000 K-5,000 K), as the results of Figures 4(a)-(c). This is because of the red phosphor film’s
absorption. When the (SBS)SON:(EuCe) phosphor absorbs blue illumination in the LED chip, the blue
phosphor portions will change it to green illumination. The (SBS)SON:(EuCe) portions absorb yellow
illumination in extra to the blue illumination from the LED chip. Even so, owing to the substance’s absorbing
properties, the absorption for blue emission is much greater the yellow one. According to the addition of
(SBS)SON:(EuCe), the green illumination proportion inside WLEDSs raises, leads to an advancement in the
uniformity of chroma. As the chroma uniformity is a crucial factor for a good-quality WLED light, it will cost
more to purchase for a greater color-uniformity-index WLED. On the other hand, the advantage when utilizing
(SBS)SON:(EuCe) is its cost effective, so it is possible to have (SBS)SON:(EuCe) broadly used in production.
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Figure 2. The emitting bands of hue of WLEDs as a function of (SBS)SON:(EuCe) dosage; (a) 3,000 K,
(b) 4,000 K, and (c) 5,000 K
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Figure 3. The lighting beam of WLEDs as a function of (SBS)SON:(EuCe) dosage; (a) 3,000 K, (b) 4,000 K,
and (c) 5,000 K
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Figure 4. The CCT of WLED:s as a function of (SBS)SON:(EuCe) dosage; (a) 3,000 K, (b) 4,000 K, and
(c) 5,000 K

Bulletin of Electr Eng & Inf, Vol. 12, No. 6, December 2023: 3381-3387



Bulletin of Electr Eng & Inf ISSN: 2302-9285 O 3385

Color homogeneity is only one factor to give thought to when assessing the WLEDs chroma
standard. We cannot say the hue standard is great with just a high hue homogeneity indicator. Consequently,
new research includes a hue rendition indicator CRI and chroma quality scale (CQS). The CRI identifies an
object's true color when illuminated. Green illumination in excess between the fundamental hues of blue,
yellow, and green is what is causing the color imbalance. WLED hue fidelity is reduced as a result of this
having an effect on the hue standard of WLEDs. Figure 5 includes the graph of CRI result that shows a small
decrease when integrating (SBS)SON:(EuCe) phosphor. Figures 5(a)-(c) show the CRI values according to
the CCTs of 3,000 K-4,000 K-5,000 K, in turn. As a result, all of those are acceptable as CRI is only a
problem with CQS. CQS is more important and harder to get when compared to CRI. CQS is a
three-element indicator determined by three variables: hue rendering indicator, viewer preference, and hue
coordinate, making it virtually a genuine overall parameter to evaluate the chroma adequacy and fidelity [24],
[25]. CQS data based on CCT value of 3,000 K-5,000 K are illustrated in turn in Figures 6(a)-(c), in which
its improvement in the presence of the remote phosphor (SBS)SON:(EuCe) layer is observed. Furthermore,
when the (SBS)SON:(EuCe) concentration is elevated, CQS will not shift dramatically with
(SBS)SON:(EuCe) concentrations just under 10% wt. Conversely, either CQS or CRI declined considerably
when the (SBS)SON:(EuCe) portion exceeds 10% wt, as a result of severe hue-balance loss as the green
hue is prominent. As a consequence, when utilizing green phosphor (SBS)SON:(EuCe), appropriate dosage
selection is necessary [26]-[28].
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Figure 5. The WLEDs hue rendering indicator as a function of (SBS)SON:(EuCe) dosage; (a) 3,000 K,
(b) 4,000 K, and (c) 5,000 K
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Figure 6. The hue standard scale of WLEDs as a function of (SBS)SON:(EuCe) dosage; (a) 3,000 K,
(b) 4,000 K, and (c) 5,000 K
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4. CONCLUSION

The illumination characteristics of (SrBaSm)Si>O;N:(Eu®*Ce®") blue—green color transformation
glass ceramics shifted with sintering heat were experimentally investigated and validated via a sequence of
experiments. The illuminated strength of color transformation glass ceramics progressively decreases as the
sintering heat raises 600-700 °C, but they retain illumination characteristics. Once the sintering heat surpasses
750 °C, the glass ceramics illumination strength reduces linearly and reaches zero. In the meantime, the
fluorescence properties of color transformation glass ceramics are nearly non-existent. At 750 °C, the B-G
phosphors were pyretic extinguished. Furthermore, the glass matrix destructed the phosphors' lattice layout,
and the Ce® in the phosphors was oxidized to Ce**, resulting in a decline in the luminous strength of hue
transformation glass ceramics. The investigational outcomes reveal that a reduced sintering heat improves the
illumination characteristics of B-G hue transformation glass ceramics.
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