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The design and operationalization of a wind energy system is mainly based
on wind speed and wind direction, theses parameters depend on several
geographic, temporal, and climatic factors. Fluctuating factors such as
climate cause irregularities in wind energy production. Therefore, wind
power forecasting is necessary before using wind power systems.
Furthermore, in order to make informed decisions, it is necessary to explain
the system's predictions to stakeholders. The explainable artificial
intelligence (XAI) provides an interactive interface for intelligent systems to
interact with machines, validate their results, and trust their behavior. In this
paper, we provide an interpretable system for predicting wind energy using
weather data. This system is based on a two-step method for fuzzy rules
learning clustering (FRLC). The first step uses subtractive clustering and a
linguistic approximation to extract linguistic rules. The second step uses
linguistic hedges to refine linguistic rules. FRLC is compared to with
artificial neural network (ANN), random forest (RF), k-nearest neighbors
(K-NN), and support vector regression (SVR) models. The experimental
results show that the accuracy of FRLC is acceptable regarding the
comparison models and outperform them in terms of the interpretability. In
parallel with prediction, FRLC model provides a set of linguistic fuzzy rules
that explain the obtained results to the stakeholders.
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1. INTRODUCTION

Countries, governments, and energy-producing companies are concerned with renewable energy
sources due to their low cost and environmental conservation. Wind energy is one of the most important
sources of renewable energy, characterized by sustainability and ability to produce energy throughout the day
[1], and is also practical for systems that require uninterrupted energy. It is also possible to calculate the
amounts of energy to be generated by being able to predict the seasonal variations of the wind in the short,
medium, and long term. It should be noted that wind turbines can be installed on existing farms without loss
of agricultural area, but the use of wind energy remains a major challenge, on the one hand, the initial
investment costs are generally higher than conventional energy stations. On the other hand, reliable studies
must be carried out in a promising area, these areas which are often remote areas generate a high cost linked
to the transport of equipment and machines, as well as the connection of these areas to the national lines
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transmission systems. Finally, wind turbines cause environmental damage such as vibrations, noise, and
sometimes aesthetic pollution.

Machine learning is a branch of computer science that allows computers to learn from previous data
[2]. In general, machine learning algorithms are used to describe the behavior of the dataset and the
relationships between the inputs and the outputs. As a result, machine learning is one of the alternatives for
predicting wind power based on wind speed data.

Wind energy forecasts are classified into three types: long-term, medium-term, and short-term
forecasts. Long-term forecasts range from two to seven days, this type enables manufacturing chain decisions
and maintenance schedules to be followed in order to reduce operating costs. The medium-term prediction
ranges from six to twenty-four hours, ensuring operational stability in the electricity market. The short-term
prediction ranges from 30 minutes to 6 hours and is used to balance supply and demand on the electricity
market [3].

In the literature, there are three types of wind energy forecast models: physical, statistical, and
hybrid models. The physical model takes into account both the structure of the wind power architecture and
the numerical prediction data, whereas the statistical model is based on meteorological data, and the hybrid
model combines the two [4]. The prediction model typically consists of two main steps: data pre-processing
and prediction. Data pre-processing step aims to reduce the number of forecast errors and operations by
sampling and analyzing data, as well as the estimate and measurement time. In the prediction step, two main
methods are used: statistical and intelligent methods. Statistical methods are based on time series and
regression methods, for example: non-linear regression and integrated moving average auto regression [5].
There are a variety of artificial intelligence (Al) methods, including the artificial fuzzy neural inference
system [6], the artificial neural network (ANN) [7] and the fuzzy expert system [8]. Each method is
characterized by their advantages and disadvantages, and no method can provide the best results for all data.
Statistical methods look for possible relationships between inputs and outputs, those methods give
remarkable interpretability but often poor precision. Although Al methods use black and gray boxes, they
offer often precise results, but limited interpretations [9]. Furthermore, in order to make informed decisions,
it is necessary to explain the system's predictions to the stakeholders [10]. In order to deal with these
problems, it is important to apply XAl explanatory techniques to opagque models such as
(SHAP, LIME, CONTRAFACTUAL, and ANCRE) [11]; or building an interpretable model with a good
balance between accuracy and interpretability [12].

In this paper, we propose an interpretable model to forecast one hour ahead of wind power based on
subtractive clustering and linguistic hedges, it is called: fuzzy rule learning through clustering (FRLC). FRLC
uses local time and two meteorological parameters: wind speed and wind direction. To evaluate the system's
efficiency, the study compares FRLC model with ANN, random forest (RF), k-nearest neighbors (K-NN),
and support vector regression (SVR) models. The next section presents the related works. Section 3 describes
the fuzzy rules-based system. Section 4 explains the proposed method by presenting the dataset and the
performance evaluation methods utilized in this study. Section 5 presents the proposed method. Section 6
shows experiments development and obtained results.

2. RELATED WORK

One of the most important wind farms is Sotavento, which has an important database for generating
wind energy. This data was the subject of many research and studies that focused on forecasting the amount
of wind energy to be produced in the short, medium, and long term. Table 1 shows the relevant research
using this data. In this context, Misha and Dash [13] have proposed an accurate model for wind power
prediction on a short-term, using a low-complexity pseudo-inverse legendre neural network (PILNNR) with
radial basis function (RBF) units in the hidden layer. D-Vico et al. [14] also have used deep neural structures
(DNNs) to predict wind energy, with inputs derived from digital weather forecasting systems.
Bagheri et al. [15] have developed a new approach to predicting wind energy based on empirical mode
decomposition (EMD), a selection feature and a forecast engine, where the engine used a hybrid method
based on Al. Despite the fact that Wang et al. [16] created a deep belief network (DBN) model for wind
power forecasting based on numerical weather prediction (NWP), the k-means clustering technique was
added to this model to deal with NWP data. To improve the output of the model, a large number of NWP
samples are selected as the input via clustering analysis. Cevik et al. [17] prefers EMD and stationary
wavelet decomposition (SWD) in the preprocessing step of. The researchers used the artificial neuro-fuzzy
inference system (ANFIS), ANNSs, and SVR in the forecasting process to predict wind speed, wind direction,
and wind power from the dataset.
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Table 1. The most important studies using Sotavento data

Study [13] [14] [15] [16] [17]
Year 2017 2017 2018 2018 2019
Pre- EMD k-means clustering SWD
processing
Method PIRBFNN-FF  DNNs HBMO DBN ANFIS
Compared SVR ARMAX, BP and MWNN SVR -ANN
Method RBF, MLP
Forecastrang ~ Next hour Next 3 h 1lh 10 min 48 h
Data Wind speed, NWP (pressure, NWP (wind speed, wind Wind speed,
wind power temperature, wind speed direction, temperature, wind power,
and wind direction) humidity, pressure) Wind direction
Data range 2016 2011-2013 2015 2016 2005-2007
2010-2012
Train data 1,800 h 1 year 48 weeks 324 days 4 years
Test data 1,600 h 1 year 4 weeks 36 days 2 years
Error criteria RMSE MAE NRMSE NMAE and NRMSE MAE
Error Between 0.98  7.53 5.45 Between 0.0236 and 0.0322 Between 0.333,
and 1.85 0.294 and 0.278

pseudo-inverse legendre neural network and adaptive firefly algorithm; (PIRBFNN-FF), honey bee mating optimization (HBMO);
autoregressive moving average exogenous (ARMAX); multi-layer perception neural network (MLP); back propagation (BP) neural
network; morlet wavelet neural network (MWNN).

3. FUZZY RULES BASED SYSTEM

The fuzzy rules based system (FRBS) is a method by which data from an organization is mapped
into outgoing data using the fuzzy logic. The FRBS consists of a knowledge base (KB), a fuzzification
interface that converts crisp values into fuzzy sets, an inference engine that uses them to define other fuzzy
sets, and a defuzzification interface that translates the resulting fuzzy sets into a crisp value. The KB consists
of a rulebase (RB) and a database (DB). The RB is a set of fuzzy if-then rules and the DB is a set of linguistic
variables, in which, each linguistic label and their meaning are defined. In the literature, there are two kinds
of FRBSs: MAMDANI FRBS (or linguistic FRBS) [18] and Takagi—Sugeno—Kang (TSK) FRBS [19].
Figure 1 shows the MAMDANI FRBS approach; the fuzzy sets represent the consequents and the
antecedents. The consequence is a weighted combination of input variables with fuzzy sets representing the
antecedents of the TSK FRBS approach. Two criteria are used for evaluating FRBSs, which are accuracy and
interpretability. The accuracy is typically measured with the root mean square error (RMSE). There are two
types of interpretability [20], [21]: the complexity and the semantics. Figure 2 illustrates the interpretability
in DB and in RB. The complexity-based interpretability is designed to reduce the complexity of the obtained
system, which normally is measured with the number of rules in RB, the number of antecedents per rule and
the number of linguistic labels for each linguistic variable. On the other side, the semantics-based
interpretability is designed to preserve the semantics in KB, which normally imposes restrictions on the
membership functions in DB to preserving the meaning of the linguistic labels, these restrictions concern the
distinguishability, the coverage, the fuzzy ordering, the normalization. In the RB, the semantics-based
interpretability requires certain constraints such as: the consistency of rules, the number of rules fired
simultaneously and the transparency of rule structure. Thus, for a good accuracy-interpretability balance in
FRBSs, three requirements are necessary: The accuracy, the complexity, and the semantic interpretability.
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Figure 1. FRBS model
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4. MATERIALS AND METHOD
4.1. Data description and preprocessing

In this study, the used data is from Sotavento Galicia wind farm, which is situated in Galicia,
Northwestern Spain (43.354 N Latitude and 7.881 °W) [22], Sotavento is a research and development center
which was established in 2001. This wind farm has 24 wind turbines with five different technologies and nine
machine models. Every 10 min, the anemometric tower measures and records the wind speed, wind power
and wind direction [23], then the record data are sent to the wind farm website with 10 min, hourly and daily
basis. The considered period is between 2011 to 2012 with 17,342 instances, this period provides data which
includes measurements of wind speed and wind direction taken on an hourly basis.

4.2. Statistical indicator preprocessing

The performance of the models developed is evaluated by applying the metrics indicators. In this
study two metric indicators are adopted: the mean absolute error (MAE) and the RMSE. The MAE measures
the proximity of the predicted values to the observed values, the RMSE is used to measure the level of
scattering in the obtained models. In (1) and (2), respectively, define the MAE and the RMSE where n
denotes the number of data, Yi represents the predicted value and X; represents the observed value.

1
MAE =1 T1X, - Y)) &

MsE= b SL0-1)? @

5. FUZZY RULE LEARNING THROUGHT CLUSTRING

This contribution's goal is to provide a FRBS wind power forecast with a reasonable
accuracy-interpretability trade-off. The approach is described in [9] and it is an automated development of
linguistic FRBS models from data in which researchers incorporate an embedded DB learning enveloping RB
learning. The architecture of FRLC is seen in Figure 3. Using the gaussian membership functions, uniform
discretization is used to establish the fuzzy partitions of the linguistic variables (the number of linguistic labels)
and to describe the meaning of each linguistic label [24]. Subtractive clustering and linguistic hedges underpin
RB learning. Subtractive clustering is a type of fuzzy clustering based on data point density [25], [26].

Consider a set of N data points {xi, X2,...,xn} in an M-dimensional space. Using (3), the subtractive
clustering method estimates the potential of a data point x; (3).

- 12
Py = By el ©)

Wind power forecasting model based on linguistic fuzzy rules (Mohammed Moujabbir)



2376 O3 ISSN: 2302-9285

where a=4/r.? and r, are the cluster radius, and it is an M-dimensional vector of positive scalars specifying
the radius value in each dimension. The subtractive clustering technique starts with four parameters: the
cluster radius ra, the accept ratio (=0.5), the reject ratio (¢=0.15), and the cluster neighborhood (r,=1.25*r,).
As shown in Figure 3, the radius module computes the radius r, using the DB parameters [9]. Let
{vari,var,,..., varm}be the set of linguistic variables, and min(var;) and max(vari) be the minimum and
maximum values of var;'s universe of discourse, respectively. Let {MFun;“/ k=1... I;} be the set of Gaussian
membership functions produced by uniform discretization of varj, with the MFunj* parameters being its mean
Cj* and standard deviation ¢;*. With (4), the module computes the j"" value r4 of ra.

) o .xV8
- U @

Ta = (max(var j)—min(varj))

The default values of r, ¢ and ¢ have been tested to see how they effect the number of extracted
clusters. Indeed, constant starting parameter values might result in an excessive or inadequate number of
clusters. As a result, these values must be adapted to numerical data points. The authors offer an adaptive
subtractive clustering in which the user does not specify the values of r, and ¢. r, belongs to the set
Sro={ra*(1+f/10) / f=1...7} in adaptive subtractive clustering, which is used to define the good neighborhood
of retrieved clusters. ¢ value is computed using maximal and minimal potential (Pmax and Pmin):6=Pmin/Pmax. In
experiments, £=0.5 is a suitable ratio for accepting clusters. The rule module projects extracted clusters in all
dimensions to create linguistic fuzzy rules, which gives a collection of fuzzy rules. Following that, the
module uses Hamming distance to linguistically approximate the fuzzy rule with Euclidean distance and
increase the accuracy using language hedges (very, plus, minus, more or less, slightly, and a little) [27]. The
linguistic approximation of the fuzzy rules is illustrated in (5):

T/ « argmin (|Jx;° - ¢Y) 5)
k = 1, ey l]

With x;” is the j value of x" and Cj* the mean of MFun*. To improve the accuracy, (6) calculates the

Hamming distance between AFuni and all (MFun;"):

max(vj)

Di = fincoyy, 1AFun] (x) = (MFunip)” (x)| dx (6)

where P denotes the linguistic hedge parameter and AFuni is the MF of cluster xi" in j™ dimension. In a
MAMDANI FRBS, the evaluation module evaluates the obtained KB. Each linguistic fuzzy rule in the RB
comprises M-1 conditions. To simplify the RB while improving accuracy, researchers decreased the number
of conditions with don 't care condition [20]. Details the FRLC training algorithm [9].
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Figure 3. FRLC architecture
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6. RESULTS AND DISCUSSION

To analyze the efficiency of FRLC, researchers dealt with prediction of solar radiation in Galicia
located on northwestern Spain (43.354 °N Latitude and 7.881 °W). The obtained results are compared with
ANN, RF, K-NN, and SVR models. Table 2 lists the tuned parameters, with their meanings.

Table 2. Comparison algorithms and their tuned parameters

Algorithms Parameters
SVR Gamma € {‘scale’, ‘auto’}
Kernel € {'rbf",'linear'}
RF n_estimators € { 10, 20, 30, 40, 50, 60, 70, 80, 90, 100}
K-NN Ke{1,2,...,30}
Weights € {'uniform','distance'}
ANN hidden_layer_sizes € { 4,8,16}

activation € {'tanh','relu'}

solver € {'sgd','adam'}

learning rate € {0.001,0.01,0.1}
'rbf': RBF; 'linear": linear; 'uniform': uniform weights; 'distance": inverse distance weighting; 'tanh": hyperbolic tan function; 'relu":
rectified linear unit function; 'sgd': stochastic gradient descent method; 'adam'; stochastic gradient-based optimization method

6.1. Results of 10-fold cross-validation for algorithms performance

Table 3 shows the results of five algorithms after their initial parameters were optimized. RF
algorithm outperforms the other five algorithms with RMSE=902 and MAE=595. A poor performance was
observed for ANN algorithm with RMSE=1255 and MAE=860. FRLC algorithm has RMSE=1247 and
MAE=649. These results show the competitiveness of FRLC algorithm in wind forecasting.

Table 3. Comparison of the developed models

Models Parameters RMSE MAE
ANN — hidden_layer_sizes=8
- actlvatl?n = r(lelu 1,255 860
—  solver="adam
— learning rate=0.1
SVR - gammalz_ auto' 1,501 1,224
—  kernel="linear
FRLC —  NBrulesMax=15 1,247 934
K-NN - n_r_1e|ghb'ors_=8 . 966 649
— weights="uniform
RF —  max_features="sqrt 902 595

—  n_estimators=90

6.2. Explainability of the FRLC model

From the explainability point of view, although transparency of K-NN algorithm, K-NN does not
provides enough explanation to the end user. In the case of SVM, ANN and RF algorithms, post-explanation
techniques such as model-independent techniques (lime, shape, contrafactuals) and model-specific techniques
like INTREES [28] are required. Each technique provides partial explanations. Therefore, it is necessary to
combine these methods to answer user questions. This requires additional effort in order to generate more
refined explanations and debug the model in question. On the other hand, FRLC algorithm provides a simple
and transparent linguistic KB in which all the input variables are discretized into uniform fuzzy partition.
Figure 4 presents the linguistic DB of FRLC with 9,3,9 membership functions for wind speed, wind direction
and wind power linguistic variables, respectively. The RB of FRLC contains five linguistic rules:
R1: if WS is more or less MF2 Then WP is MF1
R2: if WS is MF4 and WD is MF2 Then WP is MF5
R3: if WS is more or less MF1 Then WP is MF1
R4: if WS is more or less MF6 Then WP is MF7
R5: if WS is more or less MF3 Then WP is MF1
Figure 5 shows the first linguistic fuzzy rule generated in RB (R1). Domain experts can use fuzzy linguistic
rules to analyze, criticize, accept, or reject the results provided by FRLC.

Wind power forecasting model based on linguistic fuzzy rules (Mohammed Moujabbir)
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Figure 5. The first linguistic rule in RB

7. CONCLUSION

Wind power is a free, big and renewable source of energy. In this paper, a new fuzzy rule-based
system called “FRLC*is presented. In fact, FRLC based on adaptive subtractive clustering and linguistic
hedges was compared to ANN, RF, K-NN, and SVR models. The results indicate the competitivity of the
proposed approach in term of accuracy and interpretability. Furthermore, FRLC provides a good balance
between interpretability and accuracy of wind energy forecast. The current effort seeks to increase the
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FRLC's accuracy and scalability, as well as to provide interactive natural language interfaces and visual
explanations.

ACKNOWLEDGEMENTS

Authors would like to thank Hassan Il University, Faculty of Sciences and Technics of

Mohammedia, Department of Computer Science, for the support given during this work.

REFERENCES

[1]  W.-Y. Chang, “A Literature Review of Wind Forecasting Methods,” Journal of Power and Energy Engineering, vol. 02, no. 04,
pp. 161-168, 2014, doi: 10.4236/jpee.2014.24023.

[2]  A.L.Samuel, “Some Studies in Machine Learning Using the Game of Checkers. I—Recent Progress,” IBM Journal of Research
and Development, vol. 11, no. 6, pp. 601-617, Nov. 1967, doi: 10.1147/rd.116.0601.

[3] T. Chen and C. Guestrin, “XGBoost: A Scalable Tree Boosting System,” in Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, Aug. 2016, pp. 785-794. doi: 10.1145/2939672.2939785.

[4] A. M. Foley, P. G. Leahy, A. Marvuglia, and E. J. McKeogh, “Current methods and advances in forecasting of wind power
generation,” Renewable Energy, vol. 37, no. 1, pp. 1-8, Jan. 2012, doi: 10.1016/j.renene.2011.05.033.

[5] J. H. Friedman, “Greedy function approximation: A gradient boosting machine,” The Annals of Statistics, vol. 29, no. 5, Oct.
2001, doi: 10.1214/a0s/1013203451.

[6] S.Han, Y. Liu, and J. Yan, “Neural Network Ensemble Method Study for Wind Power Prediction,” in 2011 Asia-Pacific Power
and Energy Engineering Conference, Mar. 2011. doi: 10.1109/appeec.2011.5748787.

[7]1 J. H. Friedman, “Stochastic gradient boosting,” Computational Statistics and Data Analysis, vol. 38, no. 4, pp. 367-378, Feb.
2002, doi: 10.1016/s0167-9473(01)00065-2.

[8] M. Cunkas and H. Cevik, “Wind Power Forecasting Using Fuzzy Model,” Dec. 2017, pp. 473-476.

[9] K. Bahani, M. Moujabbir, and M. Ramdani, “Linguistic Fuzzy Rule Learning through Clustering for Regression Problems,”
International Journal of Intelligent Engineering and Systems, vol. 13, no. 3, pp. 80-89, Jun. 2020, doi:
10.22266/ijies2020.0630.08.

[10] T. Miller, “Explanation in artificial intelligence: Insights from the social sciences,” Artificial Intelligence, vol. 267, pp. 1-38, Feb.
2019, doi: 10.1016/j.artint.2018.07.007.

[11] R. Guidotti, A. Monreale, S. Ruggieri, F. Turini, F. Giannotti, and D. Pedreschi, “A Survey of Methods for Explaining Black Box
Models,” ACM Computing Surveys, vol. 51, no. 5, pp. 1-42, Aug. 2018, doi: 10.1145/3236009.

[12] C. Rudin, “Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead,”
Nature Machine Intelligence, vol. 1, no. 5, pp. 206-215, May 2019, doi: 10.1038/542256-019-0048-x.

[13] S. P. Mishra and P. K. Dash, “Short-term prediction of wind power using a hybrid pseudo-inverse Legendre neural network and
adaptive firefly algorithm,” Neural Computing and Applications, vol. 31, no. 7, pp. 2243-2268, Sep. 2017, doi: 10.1007/s00521-
017-3185-3.

[14] D. D-Vico, A. T-Barran, A. Omari, and J. R. Dorronsoro, “Deep Neural Networks for Wind and Solar Energy Prediction,”
Neural Processing Letters, vol. 46, no. 3, pp. 829-844, Apr. 2017, doi: 10.1007/s11063-017-9613-7.

[15] M. Bagheri, V. Nurmanova, O. Abedinia, M. S. Naderi, M. S. Naderi, and N. Ghadimi, “A Novel Wind Power Forecasting Based
Feature Selection and Hybrid Forecast Engine Bundled with Honey Bee Mating Optimization,” in 2018 IEEE International
Conference on Environment and Electrical Engineering and 2018 IEEE Industrial and Commercial Power Systems Europe
(EEEIC/ | and CPS Europe), Jun. 2018. doi: 10.1109/eeeic.2018.8493805.

[16] K. Wang, X. Qi, H. Liu, and J. Song, “Deep belief network based k-means cluster approach for short-term wind power
forecasting,” Energy, vol. 165, pp. 840-852, Dec. 2018, doi: 10.1016/j.energy.2018.09.118.

[17] H. H. Cevik, M. Cunkas, and K. Polat, “A new multistage short-term wind power forecast model using decomposition and
artificial intelligence methods,” Physica A: Statistical Mechanics and its Applications, vol. 534, p. 122177, Nov. 2019, doi:
10.1016/j.physa.2019.122177.

[18] Mamdani, “Application of Fuzzy Logic to Approximate Reasoning Using Linguistic Synthesis,” IEEE Transactions on
Computers, vol. C-26, no. 12, pp. 1182-1191, Dec. 1977, doi: 10.1109/tc.1977.1674779.

[19] T. Takagi and M. Sugeno, “Fuzzy identification of systems and its applications to modeling and control,” IEEE Transactions on
Systems, Man, and Cybernetics, vol. SMC-15, no. 1, pp. 116-132, Jan. 1985, doi: 10.1109/tsmc.1985.6313399.

[20] H. Ishibuchi and Y. Nojima, “Analysis of interpretability-accuracy tradeoff of fuzzy systems by multiobjective fuzzy genetics-
based machine learning,” International Journal of Approximate Reasoning, vol. 44, no. 1, pp. 4-31, Jan. 2007, doi:
10.1016/j.ijar.2006.01.004.

[21] C. Mencar and A. M. Fanelli, “Interpretability constraints for fuzzy information granulation,” Information Sciences, vol. 178, no.
24, pp. 4585-4618, Dec. 2008, doi: 10.1016/j.ins.2008.08.015.

[22] “Historical-Sotavento ~ Parque  Edlico = Experimental.”  https://www.sotaventogalicia.com/en/technical-area/real-time-
data/historical/.

[23] M. Lydia, S. S. Kumar, A. I. Selvakumar, and G. E. P. Kumar, “Linear and non-linear autoregressive models for short-term wind
speed forecasting,” Energy Conversion and Management, vol. 112, pp. 115-124, Mar. 2016, doi:
10.1016/j.enconman.2016.01.007.

[24] R. Alcald, J. A-Fdez, F. Herrera, and J. Otero, “Genetic learning of accurate and compact fuzzy rule based systems based on the 2-
tuples linguistic representation,” International Journal of Approximate Reasoning, vol. 44, no. 1, pp. 45-64, Jan. 2007, doi:
10.1016/j.ijar.2006.02.007.

[25] S. Chiu, “Extracting Fuzzy rules from Data for Function Approximation and Pattern Classification,” Fuzzy Information
Engineering: A Guided Tour of Applications, vol. 9, pp. 1-10, Jan. 1997.

[26] S. L. Chiu, “Fuzzy Model Identification Based on Cluster Estimation,” Journal of Intelligent and Fuzzy Systems, vol. 2, no. 3, pp.
267-278, 1994, doi: 10.3233/ifs-1994-2306.

[27] K. Bahani, M. Moujabbir, and M. Ramdani, “Fuzzy Rule Learning with Linguistic Modifiers,” in Proceedings of the 12th

International Conference on Intelligent Systems: Theories and Applications, Oct. 2018. doi: 10.1145/3289402.3289533.

Wind power forecasting model based on linguistic fuzzy rules (Mohammed Moujabbir)



2380 O3 ISSN: 2302-9285

[28] V. Belle and L. Papantonis, “Principles and Practice of Explainable Machine Learning,” Frontiers in Big Data, vol. 4, Jul. 2021,
doi: 10.3389/fdata.2021.688969.

BIOGRAPHIES OF AUTHORS

Mohammed Moujabbir B B © received the national Doctorate in computer sciences,
machine-learning specialty, from the Faculty of Sciences and Techniques of Mohammedia
(FSTM), the Hassan Il University, Morocco. In 2014. He joined the Polydisciplinary Faculty
of Khouribga, Morocco in 2016, as an assistant professor. He is also a permanent member of
Laboratory Informatic Mohammedia (LIM). His research interests include intelligent systems
and machine learning. He can be contacted at email: m.moujabbir@usms.ma.

Khalid Bahani ' £ B8 ©2 was born in Casablanca, Morocco in 1979. He received the B.S.
and M.S. degrees in Computer Science from Hassan Il University of Casablanca, in 2012.
From 2003 to 2019, he was a high school teacher with Regional Academy for Education and
Training Casablanca. He is the author of the article: fuzzy rule learning with linguistic
modifiers. His research interests include fuzzy inference system and their applications in
machine learning. He can be contacted at email: Kbahanil@gmail.com.

Mohammed Ramdani & Ed B 12 director of Computer Science Laboratory (LIM), EST
Mohammedia-University Hassan 1l of Casablanca President of Moroccan association of
intelligent systems. Mohammed Ramdani received his Ph.D in Fuzzy Machine Learning in
1994 at the University Paris VI, France. He became Assistant Professor (1995), on 2001, he
obtained his HDR in perceptual computation at University Paris VI, France, and on 2005, he
became Professor at the University Hassan Il of Casablanca, Morocco. For the periods
1996-1998 and 2003-2005, he held the position of head of Department of Computer Science at
the Faculty of Sciences and Technologies of Mohammedia. Between 2008 and 2014 he was
Pedagogical Director of the Department of Engineering "Software Engineering and Systems
Integration™ (ILIS) within the Faculty of Sciences and Technologies of Mohammedia. Since
2006, he is Director of the Computer Science Lab at the University Hassan Il of Casablanca. In
May 2016, he is President of the Moroccan Intelligent Systems Association (AMSI). From
2017 to 2019 he is the director of the project “Connected Objects and Bigdate (BDOC)” at the
University Hassan Il of Casablanca. His research interests include explanation in machine
learning, perceptual computation with fuzzy logic and big datamining. He has directed several
PHD theses in these fields and published several articles in many indexed journals. He can be
contacted at email: ramdani@fstm.ac.ma.

Hamza Ali-Ou-Salah © 2 received the B.Sc. degree in Electronics and Computer
Science and the M.Sc. degree in information processing from Hassan Il University of
Casablanca, Morocco, in 2013 and 2015 respectively. He started his Ph.D. in renewable energy
management at Hassan Il University of Casablanca in 2016. His research interests are
renewable energy systems, artificial intelligence and their application in renewable energy
management. He can be contacted at email: hamza.aliousalah-etu@etu.univh2c.ma.

Bulletin of Electr Eng & Inf, Vol. 12, No. 4, August 2023: 2372-2380


https://orcid.org/0000-0002-7941-6003
https://scholar.google.com/citations?hl=fr&user=0Q9w_OoAAAAJ&view_op=list_works&authuser=1&gmla=AJsN-F71z6Pvb0cTN-qz0mSA4U2_eIZgzWOxEWWqE8Yh61pJzz39hire55BQ1AB1Y8hJyxcKpMKMYY1_Q8Jr7udOLrIkQ5TlbNUdGrvs7bo-8l8Rt4is_YHKyv4uStDqRl7dLSIzaNp4
https://www.scopus.com/authid/detail.uri?authorId=55815703400
https://www.webofscience.com/wos/author/record/HHS-0086-2022
https://orcid.org/0000-0001-9596-3480
https://scholar.google.com/citations?user=2SU7SMcAAAAJ&hl=fr&oi=ao
https://www.scopus.com/authid/detail.uri?authorId=57207728529
https://www.webofscience.com/wos/author/record/HHR-9992-2022
https://orcid.org/0000-0003-2941-4461
https://scholar.google.com/citations?user=QdRAdGIAAAAJ&hl=fr
https://www.scopus.com/authid/detail.uri?authorId=57193025669
https://www.webofscience.com/wos/author/record/HHS-1873-2022
https://orcid.org/0000-0002-8345-2242
https://scholar.google.com/citations?hl=fr&user=zzCQ_2MAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=57219986160
https://www.webofscience.com/wos/author/record/Y-7528-2018

