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 There is an era started in the field of power & energy (P&E) management in 

the electric vehicles (EVs) application cloud, which impacts the smart grid in 

significant ways and necessitates the collaboration of multiple branches of 

engineering. Most of the problems with EVs stem from their limited range, 

which can be improved by incorporating additional forms of energy storage. 

This paper makes an effort to bring a fresh viewpoint to the description of the 

power and energy management problem facing EV, taking into account all the 

needs of such a vehicle. Using a novel power and energy management system, 

the proposed methodology enables a systematic approach to this 

multidisciplinary problem. Implementing a power and energy management 

system for a dual-source EV using lead-acid batteries and ultra-capacitors 

(UCs) exemplifies the novel framework's capabilities. The electronic power 

development architecture is outlined in detail, along with the implementing 

modular blocks that make up the entire system architecture. 
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1. INTRODUCTION 

According to the electric vehicles (EV) policy in India, car density is growing exponentially [1]. The 

application of EV has set a new era in the transportation field the recent innovations in the technologies applied 

in the storage system and motors [2]. Lower battery E density and driving ranges restricted to only hundreds 

of kilometres currently mesh a widespread use of electric cars. Many scientists and automotive industries are 

working on battery energy management to increase battery life, rapid recharging, price, and weight reduction 

[3]. Therefore, in battery-powered pure EV, the study focuses primarily on the concept of efficient energy 

storage [4]. The research was carried out to validate the novel energy storage system (ESS) topology using a 

multisource inverter. Work focusing on the intention of limiting battery peak current and weight, extending 

battery life, and increasing the driving range for plug-in EV, with the active-controlled parallel operation of a 

battery and an ultra-capacitor (UC) as energy devices [5]-[7]. 

A single-stage inverter connects the battery and UC to a three-phase load in the proposed architecture. 

Driving cycle torque demands reduce battery life due to load transient peak current [8]. UCs connected to 

dynamic response and traditional ESS meet transient load current demands. Battery and UC meet all load and 

https://creativecommons.org/licenses/by-sa/4.0/
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P exchange requirements managed by a multi-input innovative inverter [8], [9]. Driving requires long-term E 

and P. The battery supplies constant profile energy, while the UC supplies dynamic peak load profile. This 

ESS is cheaper and stronger than battery-based ones [10]. Hybrid energy storage system (HESS) power 

simulation (PSIM) uses closed-loop energy monitoring. Open-loop inverter control modes create power-

sharing and a hardware prototype [11], [12]. Battery average current decreases standard case to 27%. The active 

power exchange between the propulsion system and the ESS extends the electric car's driving range [13], [14]. 

A hybrid remaining useful life (RUL) prediction model employing long short-term memory (LSTM) and 

Elman neural networks could monitor long-term battery degradation with higher cycle numbers and depict 

short-term capacity recovery at certain cycles [15]. 

The author examined lithium-ion battery thermal safety issues, including thermal behaviour, thermal 

runaway modelling, and battery pack security management rules, taking into account the heat manufacturing 

system and thermal battery characteristics [16]-[18]. Thermal runaway avoidance required heat, electrical, and 

mechanical model additives in numerous engineering techniques for material refining [19]-[21]. HESS 

optimization sizing the RUL. Peak current needs during transient load demands of the propulsion system 

degrade system quality and safety [22]. The author proposed a storage system with efficient E management 

using the SC and hybridization in E system [23]-[25]. Battery and UC power the electric car. Hybridization 

improves battery life. UC shares battery dynamic current stress, reducing current pulses a hybridization 

improves fuel economy 25-50% [22]-[25]. Section 2 provides an overview of the various types of EV and how 

they can be used in the context of contemporary control systems in the form of plug-in EV. In section 3, we 

model the various energy sources that go into an EV and compare them in terms of their energy density, power 

density, lifetime, cost, and weight. Before putting into action, the power-sharing capabilities of sources 

discovered in MATLAB and the PSIM environment, section 4 discusses the simulation study of the HESS. 

The study's findings are presented in section 5. 

 

 

2. COMPARATIVE PERFORMANCE OF ENERGY SOURCES 

EVs run on batteries. However, electric drive vehicle batteries possess limited life cycles, power 

density, charge-discharge rate, and charge time [26]. Batteries’ discharge rate reduces energy delivery. Battery 

impedance raises temperature [27]. P storage system batteries are crucial. Transient loading challenges battery 

safety. Battery life is shortened by frequent charging and discharging without cell voltage balancing [26]-[29]. 

The ESS's battery-UC topology improved battery life, minimising the issues. High P density in the 

UC ensures proper energy and thermal management, enhancing EV efficiency [30]. Ragone plots compare 

energy source P and E density. This graphic shows that batteries have a higher E density than P density. 

UC energy density is significantly lower than P density. UC's lifespan exceeds the batteries. UCs also 

offer better low-temperature properties than batteries. Ragone plot in Figure 1. Thus, battery-UC operating 

yields better outcomes. Battery and UC sources define all propulsion system driving cycle requirements. From 

the Ragone chart, UC has a high P density (6,800 W/kg) but a low E density. However, batteries have high E 

density (100 to 265 Wh/kg) and low P density. Thus, the combination outperforms each alone. 
 

 

 
 

Figure 1. Ragone chart 

 

 

3. MODELING OF SOURCES AND BATTERY 

During the operation of an EV, the amount of energy that is stored in the storage system and the rate 

at which energy is extracted are the important factors that need to be considered in order to characterise the 



                ISSN: 2302-9285 

Bulletin of Electr Eng & Inf, Vol. 12, No. 6, December 2023: 3190-3201 

3192 

energy management system. This is done in order to meet all of the specific energy demands and specific P 

demands that are imposed by driving cycles. In this section, the operation and modelling of a P source (UC), 

energy source (battery), and multisource inverter are broken down in detail, key terminology from the ESS is 

discussed. 

 

3.1.  Sources modelling 

The internal resistance of source-the physical resistance of the electrolyte electrodes offers opposition 

to the flow of current, known as the internal resistance of the source, as shown in Figure 2. Operating 

temperature and the state of the charge depends upon the internal resistance of the energy source. The efficiency 

of a source can be improved by maintaining less internal resistance. Expression of Kirchhoff's voltage law to 

the equivalent circuit of source given by as (1): 

 

𝑉𝐵𝑎𝑡 = 𝑉𝑜 − 𝐼𝐵𝑎𝑡 ∙ 𝑅𝑖𝑛𝑡 (1) 

 

Where 𝑉_𝐵𝑎𝑡 is terminal voltage, 𝑅𝑖𝑛𝑡 is internal resistance, and 𝑉𝑜 is open circuit voltage (E.M.F). 

 

 

 
 

Figure 2. Internal resistance of sources 

 

 

The ratio of discharge energy to the total mass of the battery is denoted as the specific energy of the 

battery as in (2). Actual energy extracted from the source depends upon discharge current and thus specific energy. 
 

𝐸𝑠𝐵𝑎𝑡 =
𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 𝐸𝑛𝑒𝑟𝑔𝑦

𝑇𝑜𝑡𝑎𝑙 𝑀𝑎𝑠𝑠 𝑜𝑓 𝑏𝑎𝑡𝑡𝑒𝑟𝑦
=

𝐸𝑑𝑖𝑠

𝑀𝐵𝑎𝑡
  (2) 

 

In (3) indicates the ratio of discharge P and mass of the battery is known as a specific P of the battery. 
 

𝑃𝑠𝐵𝑎𝑡 =
𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 𝑃𝑜𝑤𝑒𝑟

𝑇𝑜𝑡𝑎𝑙 𝑀𝑎𝑠𝑠 𝑜𝑓 𝑏𝑎𝑡𝑡𝑒𝑟𝑦
=  

𝑃𝑑𝑖𝑠

𝑀𝑏𝑎𝑡
 𝑊/𝑘𝑔 (3) 

 

This parameter also serves as a P level obtained from the battery. Battery capacity depends upon 

charges accumulated on the negative/positive electrode, which is measured in Coulombs (C) and expressed in 

terms of Ampere hour (Ah) (1 Ah=3,600 C). Energy capacity depends upon discharging current, presented in 

(4) with ‘𝐶𝑟𝑎𝑡𝑒.' 
 

𝐼𝑐/𝑑𝑖𝑠 = 𝑘 ∙ 𝐶𝑛 (4) 
 

Where 𝐼𝑐/𝑑𝑖𝑠 is charging/discharging current, 𝐶 is battery capacity in Ah, 𝑘 is multiplication factor of C, and 𝑛 

is C rate. 

For example, a battery with 16 Ah for 10 hr discharge at a current of 8 Amp, is expressed as 0.5 C10. 

As C-rate increases, C decreases. Charge battery not used for a long period, the battery discharges by losing 

some amount of charges. Discharging of a cell depends upon the temperature of cells, the slow decomposition 

of electrodes, and the release of gas. This is expressed in percentage/24 hr shown in (5): 
 

𝐸𝑆𝐷 = 𝛼𝑆𝐷 ∙  𝐸𝐵𝑎𝑡𝑁𝑜𝑚 (5) 
 

Where 𝛼𝑆𝐷 is coefficient of self-discharge for 24 hr, and 𝐸𝐵𝑎𝑡𝑁𝑜𝑚  is nominal energy capacity in Wh. 

In (6) shows the ratio of Ah discharge to complete recharge: 
 

𝐸𝑓𝑓𝑖𝐴ℎ =
𝐴ℎ (𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒)

𝐴ℎ (𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝑟𝑒𝑐ℎ𝑎𝑟𝑔𝑒)
 (6) 

 

Vbat

Rint

V0
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Useful to compare various types of energy sources. Battery energy efficiency is defined as the ratio 

of energy delivered from a particular state of charge (SOC) to energy consumed to maintain the same SOC. 

Higher battery efficiency is obtained by limiting rapid P discharges. 

 

3.2.  Battery modelling 

For a discharge time 𝑡𝑑𝑖𝑠, the battery discharge energy 𝐸𝑑𝑖𝑠, shown in (7) which is a function of  

open-circuit voltage (E.M.F.) 𝑉𝑜, with internal resistance 𝑅𝑖𝑛𝑡 and constant discharge current 𝐼𝑐𝑜𝑛. 
 

𝐸𝑑𝑖𝑠 = ∫ 𝑃𝐵𝑎𝑡
𝑡

0
(𝑡) ∙ 𝑑𝑡 = 𝑡𝑑𝑖𝑠(𝑉𝑜 − 𝐼𝐵𝑎𝑡 ∙ 𝑅𝑖𝑛𝑡)𝐼𝑐𝑜𝑛 (7) 

 

Battery charging time was selected as 𝑡𝑑𝑖𝑠 = 𝑡𝑐𝑟𝑔 with the same magnitude of discharging current 𝐼𝑐𝑜𝑛 

and battery discharge energy 𝐸𝑐𝑟𝑔 shown in (8): 
 

𝐸𝑐𝑟𝑔 = ∫ |𝑃𝐵𝑎𝑡|
𝑡

0
(𝑡) ∙ 𝑑𝑡 = 𝑡𝑐𝑟𝑔(𝑉𝑜 + |𝐼𝐵𝑎𝑡|  ∙ 𝑅𝑖𝑛𝑡)|𝐼𝑐𝑜𝑛| (8) 

 

Battery efficiency is expressed as the ratio of discharging energy to the charging energy shown in (9): 
 

𝑛𝐵𝑎𝑡 =
𝐸𝑑𝑖𝑠

𝐸𝑐𝑟𝑔
=

(𝑉𝑜−|𝐼𝐵𝑎𝑡| ∙𝑅𝑖𝑛𝑡)

(𝑉𝑜+|𝐼𝐵𝑎𝑡| ∙𝑅𝑖𝑛𝑡)
 (9) 

 

In 1897 W. Peakert formulated empirical relation between capacity (Q), discharging current (𝐼), and 

time (t) shown in (10): 
 

𝐼𝑛 ∙ 𝑡𝑐𝑢𝑡 = 𝜆 (10) 
 

Where 𝐼 is discharge current, 𝑡𝑐𝑢𝑡 is time taken to reach the satisfactory voltage, 𝑛 is curve fitting constant  

(n is 1 small currents, n is 2 large currents). 

The relation can be derived as in (11): 
 

𝑄 = 𝐼 ∙ 𝑡𝑐𝑢𝑡 (11) 
 

From (11) we can form discharge current in (12): 
 

𝐼𝑛 ∙
𝑄

𝐼
= 𝜆 (12) 

 

In (13) indicates, battery SoC corresponds to real-time battery capacity (remaining capacity): 
 

𝑆𝑜𝐶(𝑡) = 𝑄 − ∫ 𝑖(𝜏) ∙ 𝑑𝜏
𝑡

0
 (13) 

 

In (14) indicates, state of discharge (SoD) is: 
 

𝑆𝑜𝐷(𝑡) = ∫ 𝑖(𝜏) ∙ 𝑑𝜏
𝑡

0
 (14) 

 

Battery capacity can be expressed in another way called Depth of discharge as in (15): 
 

𝐷𝑜𝐷(𝑡) =
𝑄−𝑆𝑜𝐶(𝑡)

𝑄
∙ 100% =

𝑖(𝜏)∙𝑑𝜏

𝑄
 (15) 

 

By deriving 𝐷𝑜𝐷(𝑡) obtained as in (16): 
 

𝐷𝑜𝐷(𝑡) =
𝑆𝑜𝐷

𝑄𝑇
 (16) 

 

The more practical equation to calculate discharge time obtained from manufacturers is given as in (17): 
 

𝑇 =
𝐶[

𝐶

ℎ
]
𝑛−1

𝐼𝑛  (17) 

 

Where C is nominal capacity, ℎ is hour rating, 𝐼 is discharge current, and battery capacity in (𝐴ℎ) 𝑖𝑠 𝑇. 𝐼, 

practically SoC obtained by (18): 
 

𝑆𝑜𝐶𝐵𝑎𝑡(𝑘 + 1) =  𝑆𝑜𝐶𝐵𝑎𝑡(𝑘) + 
𝐼𝑐𝑜𝑛∆𝑇

𝐶𝑛3600
 (18) 
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In hybrid source energy management systems UC modeling is very important to optimize the size of 

the storage system. 

 

3.3.  Maximum discharging power 

Multiplication of maximum discharging current and minimum allowable voltage gives the value of 

maximum discharging P. Maximum discharging P due to current expressed as in (19): 
 

𝑃𝑑𝑖𝑠𝑀𝑎𝑥 = |𝐼𝑏𝑎𝑡𝑀𝑎𝑥|(𝑉𝑜) − |𝐼𝐵𝑎𝑡𝑀𝑎𝑥|2 ∙ (𝑅𝑖𝑛𝑡) with the same SoC (19) 
 

Maximum discharging P as given in (20): 
 

𝑃𝑑𝑖𝑠𝑀𝑎𝑥 =  𝑉𝐵𝑎𝑡𝑀𝑖𝑛 [
𝑉𝑜−𝑉𝐵𝑎𝑡𝑚𝑖𝑛

𝑅𝑖𝑛𝑡
] (20) 

 

Where 𝑉𝐵𝑎𝑡𝑀𝑖𝑛  is the minimum allowable voltage. 

 

3.4.  Maximum charging power 

In (21) indicates maximum charging P which depends upon maximum charging voltage and current. 

Charging rates always maintained less than the charge accumulation rate. 
 

𝑃𝑐𝑟𝑔𝑀𝑎𝑥 = |𝐼𝑏𝑎𝑡𝑀𝑎𝑥|(𝑉𝑜) + |𝐼𝐵𝑎𝑡𝑀𝑎𝑥|2 ∙ (𝑅𝑖𝑛𝑡) with the same SoC. 
 

𝑃𝑐𝑟𝑔𝑀𝑎𝑥 =  𝑉𝐵𝑎𝑡𝑀𝑎𝑥 [
𝑉𝐵𝑎𝑡𝑚𝑎𝑥−𝑉𝑜

𝑅𝑖𝑛𝑡
] (21) 

 

𝑉𝐵𝑎𝑡𝑀𝑎𝑥 = maximum charging voltage 
 

Using cell balancing overcharging of the cell is prevented. By limiting maximum charging P, the life 

of the cell will be extended. 

 

 

4. RESULT AND DISCUSSION 

Steps involve modeling and simulating any system, i.e., representing the system with mathematical 

relationships, finalizing variables of input and output, selecting the correct model, and interpreting and 

validating the system. To comprehend the UCs charging and discharge features and electrical behavior, a 

simulation is conducted as follows in the MATLAB and PSIM environment. To validate the UCs dynamic 

behavioral response, the simulation is conducted in MATLAB/Simulink software, where the battery is attached 

directly to the DC link, and the UC is connected to the DC link via a dc/dc converter. A simulation for DC/DC 

converter based on UC/battery design has been chosen to recognize the fundamental significance of 

hybridization. In this design, current sharing is observed with the gradually increased resistive load over time. 

Batteries (12 V (VB), 50 Ah) are chosen with a UC of 12 V (VU), 20 Farad. With time delays, three resistive 

loads are gradually added and connected for loading purposes, and control switches are equipped for low charge 

protection. The model shown in Figure 3 is achieved in MATLAB/Simulink from the Simscape tool. The total 

simulation time is selected as 1,000 s. 

For different time steps the resistive load gradually enters the circuit. The UC (12 Farad) and the battery 

share the peak load during the dynamic load variation. The outcome shown that the discharge of the battery begins 

at 320 sec. with a tiny decrease in the voltage of the battery owing to the internal battery resistance; the current is 

2 A. UC shares the dynamic shift in load demand, thus preserving the DC link voltage by restricting the current 

of the battery. In simulink model, it is seen that the UC provides the peak P (at t=300 s) that limit the battery 

currently in the event of dynamic peak P need of the load as shown in Figure 4. 

The PSIM simulation comprises an ac load such as induction motor (IM) fed inverter as shown in 

Figure 5, in which the suggested novel inverter is connected to an AC link. The source of the battery 24 V is 

linked to the inverter-1, while the UC (300 Farad, 24 volts) is attached to the inverter-2. The results demonstrate 

the P-sharing behavior of the battery and UC during a dynamic change in load. 

Using a simulation of the PSIM script file, a space vector analogy is used. Control signals are acquired 

using the script control block. Current and torque feedback is obtained from the sensors. As an optimal battery 

and UC, the DC sources are chosen for simulation. A multi-source hybrid inverter is designed with insulated 

gate bipolar transistors (IGBTs) based on semiconductors. A 3-ph IM characterizes the load. Since the IM itself 

is the balanced RL load, the current sensor senses from one of the phases; taco generator is also used to sense 

the shaft speed. The selected period of simulation is 2 sec. 



Bulletin of Electr Eng & Inf  ISSN: 2302-9285  

 

Implementation of a P&E management system for a dual-source EV powered by … (Mohan P. Thakre) 

3195 

This simulation demonstrates active and reactive (P-Q) load control. In view of the inductive load 

(RL), the motor's P factor lags. The outcomes denote the P&Q requirements of the load. 

a. Positive P is the power injected into the load from the DC bus. 

b. In Var, Q with positive magnitude is Q being injected into the load. 

c. In any combination where negative magnitudes inject P and Q from the load into the DC bus, bidirectional 

P flow is possible. 
 
 

 

 

Figure 3. Simulink model of the energy management system 
 

 

 
 

Figure 4. Study system outcome of various parameter 
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Figure 5. Hybrid converter model considering load 

 

 

4.1.  Mode-1 (battery & load) 

In this mode, battery drives the load and an UC is not used. Battery connected to the inverter, which 

converts DC to AC and drives the load alone. Battery current and voltage are measured with scope. In  

Figures 6(a) and (b) are shown inverter-1 output voltage and current respectively. In mode-1 of Figure 6, the 

motor is supplied by a 24 V battery via an inverter. To get these findings, we run a 1 s model of inverter mode. 

As such an outcome of evidence suggesting that the P is in the positive direction of the graph, P and Q are 

supplied into the motor as indicated in Figures 7(a) and (b). Mode-2 is nomenclature as mixed mode, where 

the P is supplied to the motor by the battery (energy requirement) and UC (P requirement) via an inverter. 

 

 
(a) 

 

 
(b) 

 

Figure 6. Inverter 1 findings for for mode-1 (supplied through battery alone); (a) Vout inverter-1 and  

(b) Iout inverter-1 
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(a) 

 

 
(b) 

 

Figure 7. P and Q used up in mode 1 utilization; (a) P and (b) Q 

 

  

4.2.  Mode-2 (battery, UC & load) 

In this mode, battery drives the load by charging the UC. The effective output voltage is equal to  

(VB-VU). Computation is 1 sec. Various loading reference increment at 0.3 sec. UCs share peak P demand due 

to their quick P dynamics, reducing current stress during peak P demand. Figures 8(a) and (b) shows  

inverter-1's voltage and current output. 
 

 

 
(a) 

 

 
(b) 

 

Figure 8. Inverter-1 voltage and current output; (a) inverter-1 (battery connected) voltage and (b) inverter-1 

(battery connected) current 
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Figure 9 shows the UC terminal voltage waveform, it is evident that the UC gets discharged in load 

at 0.3 sec. Current stress on the battery is shared by the UC. Comparative analysis between reference and 

calculated active and reactive P was indicated with the help of Figures 10(a) and (b). The  

steady-state 3-axis ABC frame being transformed into a 2-axis dynamic dq frame to govern P-sharing from 

sources to loads. The UC and battery P the load during simulation. 

 

 

0.2 0.22 0.240.180.16

4

6

8

10

12

14

18

Vuc

Time (s)

 
 

Figure 9. Terminal voltage of UC VUC during dynamic P requirement 0.3 sec 

 

 

 
(a) 

 

 
(b) 

 

Figure 10. Reference vs calculated; (a) P and (b) Q 
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5. CONCLUSION 

Attributable to these simulation results, a feasible hybrid (multisource) inverter topology for HESS 

has been proposed. One key benefit of this topology is that no intermediate stages are required between the P 

grid/motor and the energy storage units. The efficiency of EV can be increased through the use of a novel 

multisource connection that better fulfils the load's P demand. Smooth current sharing and reduced average 

currents are additional benefits of using a multisource inverter. On the other hand, an ESS can increase its 

efficiency by cutting down on the size and cost of the converter by having the battery directly drive the load (a 

motor/power system) without performing a boost operation. THE SVPWM-based control strategy allows for 

P&E transfer between multiple sources during the dynamic load demands of the driving cycle, which increases 

load power stability. 
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